Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 333: 114185, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509136

RESUMO

Sex differences in cell number in the preoptic area of the hypothalamus (POA) are documented across all major vertebrate lineages and contribute to differential regulation of the hypothalamic-pituitary-gonad axis and reproductive behavior between the sexes. Sex-changing fishes provide a unique opportunity to study mechanisms underlying sexual differentiation of the POA. In anemonefish (clownfish), which change sex from male to female, females have approximately twice the number of medium-sized cells in the anterior POA compared to males. This sex difference transitions from male-like to female-like during sex change. However, it is not known how this sex difference in POA cell number is established. This study tests the hypothesis that new cell addition plays a role. We initiated adult male-to-female sex change in 30 anemonefish (Amphiprion ocellaris) and administered BrdU to label new cells added to the POA at regular intervals throughout sex change. Sex-changing fish added more new cells to the anterior POA than non-changing fish, supporting the hypothesis. The observed effects could be accounted for by differences in POA volume, but they are also consistent with a steady trickle of new cells being gradually accumulated in the anterior POA before vitellogenic oocytes develop in the gonads. These results provide insight into the unique characteristics of protandrous sex change in anemonefish relative to other modes of sex change, and support the potential for future research in sex-changing fishes to provide a richer understanding of the mechanisms for sexual differentiation of the brain.


Assuntos
Perciformes , Área Pré-Óptica , Animais , Feminino , Masculino , Perciformes/fisiologia , Peixes/fisiologia , Gônadas , Diferenciação Sexual/fisiologia , Caracteres Sexuais
2.
J Fish Biol ; 103(5): 924-938, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37354451

RESUMO

Anemonefishes of the genus Amphiprion are emerging as a model organism for marine science, so there is potentially a lot for the research community to gain by optimizing and standardizing housing and husbandry protocols. Here, we conducted a literature review and a questionnaire survey regarding the housing and husbandry of anemonefishes for use in research. The questionnaire survey was completed by 27 laboratories, with a 45% response rate, across 11 different countries in Europe, North America, Asia and Australia. Results from the literature review identified that housing and husbandry protocols varied widely in terms of tank volume, diet composition and lighting type for the housing of broodstock pairs. These results also emphasize the significant impacts that variation in housing and husbandry protocols have on fish. Results from the questionnaire survey confirmed this. We identified multiple opportunities for improvement of protocols, including the potential for exchange of larvae between laboratories to create strains and reduce pressure on natural populations. In conclusion, our research suggests that the anemonefish research community should be discussing the optimization and standardization of housing and husbandry or, minimally, recognizing that housing and husbandry influence a wide range of traits and will influence the results and conclusions drawn from experiments.


Assuntos
Abrigo para Animais , Perciformes , Animais , Dieta , América do Norte , Ásia , Criação de Animais Domésticos/métodos
3.
Fish Physiol Biochem ; 49(4): 577-584, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37204544

RESUMO

The trade of aquarium organisms is growing worldwide. This market depends on a continuous supply of healthy and colorful aquatic animals, but this sector has few initiatives. However, in the last decade, there has been a growing interest in researching captive breeding of these animals, aiming to develop a more sustainable aquarium hobby. Larviculture is an important phase in the cultivation process because the larvae are more sensitive to stress and variations in the bulk of variables, such as temperature, salinity, nutritional management, light intensity and spectrum, and environmental background colors. Because background color could be a promoter variable of proper welfare, we tested whether it affects the endocrine response of tomato clownfish Amphiprion frenatus larvae to an acute stress challenge. We show that background color influences the endocrine stress axis responsiveness in tomato clownfish. When fish were subjected to a standard acute stressor of 61 days after hatching, only fish adapted to white walls increased the whole-body cortisol levels. From the results presented herein, we recommend that white tanks be avoided for A. frenatus larviculture. Both, the less stress level and the good welfare condition of larvae reared in colored tanks may have robust, practical applications since almost all clownfish in the ornamental aquarium trade come from captive breeding.


Assuntos
Perciformes , Solanum lycopersicum , Animais , Melhoramento Vegetal , Perciformes/fisiologia , Peixes , Larva
4.
Horm Behav ; 145: 105239, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35926412

RESUMO

Many fish species exhibit natural sex change as part of their life, providing unique opportunities to study sexually-differentiated social behaviors and their plasticity. Past research has shown that behavioral sex change in the female-to-male (protogynous) direction occurs rapidly and well before gonadal sex change. However, little is known about the timecourse of behavioral sex change in male-to-female (protandrous) sex-changing species, limiting our ability to compare patterns of behavioral sex change across species and identify conserved or divergent underlying mechanisms. Using the protandrous sex changing anemonefish Amphiprion ocellaris, we assessed behavior (aggression and parental care) and hormones (estradiol and 11-ketotestosterone) in fish over six months of sex change, and compared those fish against their non-changing partners as well as control males and females. Contrary to expectations, we found that sex-changing fish displayed behavior that was persistently male-like, and that their behavior did not become progressively female-like as sex change progressed. Hormones shifted to an intermediate profile between males and females and remained stable until gonads changed. These results support a new perspective that the timecourse for protandrous sex change in anemonefish is completely distinct from other well-established models, such that behavioral sex change does not occur until after gonadal sex change is complete, and that sex-changing fish have a stable and unique behavioral and hormonal phenotype that is distinct from a male-typical or female-typical phenotype. The results also identify aspects of sex change that may fundamentally differ between protandrous and protogynous modes, motivating further research into these remarkable examples of phenotypic plasticity.


Assuntos
Perciformes , Animais , Estradiol , Feminino , Peixes , Gônadas , Masculino , Processos de Determinação Sexual
5.
Zoolog Sci ; 39(4)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35960028

RESUMO

The relationship between anemonefish and sea anemones is one of the most emblematic examples of mutualistic symbiosis in coral reefs. Although this is a textbook example, the major aspects of this symbiosis are still not fully understood in mechanistic terms. Moreover, since studies of this relationship have usually been focused on anemonefish, much less is known about giant sea anemones, their similarities, their phylogenetic relationships, and their differences at the molecular level. Since both partners of the symbiotic relationship are important, we decided to explore this well-known phenomenon from the perspective of giant sea anemones. Here, we report reference transcriptomes for all seven species of giant sea anemones that inhabit fringing reefs of Okinawa (Japan) and serve as hosts for six species of local anemonefish. Transcriptomes were used to investigate their phylogenetic relations, genetic differences and repertoires of nematocyte-specific proteins. Our data support the presence of three distinct groups corresponding to three genera: Entacmaea, Heteractis, and Stichodactyla. The basal position among the three groups belongs to Entacmaea, which was the first to diverge from a common ancestor. While the magnitude of genetic difference between the representatives of Entacmaea and Stichodactyla is large, intra-specific variation within Stichodactyla is much smaller and seems to result from recent speciation events. Our data reconfirms that Heteractis magnifica belongs to the genus Stichodactyla, despite an overall morphological similarity with representatives of the genus Heteractis. The availability of reference transcriptomes will facilitate further research into the fascinating relationship between sea anemones and anemonefish.


Assuntos
Anêmonas-do-Mar , Animais , Recifes de Corais , Filogenia , Anêmonas-do-Mar/genética , Simbiose , Transcriptoma
6.
Fish Physiol Biochem ; 47(4): 841-848, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33733307

RESUMO

The nitrification process in recirculating aquaculture systems can reduce water pH. Fish can also be exposed to water acidification during transport, an important feature in the aquarium industry, as live fish can be kept in a closed environment for more than 24 h during overseas aerial transportation. Therefore, it is important to study the responses of fish to acidic environments. We investigated the impacts of acute exposure to decreasing pH levels in orange clownfish Amphiprion percula juveniles on their survival and oxidative stress status. Fish were exposed to pH 5, 6, 7, and 8 for 96 h. We observed a significant reduction in survival (85%) and protein damage as measured by P-SH (protein thiol) for fish maintained at pH 5. Despite no effects on survival or oxidative damage, fish exposed to pH 6 showed an increase in their antioxidant defense systems, demonstrating this pH level could not be suitable for them as well. Furthermore, there were no negative effects for fish kept at pH 7, compared to those maintained at pH 8 during this short-term evaluation.


Assuntos
Peixes , Estresse Oxidativo , Água do Mar/química , Animais , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Concentração de Íons de Hidrogênio , Compostos de Sulfidrila/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
7.
Horm Behav ; 121: 104717, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32061617

RESUMO

Parental care represents a suite of distinct behaviors performed by parents to maximize fitness. Dynamic shifts in parental care behaviors, such as between nest defense and direct provisioning of the offspring, are required in response to environmental variation. However, the neural mechanisms which mediate such behavioral shifts remain a mystery. The anemonefish, Amphiprion ocellaris, represents an experimentally valuable model in social neuroscience which is conducive to manipulating the environment while simultaneously measuring parental care. The goal of this study was to determine the extent to which arginine vasotocin (AVT) and isotocin (IT) signaling are necessary for males to shift between direct egg care and aggressive nest defense in the presence of intruders, Domino damselfish (Dascyllus trimaculatus). The IT receptor antagonist desGly-NH2-d(CH2)5[D-Tyr2,Thr4]OVT, significantly reduced direct egg care, while at the same time increased levels of aggressive nest defense relative to vehicle. Conversely, blockade of AVT using the antagonist d(CH2)5[Tyr(Me)2]AVP, reduced aggression and tended to increase egg care. Results demonstrate that male anemonefish alter their parental strategy in response to allospecific intruders, and that IT and AVT signaling oppositely regulate parental care displays of aggression versus egg care.


Assuntos
Agressão/fisiologia , Comportamento de Nidação/fisiologia , Ocitocina/análogos & derivados , Perciformes/fisiologia , Vasotocina/fisiologia , Agressão/efeitos dos fármacos , Animais , Masculino , Comportamento de Nidação/efeitos dos fármacos , Ocitocina/metabolismo , Ocitocina/fisiologia , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Ocitocina/metabolismo , Receptores de Ocitocina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Comportamento Social , Territorialidade , Vasotocina/análogos & derivados , Vasotocina/antagonistas & inibidores , Vasotocina/metabolismo
8.
J Fish Biol ; 97(4): 1276-1280, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32785941

RESUMO

Behaviours of Clark's anemonefish Amphiprion clarkii and the dusky anemonefish Amphiprion melanopus were studied in Vanuatu. Six anemones and their resident fish were observed for typical behaviours (hiding, watching, roaming, inter-, and intraspecific behaviour) with and without the presence of a snorkelling observer. Observer presence had significant but contrasting effects on hiding behaviour in A. clarkii and A. melanopus. Bolder anemonefish species may be able to outcompete other species in areas with high human presence.


Assuntos
Comportamento Animal/fisiologia , Perciformes/fisiologia , Animais , Humanos , Oceania , Especificidade da Espécie
9.
J Fish Biol ; 96(1): 274-277, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31760658

RESUMO

Response of orange-finned anemonefish Amphiprion chrysopterus and three-spot damselfish Dascyllus trimaculatus to red laser-pointer light was studied in Mo'orea, French Polynesia. Four magnificent anemones Heteractis magnifica and their resident fish were observed for typical behaviours (biting, chasing, hiding, posing, lunging and retreating) with and without exposure to laser-pointer light. Lunging behaviour increased significantly for both fish species upon exposure to laser-pointer light; none of the other behaviours changed significantly. We advance the hypothesis that orange-finned anemonefish and three-spot damselfish interpret laser pointer stimulation as a territorial threat.


Assuntos
Comportamento Animal/fisiologia , Luz/efeitos adversos , Perciformes/fisiologia , Animais , Recifes de Corais , Polinésia
10.
Horm Behav ; 112: 65-76, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959023

RESUMO

Sex differences in the anatomy and physiology of the vertebrate preoptic area (POA) arise during development, and influence sex-specific reproductive functions later in life. Relative to masculinization, mechanisms for feminization of the POA are not well understood. The purpose of this study was to induce sex change from male to female in the anemonefish Amphiprion ocellaris, and track the timing of changes in POA cytoarchitecture, composition of the gonads and circulating sex steroid levels. Reproductive males were paired together and then sampled after 3 weeks, 6 months, 1 year and 3 years. Results show that as males change sex into females, number of medium cells in the anterior POA (parvocellular region) approximately double to female levels over the course of several months to 1 year. Feminization of gonads, and plasma sex steroids occur independently, on a variable timescale, up to years after POA sex change has completed. Findings suggest the process of POA feminization is orchestrated by factors originating from within the brain as opposed to being cued from the gonads, consistent with the dominant hypothesis in mammals. Anemonefish provide an opportunity to explore active mechanisms responsible for female brain development in an individual with male gonads and circulating sex steroid levels.


Assuntos
Feminização/etiologia , Feminização/patologia , Gônadas/fisiologia , Perciformes/fisiologia , Área Pré-Óptica/fisiologia , Animais , Encéfalo/patologia , Contagem de Células , Feminino , Feminização/sangue , Feminização/veterinária , Hormônios Esteroides Gonadais/sangue , Gônadas/patologia , Masculino , Perciformes/metabolismo , Área Pré-Óptica/patologia , Caracteres Sexuais , Diferenciação Sexual/fisiologia , Testículo/patologia
11.
Horm Behav ; 103: 62-70, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29928890

RESUMO

Fathering behavior is critical for offspring survival in many species across diverse taxa, but our understanding of the neuroendocrine mechanisms regulating paternal care is limited in part because of the few primarily paternal species among the common animal models. However, many teleosts display primarily paternal care, and among the teleosts, anemonefish species are particularly well suited for isolating molecular mechanisms of fathering as they perform parental care in isolation of many other typically competing behaviors such as territorial defense and nest building. The goal of this study was to determine the extent to which whole brain gene expression levels of isotocin receptors, arginine vasotocin receptors, and aromatase as well as circulating levels of the bioactive sex steroid hormones estradiol (E2) and 11-ketotestosterone (11KT) vary in association with parenting behavior in Amphiprion ocellaris. Brain aromatase and IT receptor gene expression were higher in both males and females that were parenting versus not. IT receptor expression was overall higher in males than females, which we interpret is a reflection of the greater parental effort that males display. Aromatase was overall higher in females than males, which we conclude is related to the higher circulating E2, which crosses into the brain and increases aromatase transcription. Results suggest both aromatase and IT receptors are dynamically upregulated in the brains of A. ocellaris males and females to support high levels of parental effort.


Assuntos
Aromatase/genética , Encéfalo/metabolismo , Comportamento de Nidação/fisiologia , Perciformes/genética , Receptores de Ocitocina/genética , Animais , Aromatase/metabolismo , Encéfalo/enzimologia , Estradiol/sangue , Feminino , Regulação da Expressão Gênica , Masculino , Comportamento Materno/fisiologia , Comportamento Paterno/fisiologia , Perciformes/metabolismo , Receptores de Ocitocina/metabolismo , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Anêmonas-do-Mar , Testosterona/análogos & derivados , Testosterona/sangue
12.
Horm Behav ; 90: 113-119, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28288796

RESUMO

The nonapeptides isotocin (IT) and arginine vasotocin (AVT), along with their mammalian homologs oxytocin and arginine vasopressin, are well known regulators of social behaviors across vertebrate taxa. However, little is known about their involvement in paternal care. Here, we measured the effect of an IT and an AVT V1a receptor antagonist on paternal behaviors in the primarily paternal teleost Amphiprion ocellaris. We also measured the effect of the IT receptor antagonist on aggression in dyadic contests between two non-reproductive fish to assess specificity of the effect on paternal behaviors. Individual differences in levels of paternal behaviors (nips, fanning the eggs, and proportion of the time in the nest) were consistent across spawning cycles when no treatments were administered. The IT receptor antagonist severely reduced paternal behaviors but had no effect on aggression, whereas the AVT V1a receptor antagonist increased paternal behaviors. These results support the idea that IT signaling is crucial for the expression of paternal behavior in A. ocellaris. Based on a previous study showing that the AVT V1a antagonist decreases aggression in dyadic contests, we hypothesize that the antagonist enhances paternal behavior indirectly by reducing vigilance and aggression, thereby alleviating effort directed towards other competing behaviors and allowing for the increased expression of paternal behaviors.


Assuntos
Agressão/efeitos dos fármacos , Antagonistas de Hormônios/farmacologia , Comportamento Paterno/efeitos dos fármacos , Perciformes/fisiologia , Animais , Arginina Vasopressina/metabolismo , Feminino , Masculino , Comportamento de Nidação/efeitos dos fármacos , Ocitocina/análogos & derivados , Ocitocina/metabolismo , Perciformes/metabolismo , Receptores de Vasopressinas/metabolismo , Comportamento Social , Vasotocina/metabolismo
13.
Biol Lett ; 13(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28855412

RESUMO

The continuous increase of anthropogenic CO2 in the atmosphere resulting in ocean acidification has been reported to affect brain function in some fishes. During adulthood, cell proliferation is fundamental for fish brain growth and for it to adapt in response to external stimuli, such as environmental changes. Here we report the first expression study of genes regulating neurogenesis and neuroplasticity in brains of three-spined stickleback (Gasterosteus aculeatus), cinnamon anemonefish (Amphiprion melanopus) and spiny damselfish (Acanthochromis polyacanthus) exposed to elevated CO2 The mRNA expression levels of the neurogenic differentiation factor (NeuroD) and doublecortin (DCX) were upregulated in three-spined stickleback exposed to high-CO2 compared with controls, while no changes were detected in the other species. The mRNA expression levels of the proliferating cell nuclear antigen (PCNA) and the brain-derived neurotrophic factor (BDNF) remained unaffected in the high-CO2 exposed groups compared to the control in all three species. These results indicate a species-specific regulation of genes involved in neurogenesis in response to elevated ambient CO2 levels. The higher expression of NeuroD and DCX mRNA transcripts in the brain of high-CO2-exposed three-spined stickleback, together with the lack of effects on mRNA levels in cinnamon anemonefish and spiny damselfish, indicate differences in coping mechanisms among fish in response to the predicted-future CO2 level.


Assuntos
Neurogênese , Plasticidade Neuronal , Animais , Encéfalo , Fator Neurotrófico Derivado do Encéfalo , Dióxido de Carbono , Peixes , Smegmamorpha
14.
Proc Biol Sci ; 283(1827): 20160277, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27030417

RESUMO

Global marine biodiversity peaks within the Coral Triangle, and understanding how such high diversity is maintained is a central question in marine ecology. We investigated broad-scale patterns in the diversity of clownfishes and their host sea anemones by conducting 981 belt-transects at 20 locations throughout the Indo-Pacific. Of the 1508 clownfishes encountered, 377 fish occurred in interspecific cohabiting groups and cohabitation was almost entirely restricted to the Coral Triangle. Neither the diversity nor density of host anemone or clownfish species alone influenced rates of interspecific cohabitation. Rather cohabitation occurred in areas where the number of clownfish species exceeds the number of host anemone species. In the Coral Triangle, cohabiting individuals were observed to finely partition their host anemone, with the subordinate species inhabiting the periphery. Furthermore, aggression did not increase in interspecific cohabiting groups, instead dominant species were accepting of subordinate species. Various combinations of clownfish species were observed cohabiting (independent of body size, phylogenetic relatedness, evolutionary age, dentition, level of specialization) in a range of anemone species, thereby ensuring that each clownfish species had dominant reproductive individuals in some cohabiting groups. Clownfishes are obligate commensals, thus cohabitation is an important process in maintaining biodiversity in high diversity systems because it supports the persistence of many species when host availability is limiting. Cohabitation is a likely explanation for high species richness in other obligate commensals within the Coral Triangle, and highlights the importance of protecting these habitats in order to conserve unique marine biodiversity.


Assuntos
Biodiversidade , Perciformes/fisiologia , Anêmonas-do-Mar/fisiologia , Simbiose , Animais , Evolução Biológica , Tamanho Corporal , Recifes de Corais , Oceano Índico , Oceano Pacífico , Filogenia , Densidade Demográfica
15.
Proc Biol Sci ; 281(1795)2014 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-25274370

RESUMO

Why generalist and specialist species coexist in nature is a question that has interested evolutionary biologists for a long time. While the coexistence of specialists and generalists exploiting resources on a single ecological dimension has been theoretically and empirically explored, biological systems with multiple resource dimensions (e.g. trophic, ecological) are less well understood. Yet, such systems may provide an alternative to the classical theory of stable evolutionary coexistence of generalist and specialist species on a single resource dimension. We explore such systems and the potential trade-offs between different resource dimensions in clownfishes. All species of this iconic clade are obligate mutualists with sea anemones yet show interspecific variation in anemone host specificity. Moreover, clownfishes developed variable environmental specialization across their distribution. In this study, we test for the existence of a relationship between host-specificity (number of anemones associated with a clownfish species) and environmental-specificity (expressed as the size of the ecological niche breadth across climatic gradients). We find a negative correlation between host range and environmental specificities in temperature, salinity and pH, probably indicating a trade-off between both types of specialization forcing species to specialize only in a single direction. Trade-offs in a multi-dimensional resource space could be a novel way of explaining the coexistence of generalist and specialists.


Assuntos
Evolução Biológica , Ecossistema , Perciformes/fisiologia , Anêmonas-do-Mar/fisiologia , Simbiose , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Dados de Sequência Molecular , Perciformes/genética , Filogenia , Análise de Sequência de DNA
16.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38352560

RESUMO

Sexual differentiation of the brain occurs in all major vertebrate lineages but is not well understood at a molecular and cellular level. Unlike most vertebrates, sex-changing fishes have the remarkable ability to change reproductive sex during adulthood in response to social stimuli, offering a unique opportunity to understand mechanisms by which the nervous system can initiate and coordinate sexual differentiation. This study explores sexual differentiation of the forebrain using single nucleus RNA-sequencing in the anemonefish Amphiprion ocellaris, producing the first cellular atlas of a sex-changing brain. We uncover extensive sex differences in cell type-specific gene expression, relative proportions of cells, baseline neuronal excitation, and predicted inter-neuronal communication. Additionally, we identify the cholecystokinin, galanin, and estrogen systems as central molecular axes of sexual differentiation. Supported by these findings, we propose a model of neurosexual differentiation in the conserved vertebrate social decision-making network spanning multiple subtypes of neurons and glia, including neuronal subpopulations within the preoptic area that are positioned to regulate gonadal differentiation. This work deepens our understanding of sexual differentiation in the vertebrate brain and defines a rich suite of molecular and cellular pathways that differentiate during adult sex change in anemonefish.

17.
G3 (Bethesda) ; 13(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36626199

RESUMO

Anemonefish are an emerging group of model organisms for studying genetic, ecological, evolutionary, and developmental traits of coral reef fish. The yellowtail clownfish Amphiprion clarkii possesses species-specific characteristics such as inter-species co-habitation, high intra-species color variation, no anemone specificity, and a broad geographic distribution, that can increase our understanding of anemonefish evolutionary history, behavioral strategies, fish-anemone symbiosis, and color pattern evolution. Despite its position as an emerging model species, the genome of A. clarkii is yet to be published. Using PacBio long-read sequencing and Hi-C chromatin capture technology, we generated a high-quality chromosome-scale genome assembly initially comprised of 1,840 contigs with an N50 of 1,203,211 bp. These contigs were successfully anchored into 24 chromosomes of 843,582,782 bp and annotated with 25,050 protein-coding genes encompassing 97.0% of conserved actinopterygian genes, making the quality and completeness of this genome the highest among all published anemonefish genomes to date. Transcriptomic analysis identified tissue-specific gene expression patterns, with the brain and optic lobe having the largest number of expressed genes. Further analyses revealed higher copy numbers of erbb3b (a gene involved in melanocyte development) in A. clarkii compared with other anemonefish, thus suggesting a possible link between erbb3b and the natural melanism polymorphism observed in A. clarkii. The publication of this high-quality genome, along with A. clarkii's many unique traits, position this species as an ideal model organism for addressing scientific questions across a range of disciplines.


Assuntos
Perciformes , Animais , Perciformes/genética , Peixes/genética , Cromossomos/genética , Genoma , Pigmentação
18.
Genome Biol Evol ; 15(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37226990

RESUMO

Clownfishes are an iconic group of coral reef fishes that evolved a mutualistic interaction with sea anemones, which triggered the rapid diversification of the group. Following the emergence of this mutualism, clownfishes diversified into different ecological niches and developed convergent phenotypes associated with their host use. The genetic basis of the initial acquisition of the mutualism with host anemones has been described, but the genomic architecture underlying clownfish diversification once the mutualism was established and the extent to which clownfish phenotypic convergence originated through shared genetic mechanisms are still unknown. Here, we investigated these questions by performing comparative genomic analyses on the available genomic data of five pairs of closely related but ecologically divergent clownfish species. We found that clownfish diversification was characterized by bursts of transposable elements, an overall accelerated coding evolution, incomplete lineage sorting, and ancestral hybridization events. Additionally, we detected a signature of positive selection in 5.4% of the clownfish genes. Among them, five presented functions associated with social behavior and ecology, and they represent candidate genes involved in the evolution of the size-based hierarchical social structure so particular to clownfishes. Finally, we found genes with patterns of either relaxation or intensification of purifying selection and signals of positive selection linked with clownfish ecological divergence, suggesting some level of parallel evolution during the diversification of the group. Altogether, this work provides the first insights into the genomic substrate of clownfish adaptive radiation and integrates the growing collection of studies investigating the genomic mechanisms governing species diversification.


Assuntos
Perciformes , Anêmonas-do-Mar , Animais , Evolução Biológica , Perciformes/genética , Genômica , Genoma , Anêmonas-do-Mar/genética , Filogenia
19.
G3 (Bethesda) ; 12(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35353192

RESUMO

The false clownfish Amphiprion ocellaris is a popular fish species and an emerging model organism for studying the ecology, evolution, adaptation, and developmental biology of reef fishes. Despite this, high-quality genomic resources for this species are scarce, hindering advanced genomic analyses. Leveraging the power of PacBio long-read sequencing and Hi-C chromosome conformation capture techniques, we constructed a high-quality chromosome-scale genome assembly for the clownfish A. ocellaris. The initial genome assembly comprised of 1,551 contigs of 861.42 Mb, with an N50 of 863.85 kb. Hi-C scaffolding of the genome resulted in 24 chromosomes containing 856.61 Mb. The genome was annotated with 26,797 protein-coding genes and had 96.62% completeness of conserved actinopterygian genes, making this genome the most complete and high quality among published anemonefish genomes. Transcriptomic analysis identified tissue-specific gene expression patterns, with the brain and optic lobe having the largest number of expressed genes. Further, comparative genomic analysis revealed 91 genome elements conserved only in A. ocellaris and its sister species Amphiprion percula, and not in other anemonefish species. These elements are close to genes that are involved in various nervous system functions and exhibited distinct expression patterns in brain tissue, potentially highlighting the genetic toolkits involved in lineage-specific divergence and behaviors of the clownfish branch. Overall, our study provides the highest quality A. ocellaris genome assembly and annotation to date, whilst also providing a valuable resource for understanding the ecology and evolution of reef fishes.


Assuntos
Perciformes , Animais , Cromossomos/genética , Peixes/genética , Genoma , Genômica , Perciformes/genética
20.
Evodevo ; 12(1): 8, 2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34147131

RESUMO

Pigmentation patterning systems are of great interest to understand how changes in developmental mechanisms can lead to a wide variety of patterns. These patterns are often conspicuous, but their origins remain elusive for many marine fish species. Dismantling a biological system allows a better understanding of the required components and the deciphering of how such complex systems are established and function. Valuable information can be obtained from detailed analyses and comparisons of pigmentation patterns of mutants and/or variants from normal patterns. Anemonefishes have been popular marine fish in aquaculture for many years, which has led to the isolation of several mutant lines, and in particular color alterations, that have become very popular in the pet trade. Additionally, scattered information about naturally occurring aberrant anemonefish is available on various websites and image platforms. In this review, the available information on anemonefish color pattern alterations has been gathered and compiled in order to characterize and compare different mutations. With the global picture of anemonefish mutants and variants emerging from this, such as presence or absence of certain phenotypes, information on the patterning system itself can be gained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA