Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 21(1): 257, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088264

RESUMO

BACKGROUND: Roses are famous ornamental plants worldwide. Floral coloration is one of the most prominent traits in roses and is mainly regulated through the anthocyanin biosynthetic pathway. In this study, we investigated the key genes and metabolites of the anthocyanin biosynthetic pathway involved in color mutation in miniature roses. A comparative metabolome and transcriptome analysis was carried out on the Neptune King rose and its color mutant, Queen rose, at the blooming stage. Neptune King rose has light pink colored petals while Queen rose has deep pink colored petals. RESULT: A total of 190 flavonoid-related metabolites and 38,551 unique genes were identified. The contents of 45 flavonoid-related metabolites, and the expression of 15 genes participating in the flavonoid pathway, varied significantly between the two cultivars. Seven anthocyanins (cyanidin 3-O-glucosyl-malonylglucoside, cyanidin O-syringic acid, cyanidin 3-O-rutinoside, cyanidin 3-O-galactoside, cyanidin 3-O-glucoside, peonidin 3-O-glucoside chloride, and pelargonidin 3-O-glucoside) were found to be the major metabolites, with higher abundance in the Queen rose. Thirteen anthocyanin biosynthetic related genes showed an upregulation trend in the mutant flower, which may favor the higher levels of anthocyanins in the mutant. Besides, eight TRANSPARENT TESTA 12 genes were found upregulated in Queen rose, probably contributing to a high vacuolar sequestration of anthocyanins. Thirty transcription factors, including two MYB and one bHLH, were differentially expressed between the two cultivars. CONCLUSIONS: This study provides important insights into major genes and metabolites of the anthocyanin biosynthetic pathway modulating flower coloration in miniature rose. The results will be conducive for manipulating the anthocyanin pathways in order to engineer novel miniature rose cultivars with specific colors.


Assuntos
Antocianinas/biossíntese , Flores/metabolismo , Rosa/metabolismo , Flores/genética , Perfilação da Expressão Gênica , Metaboloma , Pigmentação , Rosa/genética
2.
Mol Phylogenet Evol ; 151: 106904, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32645485

RESUMO

The flavonoids, one of the largest classes of plant secondary metabolites, are found in lineages that span the land plant phylogeny and play important roles in stress responses and as pigments. Perhaps the most well-studied flavonoids are the anthocyanins that have human health benefits and help plants attract pollinators, regulate hormone production, and confer resistance to abiotic and biotic stresses. The canonical biochemical pathway responsible for the production of these pigments is well-characterized for flowering plants yet its conservation across deep divergences in land plants remains debated and poorly understood. Many early land plants such as mosses, liverworts, and ferns produce flavonoid pigments, but their biosynthetic origins and homologies to the anthocyanin pathway remain uncertain. We conducted phylogenetic analyses using full genome sequences representing nearly all major green plant lineages to reconstruct the evolutionary history of the anthocyanin biosynthetic pathway then test the hypothesis that genes in this pathway are present in early land plants. We found that the entire pathway was not intact until the most recent common ancestor of seed plants and that orthologs of many downstream enzymes are absent from seedless plants including mosses, liverworts, and ferns. Our results also highlight the utility of phylogenetic inference, as compared to pairwise sequence similarity, in orthology assessment within large gene families that have complex duplication-loss histories. We suggest that the production of red-violet flavonoid pigments widespread in seedless plants, including the 3-deoxyanthocyanins, requires the activity of novel, as-yet discovered enzymes, and represents convergent evolution of red-violet coloration across land plants.


Assuntos
Antocianinas/biossíntese , Vias Biossintéticas , Embriófitas/genética , Filogenia , Pigmentação/genética , Antocianinas/genética , Sequência de Bases , Vias Biossintéticas/genética , Flavonoides/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade da Espécie
3.
Int J Mol Sci ; 21(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905846

RESUMO

Floral color polymorphism can provide great insight into species evolution from a genetic and ecological standpoint. Color variations between species are often mediated by pollinators and are fixed characteristics, indicating their relevance to adaptive evolution, especially between plants within a single population or between similar species. The orchid genus Pleione has a wide variety of flower colors, from violet, rose-purple, pink, to white, but their color formation and its evolutionary mechanism are unclear. Here, we selected the P. limprichtii population in Huanglong, Sichuan Province, China, which displayed three color variations: Rose-purple, pink, and white, providing ideal material for exploring color variations with regard to species evolution. We investigated the distribution pattern of the different color morphs. The ratio of rose-purple:pink:white-flowered individuals was close to 6:3:1. We inferred that the distribution pattern may serve as a reproductive strategy to maintain the population size. Metabolome analysis was used to reveal that cyanindin derivatives and delphidin are the main color pigments involved. RNA sequencing was used to characterize anthocyanin biosynthetic pathway-related genes and reveal different color formation pathways and transcription factors in order to identify differentially-expressed genes and explore their relationship with color formation. In addition, qRT-PCR was used to validate the expression patterns of some of the genes. The results show that PlFLS serves as a crucial gene that contributes to white color formation and that PlANS and PlUFGT are related to the accumulation of anthocyanin which is responsible for color intensity, especially in pigmented flowers. Phylogenetic and co-expression analyses also identified a R2R3-MYB gene PlMYB10, which is predicted to combine with PlbHLH20 or PlbHLH26 along with PlWD40-1 to form an MBW protein complex (MYB, bHLH, and WDR) that regulates PlFLS expression and may serve as a repressor of anthocyanin accumulation-controlled color variations. Our results not only explain the molecular mechanism of color variation in P. limprichtii, but also contribute to the exploration of a flower color evolutionary model in Pleione, as well as other flowering plants.


Assuntos
Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Orchidaceae/genética , Orchidaceae/metabolismo , Polimorfismo Genético , Transcriptoma , Antocianinas/metabolismo , Vias Biossintéticas/genética , China , Cor , Proteínas de Ligação a DNA , Metaboloma , Orchidaceae/classificação , Filogenia , Pigmentação/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA
4.
BMC Evol Biol ; 16: 191, 2016 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-27639694

RESUMO

BACKGROUND: Adaptive divergence, which usually explains rapid diversification within island species, might involve the positive selection of genes. Anthocyanin biosynthetic pathway (ABP) genes are important for floral diversity, and are related to stress resistance and pollination, which could be responsible for species diversification. Previous studies have shown that upstream genes of ABP are subject to selective constraints and have a slow evolutionary rate, while the constraints on downstream genes are lower. RESULTS: In this study, we confirmed these earlier observations of heterogeneous evolutionary rate in upstream gene CHS and the downstream gene UFGT, both of which were expressed in Scutellaria sp. inflorescence buds. We found a higher evolutionary rate and positive selection for UFGT. The codons under positive selection corresponded to the diversified regions, and the presence or absence of an α-helix might produce conformation changes in the Rossmann-like fold structure. The significantly high evolutionary rates for UFGT genes in Taiwanese lineages suggested rapid accumulation of amino acid mutations in island species. The results showed positive selection in closely related species and explained the high diversification of floral patterns in these recently diverged species. In contrast, non-synonymous mutation rate decreases in long-term divergent species could reduce mutational load and prevent the accumulation of deleterious mutations. CONCLUSIONS: Together with the positive selection of transcription factors for ABP genes described in a previous study, these results confirmed that positive selection takes place at a translational level and suggested that the high divergence of ABP genes is related to the floral diversity in island Scutellaria species.


Assuntos
Antocianinas/biossíntese , Scutellaria/classificação , Vias Biossintéticas , Evolução Molecular , Flores/metabolismo , Genes de Plantas , Filogenia , Scutellaria/genética , Scutellaria/metabolismo , Taiwan , Fatores de Transcrição/genética
5.
BMC Genomics ; 17: 398, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27225275

RESUMO

BACKGROUND: Chrysanthemum morifolium is one of the most important global cut flower and pot plants, and has been cultivated worldwide. However, limited genomic resources are available and the molecular mechanisms involved in the two morphologically distinct floret developmental cycles in chrysanthemum remain unclear. RESULTS: The transcriptomes of chrysanthemum ray florets, disc florets and leaves were sequenced using Illumina paired-end sequencing technology. In total, 16.9 G reads were assembled into 93,138 unigenes with an average length of 738 bp, of which 44,364 unigenes showed similarity to known proteins in the Swissprot or NCBI non-redundant protein databases. Additionally, 26,320, 22,304 and 13,949 unigenes were assigned to 54 gene ontology (GO) categories, 25 EuKaryotic Orthologous Groups (KOG) categories, and 280 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. A total of 1863 differentially expressed genes (DEGs) (1210 up-regulated and 653 down-regulated) were identified between ray florets and disc florets, including genes encoding transcription factors and protein kinases. GO and KEGG pathway enrichment analyses were performed on the DEGs to identify differences in the biological processes and pathways between ray florets and disc florets. The important regulatory genes controlling flower development and flower organ determination, as well as important functional genes in the anthocyanin biosynthetic pathway, were identified, of which two leucoanthocyanidin dioxygenase-encoding genes showed specific expression in ray florets. Lastly, reverse transcription quantitative PCR was conducted to validate the DEGs identified in our study. CONCLUSIONS: Comparative transcriptome analysis revealed significant differences in patterns of gene expression and signaling pathways between ray florets and disc florets in Chrysanthemum morifolium. This study provided the first step to understanding the molecular mechanism of the differential development of ray florets and disc florets in chrysanthemum, and also provided valuable genomic resources for candidate genes applicable for the breeding of novel varieties in chrysanthemum.


Assuntos
Chrysanthemum/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Análise de Sequência de RNA/métodos , Chrysanthemum/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes Reguladoras de Genes , Anotação de Sequência Molecular , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento
7.
Front Plant Sci ; 7: 204, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973662

RESUMO

Flower color polymorphisms are widely used as model traits from genetics to ecology, yet determining the biochemical and molecular basis can be challenging. Anthocyanin-based flower color variations can be caused by at least 12 structural and three regulatory genes in the anthocyanin biosynthetic pathway (ABP). We use mRNA-Seq to simultaneously sequence and estimate expression of these candidate genes in nine samples of Silene littorea representing three color morphs (dark pink, light pink and white) across three developmental stages in hopes of identifying the cause of flower color variation. We identified 29 putative paralogs for the 15 candidate genes in the ABP. We assembled complete coding sequences for 16 structural loci and nine of ten regulatory loci. Among these 29 putative paralogs, we identified 622 SNPs, yet only nine synonymous SNPs in Ans had allele frequencies that differentiated pigmented petals (dark pink and light pink) from white petals. These Ans allele frequency differences were further investigated with an expanded sequencing survey of 38 individuals, yet no SNPs consistently differentiated the color morphs. We also found one locus, F3h1, with strong differential expression between pigmented and white samples (>42x). This may be caused by decreased expression of Myb1a in white petal buds. Myb1a in S. littorea is a regulatory locus closely related to Subgroup 7 Mybs known to regulate F3h and other loci in the first half of the ABP in model species. We then compare the mRNA-Seq results with petal biochemistry which revealed cyanidin as the primary anthocyanin and five flavonoid intermediates. Concentrations of three of the flavonoid intermediates were significantly lower in white petals than in pigmented petals (rutin, quercetin and isovitexin). The biochemistry results for rutin, quercetin, luteolin and apigenin are consistent with the transcriptome results suggesting a blockage at F3h, possibly caused by downregulation of Myb1a.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA