RESUMO
BACKGROUND: Fungi and ants belong to the most important organisms in terrestrial ecosystems on Earth. In nutrient-poor niches of tropical rainforests, they have developed steady ecological relationships as a successful survival strategy. In tropical ant-plant mutualisms worldwide, where resident ants provide the host plants with defense and nutrients in exchange for shelter and food, fungi are regularly found in the ant nesting space, inhabiting ant-made dark-colored piles ("patches"). Unlike the extensively investigated fungus-growing insects, where the fungi serve as the primary food source, the purpose of this ant-fungi association is less clear. To decipher the roles of fungi in these structures within ant nests, it is crucial to first understand the dynamics and drivers that influence fungal patch communities during ant colony development. RESULTS: In this study, we investigated how the ant colony age and the ant-plant species affect the fungal community in the patches. As model we selected one of the most common mutualisms in the Tropics of America, the Azteca-Cecropia complex. By amplicon sequencing of the internal transcribed spacer 2 (ITS2) region, we analyzed the patch fungal communities of 93 Azteca spp. colonies inhabiting Cecropia spp. trees. Our study demonstrates that the fungal diversity in patches increases as the ant colony grows and that a change in the prevalent fungal taxa occurs between initial and established patches. In addition, the ant species significantly influences the composition of the fungal community in established ant colonies, rather than the host plant species. CONCLUSIONS: The fungal patch communities become more complex as the ant colony develops, due to an acquisition of fungi from the environment and a substrate diversification. Our results suggest a successional progression of the fungal communities in the patches during ant colony growth and place the ant colony as the main driver shaping such communities. The findings of this study demonstrate the unexpectedly complex nature of ant-plant mutualisms in tropical regions at a micro scale.
Assuntos
Formigas , Fungos , Micobioma , Simbiose , Formigas/microbiologia , Formigas/fisiologia , Animais , Fungos/genética , Fungos/fisiologia , Fungos/classificação , Cecropia/microbiologia , MirmecófitasRESUMO
Most studies of plant-animal mutualistic networks have come from a temporally static perspective. This approach has revealed general patterns in network structure, but limits our ability to understand the ecological and evolutionary processes that shape these networks and to predict the consequences of natural and human-driven disturbance on species interactions. We review the growing literature on temporal dynamics of plant-animal mutualistic networks including pollination, seed dispersal and ant defence mutualisms. We then discuss potential mechanisms underlying such variation in interactions, ranging from behavioural and physiological processes at the finest temporal scales to ecological and evolutionary processes at the broadest. We find that at the finest temporal scales (days, weeks, months) mutualistic interactions are highly dynamic, with considerable variation in network structure. At intermediate scales (years, decades), networks still exhibit high levels of temporal variation, but such variation appears to influence network properties only weakly. At the broadest temporal scales (many decades, centuries and beyond), continued shifts in interactions appear to reshape network structure, leading to dramatic community changes, including loss of species and function. Our review highlights the importance of considering the temporal dimension for understanding the ecology and evolution of complex webs of mutualistic interactions.
Assuntos
Polinização , Simbiose , Animais , Ecossistema , PlantasRESUMO
The orb-weaver spiders Eustala oblonga (Chickering) and Eustala illicita (O. Picard-Cambridge) (Araneae: Araneidae) inhabit the ant-defended acacias Vachellia melanocerus (Beurling) and Vachellia collinsii (Safford) (Fabales: Fabaceae), respectively, in Panama. These spiders do not capture patrolling Pseudomyrmex ants but exploit their plant-protection services to escape predation. What effect the spiders have on the ant-acacia mutualisms is unknown. They may provide an additional layer of plant defense by capturing flying herbivorous insects in their webs. Alternatively, the spiders may disrupt the ant-acacia mutualisms by capturing alate acacia ants during nuptial flights. We evaluated these two hypotheses by sampling insects flying through acacia foliage and by identifying prey remains in webs. The proportions of insects captured on sticky card traps and in webs varied with taxonomic order and ecological role. Herbivorous insects greatly outnumbered other groups captured on sticky cards and were captured in spiders' webs in both acacia species but made up a minority of prey remains in webs. Instead, insect predators and parasitoids made up the majority of prey remains and were comprised primarily by alate ant mutualists of the host acacias. These results provide indirect support for both hypotheses and suggest that the spiders potentially both benefit and harm their host ant-acacia mutualisms. The net effect of spider exploitation, however, is unclear and is likely based on both the effectiveness of plant protection from herbivory provided by the spiders relative to that provided by acacia ants, as well as the overall proportion of the ant reproductive caste the spiders actually capture.
Assuntos
Insetos , Comportamento Predatório , Aranhas/fisiologia , Simbiose , Acacia/crescimento & desenvolvimento , Animais , Formigas , PanamáRESUMO
Anthropogenic disturbance and climate change are the main drivers of biodiversity loss and ecological services around the globe. There is concern that climate change will exacerbate the impacts of disturbance and thereby promote biotic homogenization, but its consequences for ecological services are unknown. We investigated the individual and interactive effects of increasing chronic anthropogenic disturbance (CAD) and aridity on seed dispersal services provided by ants in Caatinga vegetation of north-eastern Brazil. The study was conducted in Catimbau National Park, Pernambuco, Brazil. Within an area of 214 km2 , we established nineteen 50 × 20 m plots that encompassed gradients of both CAD and aridity. We offered diaspores of six plant species, three myrmecochorous diaspores and three fleshy fruits that are secondarily dispersed by ants. We then quantified the number of interactions, seed removal rate and dispersal distances, and noted the identities of interacting ant species. Finally, we used pitfall trap data to quantify the abundances of ant disperser species in each plot. Our results show that overall composition of ant disperser species varied along the gradients of CAD and aridity, but the composition of high-quality dispersers varied only with aridity. The total number of interactions, rates of removal and mean distance of removal all declined with increasing aridity, but they were not related to CAD. These same patterns were found when considering only high-quality disperser species, driven by the responses of the dominant disperser Dinoponera quadriceps. We found little evidence of interactive effects of CAD and aridity on seed dispersal services by ants. Our study indicates that CAD and aridity act independently on ant-mediated seed dispersal services in Caatinga, such that the impacts of anthropogenic disturbance are unlikely to change under the forecast climate of increased aridity. However, our findings highlight the vulnerability of seed dispersal services provided by ants in Caatinga under an increasingly arid climate due to low functional redundancy in high-quality disperser species. Given the large number of plant species dependent on ants for seed dispersal, this has important implications for future plant recruitment and, consequently, for the composition of Caatinga plant communities.
Assuntos
Formigas , Dispersão de Sementes , Animais , Brasil , Mudança Climática , Meio Ambiente , SementesRESUMO
Extrafloral nectary (EFN)-bearing plants attract ants to gain protection against herbivores. Some EFN-bearing plants possess different types of EFNs, which might have different effects on ants on the plants. Mallotus japonicus (Thunb.) Muell. Arg. (Euphorbiaceae) bears two types of EFNs, including a pair of large EFNs at the leaf base and many small EFNs along the leaf edge. This study aimed to determine the different roles of the two types of EFNs in biotic defense by ants. A field experiment was conducted to investigate the effect of leaf damage on EFN production and on the distribution pattern of ants. After leaf damage, the number of leaf edge EFNs increased in the leaves first-produced. The number of ants on the leaves also increased, and the foraging area of ants extended from the leaf base to the leaf tip. An EFN-covering field experiment revealed that leaf edge EFNs had a greater effect than leaf base EFNs on ant dispersal on leaves. The extended foraging area of ants resulted in an increase of encounter or attack rate against an experimentally placed herbivore, Spodoptera litura. These results suggest that M. japonicus plants control the foraging area of ants on their leaves using different types of EFNs in response to leaf damage, thus achieving a very effective biotic defense against herbivores by ants.
Assuntos
Formigas , Mallotus (Planta)/fisiologia , Folhas de Planta/fisiologia , Néctar de Plantas/fisiologia , Animais , Herbivoria , Mallotus (Planta)/anatomia & histologia , Folhas de Planta/anatomia & histologia , SpodopteraRESUMO
While foundation species can stabilize ecosystems at landscape scales, their ability to persist is often underlain by keystone interactions occurring at smaller scales. Acacia drepanolobium is a foundation tree, comprising >95% of woody cover in East African black-cotton savanna ecosystems. Its dominance is underlain by a keystone mutualistic interaction with several symbiotic ant species in which it provides housing (swollen thorns) and carbohydrate-rich nectar from extra-floral nectaries (EFN). In return, it gains protection from catastrophic damage from mega-herbivores. Crematogaster mimosae is the ecologically dominant symbiotic ant in this system, also providing the highest protection services. In addition to tending EFN, C. mimosae tend scale insects for carbohydrate-rich honeydew. We investigated the role of scale insects in this specialized ant-plant interaction. Specifically, does this putatively redundant third partner strengthen the ant-plant mutualism by making the ant a better protector of the tree? Or does it weaken the mutualism by being costly to the tree while providing no additional benefit to the ant-plant mutualism? We coupled observational surveys with two scale-manipulation experiments and found evidence that this third partner strengthens the ant-plant mutualism. Trees with scale insects experimentally removed experienced a 2.5X increase in elephant damage compared to trees with scale insects present over 10 months. Reduced protection was driven by scale removal causing a decrease in ant colony size and per capita baseline activity and defensive behavior. We also found that ants increased scale-tending and the density of scale insects on trees when EFN were experimentally reduced. Thus, in this system, scale insects and EFN are likely complementary, rather than redundant, resources with scale insects benefitting ants when EFN production is low (such as during annual dry periods in this semi-arid ecosystem). This study reveals that a third-partner strengthens an ant-plant mutualism that serves to stabilize a whole ecosystem.
Assuntos
Ecossistema , Simbiose , Animais , Herbivoria , Néctar de Plantas , ÁrvoresRESUMO
Because Tachia guianensis (Gentianaceae) is a "non-specialized myrmecophyte" associated with 37 ant species, we aimed to determine if its presence alters the ant guild associated with sympatric "specialized myrmecophytes" (i.e., plants sheltering a few ant species in hollow structures). The study was conducted in a hilly zone of a neotropical rainforest where two specialized myrmecophytes grow at the bottom of the slopes, another at mid-slope, and a fourth on the hilltops. Tachia guianensis, which occurred everywhere, had its own guild of associated ant species. A network analysis showed that its connections with the four other myrmecophytes were rare and weak, the whole resulting in a highly modular pattern of interactions with one module (i.e., subnetwork) per myrmecophyte. Three ant species parasitized three out of the four specialized myrmecophytes (low nestedness noted), but were not or barely associated with T. guianensis that therefore did not influence the parasitism of specialized myrmecophytes.
Assuntos
Formigas/fisiologia , Ecossistema , Fenômenos Fisiológicos Vegetais , Animais , Especificidade de Hospedeiro , SimbioseRESUMO
Diaspores of myrmecochorous plants consist of a seed (or fruit) and an attached appendage (elaiosome) which attracts ants. The elaiosome is a food resource for ants, whereas the seed is an energy source for subsequent germination and plant establishment. Although myrmecochory occurs in many phylogenetically unrelated lineages, multiple phylogenetic lineages display similar variation in elaiosome and seed metabolite composition due to convergent evolution. We focused on four families (Amaryllidaceae, Boraginaceae, Papaveraceae and Poaceae) each represented by two species from different genera. Diaspores of three populations per species were sampled and concentrations of 60 metabolites from five groups (amino acids, fatty acids, organic acids, polyols and sugars) were determined for both elaiosomes and seeds. Variability in metabolite composition was decomposed by hierarchical ANOVA and variation partitioning using redundancy analysis (reflecting both species nested within families, crossed with seed vs. elaiosome). Differences in the metabolite composition of elaiosomes and seeds were consistent across multiple phylogenetic origins (with more pronounced differences at the level of individual metabolites than at the level of metabolite groups) and supported the idea of convergent evolution under strong selection pressure. Elaiosomes contained higher amounts of easily digestible metabolites (especially amino acids) than seeds. Fatty acids were not more concentrated in elaiosomes, which contradicts the literal translation of "elaiosome" (= oil body). The differentiation of metabolite composition closely reflected taxonomic relatedness, particularly at the family level. Differences among populations within species were small, so the metabolite composition can thus be considered as a trait with relatively low intraspecific variability.
Assuntos
Formigas , Animais , Germinação , Filogenia , Recompensa , SementesRESUMO
Predictable effects of resource availability on plant growth-defense strategies provide a unifying theme in theories of direct anti-herbivore defense, but it is less clear how resource availability modulates plant indirect defense. Ant-plant-hemipteran interactions produce mutualistic trophic cascades when hemipteran-tending ants reduce total herbivory, and these interactions are a key component of plant indirect defense in most terrestrial ecosystems. Here we conducted an experiment to test how ant-plant-hemipteran interactions depend on nitrogen (N) availability by manipulating the presence of ants and aphids under different N fertilization treatments. Ants increased plant flowering success by decreasing the densities of herbivores, and the effects of ants on folivores were positively related to the density of aphids. Unexpectedly, N fertilization produced no changes in plant N concentrations. Plants grown in higher N grew and flowered more, but aphid honeydew chemistry stayed the same, and neither the density of aphids nor the rate of ant attraction per aphid changed with N addition. The positive effects of ants and N addition on plant fitness were thus independent of one another. We conclude that N was the plant's limiting nutrient and propose that addition of the limiting nutrient is unlikely to alter the strength of mutualistic trophic cascades.
Assuntos
Formigas/fisiologia , Herbivoria , Nitrogênio/metabolismo , Animais , Afídeos/fisiologia , SimbioseRESUMO
BACKGROUND AND AIMS: Plants display a wide range of traits that allow them to use animals for vital tasks. To attract and reward aggressive ants that protect developing leaves and flowers from consumers, many plants bear extrafloral nectaries (EFNs). EFNs are exceptionally diverse in morphology and locations on a plant. In this study the evolution of EFN diversity is explored by focusing on the legume genus Senna, in which EFNs underwent remarkable morphological diversification and occur in over 80 % of the approx. 350 species. METHODS: EFN diversity in location, morphology and plant ontogeny was characterized in wild and cultivated plants, using scanning electron microscopy and microtome sectioning. From these data EFN evolution was reconstructed in a phylogenetic framework comprising 83 Senna species. KEY RESULTS: Two distinct kinds of EFNs exist in two unrelated clades within Senna. 'Individualized' EFNs (iEFNs), located on the compound leaves and sometimes at the base of pedicels, display a conspicuous, gland-like nectary structure, are highly diverse in shape and characterize the species-rich EFN clade. Previously overlooked 'non-individualized' EFNs (non-iEFNs) embedded within stipules, bracts, and sepals are cryptic and may represent a new synapomorphy for clade II. Leaves bear EFNs consistently throughout plant ontogeny. In one species, however, early seedlings develop iEFNs between the first pair of leaflets, but later leaves produce them at the leaf base. This ontogenetic shift reflects our inferred diversification history of iEFN location: ancestral leaves bore EFNs between the first pair of leaflets, while leaves derived from them bore EFNs either between multiple pairs of leaflets or at the leaf base. CONCLUSIONS: EFNs are more diverse than previously thought. EFN-bearing plant parts provide different opportunities for EFN presentation (i.e. location) and individualization (i.e. morphology), with implications for EFN morphological evolution, EFN-ant protective mutualisms and the evolutionary role of EFNs in plant diversification.
Assuntos
Formigas/fisiologia , Evolução Biológica , Senna/anatomia & histologia , Animais , Fenótipo , Néctar de Plantas/metabolismo , Senna/genética , Senna/crescimento & desenvolvimento , SimbioseRESUMO
Cooperative interactions may frequently be reinforced by "partner fidelity feedback," in which high- or low-quality partners drive positive feedbacks with high or low benefits for the host, respectively. Benefits of plant-animal mutualisms for plants have been quantified almost universally in terms of growth or reproduction, but these are only two of many sinks to which a host-plant allocates its resources. By investigating how partners to host-plants impact two fundamental plant resources, carbon and water, we can better characterize plant-partner fidelity and understand how plant-partner mutualisms may be modulated by resource dynamics. In Laikipia, Kenya, four ant species compete for Acacia drepanolobium host-plants. These ants differ in multiple traits, from nectar consumption to host-plant protection. Using a 5-year ant removal experiment, we compared carbon fixation, leaf water status, and stem non-structural carbohydrate concentrations for adult ant-plants with and without ant partners. Removal treatments showed that the ants differentially mediate tree carbon and/or water resources. All three ant species known to be aggressive against herbivores were linked to benefits for host-plant resources, but only the two species that defend but do not prune the host, Crematogaster mimosae and Tetraponera penzigi, increased tree carbon fixation. Of these two species, only the nectivore C. mimosae increased tree simple sugars. Crematogaster nigriceps, which defends the tree but also castrates flowers and prunes meristems, was linked only to lower tree water stress approximated by pre-dawn leaf water potential. In contrast to those defensive ants, Crematogaster sjostedti, a poor defender that displaces other ants, was linked to lower tree carbon fixation. Comparing the effects of the four ant species across control trees suggests that differential ant occupancy drives substantial differences in carbon and water supply among host trees. Our results highlight that ant partners can positively or negatively impact carbon and/or water relations for their host-plant, and we discuss the likelihood that carbon- and water-related partner fidelity feedback loops occur across ant-plant mutualisms.
Assuntos
Acacia , Formigas , Simbiose , Animais , HerbivoriaRESUMO
BACKGROUND: Ecological communities of interacting species analyzed as complex networks have shown that species dependence on their counterparts is more complex than expected at random. As for other potentially mutualistic interactions, ant-plant networks mediated by extrafloral nectar show a nested (asymmetric) structure with a core of generalist species dominating the interaction pattern. Proposed factors structuring ecological networks include encounter probability (e.g., species abundances and habitat heterogeneity), behavior, phylogeny, and body size. While the importance of underlying factors that influence the structure of ant-plant networks have been separately explored, the simultaneous contribution of several biological and ecological attributes inherent to the species, guild or habitat level has not been addressed. METHODS: For a tropical seasonal site we recorded (in 48 censuses) the frequency of pairwise ant-plant interactions mediated by extrafloral nectaries (EFN) on different habitats and studied the resultant network structure. We addressed for the first time the role of mechanistic versus neutral determinants at the 'fine-grain' structure (pairwise interactions) of ant-plant networks. We explore the simultaneous contribution of several attributes of plant and ant species (i.e., EFN abundance and distribution, ant head length, behavioral dominance and invasive status), and habitat attributes (i.e., vegetation structure) in prevailing interactions as well as in overall network topology (community). RESULTS: Our studied network was highly-nested and non-modular, with core species having high species strengths (higher strength values for ants than plants) and low specialization. Plants had higher dependences on ants than vice versa. We found that habitat heterogeneity in vegetation structure (open vs. shaded habitats) was the main factor explaining network and fine-grain structure, with no evidence of neutral (abundance) effects. DISCUSSION: Core ant species are relevant to most plants species at the network showing adaptations to nectar consumption and deterrent behavior. Thus larger ants interact with more plant species which, together with higher dependence of plants on ants, suggests potential biotic defense at a community scale. In our study site, heterogeneity in the ant-plant interactions among habitats is so prevalent that it emerges at community-level structural properties. High frequency of morphologically diverse and temporarily-active EFNs in all habitats suggests the relevance and seasonality of plant biotic defense provided by ants. The robust survey of ecological interactions and their biological/ecological correlates that we addressed provides insight of the interplay between adaptive-value traits and neutral effects in ecological networks.
RESUMO
Many tropical plants are defended by ants, and the costs and benefits of these mutualisms can vary across gradients of herbivory, soil fertility, latitude, and other environmental factors. Yet despite an abundant literature documenting thermal constraints on ant activity and behavior, we know little about whether temperature variation can influence the benefits conferred by ants to plants. We evaluated the effects of dawn-to-dusk fluctuations in temperature on patrolling and aggressive behavior in four arboreal ant mutualists of Acacia drepanolobium trees in central Kenya. We found that ant aggressive behavior significantly increased with branch surface temperature, primarily in the two most aggressive ant species: Crematogaster mimosae and C. nigriceps workers attacked a simulated herbivore at higher rates as surface temperature rose. In a browsing experiment, we found that goats browsed more frequently and for longer durations on C. mimosae-defended trees during cooler times of day, while goat browsing on plants from which ants had been removed was not affected by temperature. Our study demonstrates temperature-dependence in the efficacy of ant defense against herbivory and suggests that these ant-plants may be more vulnerable to herbivory during cooler hours of the day, when many native browsers are most active.
Assuntos
Acacia , Formigas , Animais , Herbivoria , Quênia , Simbiose , TemperaturaRESUMO
Plants need to allocate some of their limited resources for defense against herbivores as well as for growth and reproduction. However, the priority of resource allocation within plants has not been investigated. We hypothesized that plants with extrafloral nectaries (EFNs) invest more chlorophyll around their EFNs-to support a high rate of carbon fixation there-than in other leaf parts of young leaves. Additionally, this chlorophyll may remain around EFNs rather than in the other leaf parts. We used Mallotus japonicus plants to investigate the chlorophyll content at leaf centers and edges and around EFNs at four stages of leaf development: middle-expanded young leaves, fully expanded mature leaves, senior leaves, and leaves prior to abscission. These four stages of development were located at the third, fifth, eighth, and eleventh leaf positions from the apex, respectively. The results revealed that the chlorophyll content around the EFN side of the third-position leaves was higher than that at the leaf center or edge. Although the chlorophyll content in the fifth-position leaves did not differ between those at the leaf edge and around EFNs, the chlorophyll content around EFNs in the eighth-position leaves was higher than that at the leaf centre and edge. The volume of EF nectar was positively correlated with the chlorophyll content around EFN during the leaf stage, but it was not correlated with the chlorophyll content in the leaf center and edge, except in fifth-position leaves. These findings suggest that M. japonicus plants facilitate and maintain secretion of EF nectar in their young and old leaves, respectively, through the concentration and retention of chlorophyll around EFNs.
RESUMO
Introduction: Herbivores specialized in consuming ant-defended plants evolve strategies to prevent the attack of ant workers. When the plant can associate with more than one ant species, the herbivore evasion strategies may either be species-specific, or flexible enough to successfully deter workers of different ant-plant species. Objectives: We studied the behavior of an herbivore bug (Piezogaster reclusus) on ant-defended acacia trees (Vachellia collinsii), which associates with one of three mutualistic Pseudomyrmex ant species, and report the geographical distribution of the acacia bug species of Costa Rica and Panama. Methods: We tested whether herbivore bugs (1) associate with a particular ant species; (2) use chemical or behavioral strategies to evade the ant workers; (3) adjust the evasion strategy to the ant species living on the acacia tree. We also compared collected acacia bugs with Museum specimens to clarify the identification from Costa Rica and Panama. Results: We found bugs more often on trees with ants, particularly Ps. spinicola, and never on trees with Ps. nigrocinctus. To avoid ant attacks, bugs use evasive behaviors to prevent encounters with the ant workers, that depended on the ant species. Also, indirect evidence of intra and interspecific transfer experiments suggest species-specific chemical camouflage or repellence. We also report an expansion of the Southern limit of Pi. reclusus distribution in Central Panama, and reduced the distribution of Pi. chontalesis to the Chiriquí region. Conclusions: Similar to herbivores specialized on chemically defended plants, herbivores on ant-defended trees could evolve specific mechanisms to deal with the plant defenses. However, plants associated with multiple partners are a challenge to herbivore specialization, and might require behavioral plasticity, as our evidence suggests.
Introducción: Herbívoros especializados en consumir plantas defendidas por hormigas evolucionaron estrategias para prevenir el ataque de las obreras, que pueden ser específicas o flexibles para repeler obreras de diferentes especies. Objetivos: Estudiamos el comportamiento del chinche herbívoro (Piezogaster reclusus), que consume la savia de árboles de acacia, que se pueden asociar con una de tres especies de hormigas mutualistas del género Pseudomyrmex y reportamos el rango geográfico de las especies de chinches de acacias en Costa Rica y Panamá. Métodos: Evaluamos si los chinches herbívoros (1) se asocian preferiblemente con una especie de hormiga; (2) usan estrategias de comportamiento para evadir a las obreras; (3) ajustan su estrategia a la especie de hormiga residente en la acacia. También, comparamos especímenes de los chinches con especímenes de museos, para clarificar la identificación en Costa Rica y Panamá. Resultados: Los chinches fueronmás frecuentes en árboles con hormigas, especialmente Ps. spinicola, y nunca estuvieron en árboles con Ps. nigrocinctus. Los chinches mostraron diferentes comportamientos evasivos dependiendo de la especie de hormiga para prevenir encuentros con las obreras. También, evidencia indirecta de experimentos de transferencia sugiere que hay camuflaje especie-específico o repelencia. Además, reportamos que el límite de distribución de Pi. reclusus llega al centro de Panamá, mientras que Pi. chontalensis solamente está en la región de Chiriquí. Conclusiones: Igual que los herbívoros se especializan en plantas con defensas químicas, herbívoros en plantas con hormigas pueden evolucionar mecanismos específicos para lidiar con las defensas de las plantas. Sin embargo, plantas que se asocian a múltiples especies de hormigas se vuelven un reto para la especialización del herbívoro, y pueden requerir plasticidad de comportamiento como sugieren nuestros datos.
Assuntos
Animais , Formigas , Percevejos-de-Cama , Acacia , Herbivoria , Panamá , Costa RicaRESUMO
Theoretical models suggest that subordinate competitors may rely on strong colonization ability and/or high persistence (e.g., the ability to resist invasion) as a strategy to coexist with competitively dominant species. While strong colonization ability among subordinate competitors has been widely documented, we know less about the role of persistence in facilitating species coexistence. In upland East Africa, four species of acacia-ants (Crematogaster sjostedti, C. mimosae, C. nigriceps, Tetraponera penzigi) compete for possession of Acacia drepanolobium host trees. Despite a strong dominance hierarchy, the four acacia-ant species coexist at fine spatial scales. Here we present evidence that T. penzigi, the least aggressive competitor, modifies host trees in two ways that reduce the probability of aggressive takeover by neighboring colonies. First, T. penzigi workers destroy virtually all leaf nectaries on their host trees. Second, T. penzigi workers create and maintain entryways into their swollen thorn domiciles that are too small to allow entry by their Crematogaster competitors. In a 2×2 factorial experiment, we manipulated nectar availability and swollen-thorn entryway size to determine the influence of these factors on the probability of aggressive displacement by a dominant competitor (C. mimosae) in staged conflicts. Addition of artificial nectaries and enlargement of swollen-thorn entryways on T. penzigi-occupied trees increased the probability of aggressive displacement of T. penzigi by C. mimosae from swollen thorns 14-fold and 8-fold, respectively. Further, empty saplings with nectaries destroyed by T. penzigi workers were colonized by half as many C. mimosae workers as saplings where nectaries were left intact. Our results demonstrate that T. penzigi's unusual strategy of nectary destruction and the maintenance of small entryways in swollen thorns produce priority effects, effectively reducing the probability that T. penzigi colonies will be displaced from host trees by more dominant competitors.
RESUMO
Qualea grandiflora is a typical tree of Brazilian cerrados (savanna-like vegetation) that bears paired extrafloral nectaries (EFNs) along its stems. Results show that possession of EFNs increases ant density on Q. grandiflora shrubs over that of neighbouring non-nectariferous plants. Frequency of ant occupancy and mean number of ants per plant were much higher on Qualea than on plants lacking EFNs. These differences resulted in many more live termitebaits being attacked by foraging ants on Qualea than on neighbours without EFNs. Termites were attacked in equal numbers and with equal speeds on different-aged leaves of Qualea. The greatest potential for herbivore deterrence was presented by Camponotus ants (C. crassus, C. rufipes and C. aff. blandus), which together attacked significantly more termites than nine other ant species grouped. EFNs are regarded as important promoters of ant activity on cerado plants.
RESUMO
Several species of Piper (Piperaceae) live in symbiosis with Pheidole bicornis (Formicidae-Myrmicinae) on the southern Pacific slope of Costa Rica. These plants produce small single-celled food bodies (FBs) in leaf domatia, formed by the petiole bases and roofing leaf sheaths. In the present study the dependency of ants on FBs of Piper fimbriulatum as a food source was analysed by comparing the natural abundance of 13C and 15N in ants and FBs. Both δ13C and δ15N values were very similar between FBs and Pheidole bicornis ants but differed substantially between the plant and other ant species. Therefore we suggest that FBs are a main food source for Pheidole bicornis ants. To strengthen this suggestion, the chemical composition of FBs of four myrmecophytic Piper species was analysed, with special emphasis on the nutritional requirements of inhabiting Pheidole bicornis ants. Standard chemical methods were modified and combined to a novel analysis scheme by which all major FB constituents could be quantified from minute [3-10 mg dry mass (DM)] quantities. Piper FBs mainly consisted of lipids (41-48% of DM) and proteins (17-24% of DM). Soluble carbohydrates and amino acids proved to be quantitatively unimportant. N was predominantly stored as soluble protein and, thus, was easily available to the ants. FBs proved to be a high-energy food source (up to 23 kJ g-1 DM), with a chemical composition that meets well the nutritional needs of the inhabiting ants.
RESUMO
The female flowers of Croton bonplandianum bear nectar glands which become active during fruit maturation and attain peak activity just prior to the splitting of fruits. This temporal specificity of nectar gland activity is shown to facilitate seed dispersal by ants, which are attracted to the plant only during the fruit maturation period. The nectar glands establish a "nectar influence zone" with a radius of 60 cm around the plant within which seed dispersal by ants is effective. Seed dispersal by ants is facilitated only if the seeds are placed within this nectar influence zone. This is accomplished by an intriguing evolutionary shift in the maturation pattern of the fruits. Unlike the usual acropetal development, fruit maturation in Croton is temporally asymmetrical, with the fruits nearer the parental axis maturing early. This unique pattern of fruit development together with the polychasial branching system leads to a concentration of seeds within the nectar influence zone and enhances seed dispersal by ants. The proximate factors responsible for this asynchronous fruit maturity were investigated.
RESUMO
Aim. Throughout evolutionary history, plants and animals have evolved alongside one another. This is especially apparent when considering mutualistic relationships such as between plants with extra-floral nectaries (EFNs, glands on leaves or stems that secrete nectar) and the ants that visit them. Ants are attracted by the nectar and then protect the plant against destructive herbivores. The distribution of these plants is of particular interest, because it can provide insights into the evolutionary history of this unique trait and the plants that possess it. In this study, we investigated factors driving the distribution of woody plants with EFNs in the cerrado vegetation of Brazil. Location. Brazil Methods. We used a database detailing the incidence of 849 plant species at 367 cerrado sites throughout Brazil. We determined which species possessed EFNs and mapped their distributions. We tested for correlations between the proportion of EFN species at each site and (i) three environmental variables (mean annual temperature, mean annual precipitation, and the precipitation in the driest quarter of the year), (ii) a broad soil classification, and (iii) the total species diversity of each site. Results. We found a wide range in the proportion of EFN species at any one site (0-57%). However, whilst low diversity sites had wide variation in the number of EFN species, high diversity sites all had few EFN species. The proportion of EFN species was positively correlated with absolute latitude and negatively correlated with longitude. When accounting for total species diversity, the proportion of EFN species per site was negatively correlated with precipitation in the driest quarter of the year and positively correlated with temperature range. Main Conclusions. These results suggest either that herbivore pressure may be lower in drier sites, or that ants are not as dominant in these locations, or that plant lineages at these sites were unable to evolve EFNs.