Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(6): 257, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734773

RESUMO

There is a growing imperative for research into alternative compounds for the treatment of the fungal infections. Thus, many studies have focused on the analysis of antifungal proteins and peptides from different plant sources. Among these molecules are protease inhibitors (PIs). Previously, PIs present in the peptide-rich fractions called PEF1, PEF2 and PEF3 were identified from Capsicum chinense seeds, which have strong activity against phytopathogenic fungi. The aim of this study was to evaluate the mechanism of action and antimicrobial activity of PIs from PEF2 and PEF3 on the growth of yeasts of the genus Candida. In this work, analyses of their antimicrobial activity and cell viability were carried out. Subsequently, the mechanism of action by which the PIs cause the death of the yeasts was evaluated. Cytotoxicity was assessed in vitro by erythrocytes lysis and in vivo in Galleria mellonella larvae. PEF2 and PEF3 caused 100% of the growth inhibition of C. tropicalis and C. buinensis. For C. albicans inhibition was approximately 60% for both fractions. The PEF2 and PEF3 caused a reduction in mitochondrial functionality of 54% and 46% for C. albicans, 26% and 30% for C. tropicalis, and 71% and 68% for C. buinensis, respectively. These fractions induced morphological alterations, led to membrane permeabilization, elevated ROS levels, and resulted in necrotic cell death in C. tropicalis, whilst demonstrating low toxicity toward host cells. From the results obtained here, we intend to contribute to the understanding of the action of PIs in the control of fungal diseases of medical importance.


Assuntos
Antifúngicos , Candida , Inibidores de Proteases , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Inibidores de Proteases/farmacologia , Testes de Sensibilidade Microbiana , Animais , Capsicum/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Sementes/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Eritrócitos/efeitos dos fármacos , Larva/microbiologia , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos
2.
J Inorg Biochem ; 256: 112572, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38691971

RESUMO

Recognizing that metal ions play an important role in modifying the pharmacological properties of known organic-based drugs, the present manuscript addresses the complexation of the antifungal agent voriconazole (vcz) with the biologically relevant silver(I) ion as a strategy for the development of new antimycotics. The synthesized silver(I) complexes with vcz were characterized by mass spectrometry, IR, UV-Vis and NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystallographic results showed that complexes {[Ag(vcz)(H2O)]CH3SO3}n (1), {[Ag(vcz)2]BF4}n (2) and {[Ag(vcz)2]PF6}n (3) have polymeric structures in the solid state, in which silver(I) ions have a distorted tetrahedral geometry. On the other hand, DFT calculations revealed that the investigated silver(I) complexes 1-3 in DMSO exist as linear [Ag(vcz-N2)(vcz-N19)]+ (1a), [Ag(vcz-N2)(vcz-N4)]+ (2a) and [Ag(vcz-N4)2]+ (3a) species, respectively. The evaluated complexes showed an enhanced anti-Candida activity compared to the parent drug with minimal inhibitory concentration (MIC) values in the range of 0.02-1.05 µM. In comparison with vcz, the corresponding silver(I) complexes showed better activity in prevention hyphae and biofilm formation of C. albicans, indicating that they could be considered as promising agents against Candida that significantly inhibit its virulence. Also, these complexes are much better inhibitors of ergosterol synthesis in the cell membrane of C. albicans at the concentration of 0.5 × MIC. This is also confirmed by a molecular docking, which revealed that complexes 1a - 3a showed better inhibitory activity than vcz against the sterol 14α-demethylase enzyme cytochrome P450 (CYP51B), which plays a crucial role in the formation of ergosterol.


Assuntos
Antifúngicos , Complexos de Coordenação , Testes de Sensibilidade Microbiana , Prata , Voriconazol , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Voriconazol/farmacologia , Voriconazol/química , Prata/química , Prata/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Candida albicans/efeitos dos fármacos , Candida/efeitos dos fármacos , Cristalografia por Raios X
3.
Life Sci ; 350: 122767, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38843993

RESUMO

AIMS: Candida albicans is the most prevalent pathogenic fungus, exhibiting escalating multidrug resistance (MDR). Antimicrobial peptides (AMPs) represent promising candidates for addressing this issue. In this research, five antimicrobial peptides, ACP1 to ACP5 which named ACPs were studied as alternative fungicidal molecules. MAIN METHODS: CD assay was used to analyze the 2D structures, Absorbance method was used to test the antimicrobial activity, haemolytic activity, time-kill kinetics, biofilm inhibition and reduction activity, resistance induction activity and assessment against fluconazole-resistant C. albicans. SEM, TEM, CLSM, flow cytometer and FM were carried out to provide insight into the mechanisms of anti-Candida action. KEY FINDINGS: ACPs possessed an α-helical structure and strong anti-Candida activities, with minimum inhibitory concentrations (MICs) from 3.9 to 15.6 µg/mL. In addition, ACPs did not produce hemolysis at concentrations lower than 10 or 62 × MIC, indicating their low cytotoxicity. Fungicidal kinetics showed that they completely killed C. albicans within 8 h at 2 to 4 × MIC. Notably, ACPs were highly fungicidal against fluconazole-resistant C. albicans and showed low resistance. In addition, they were effective in inhibiting mycelium and biofilm formation. Fluorescence microscopy revealed that while fluconazole had minimal to no inhibitory effect on biofilm-forming cells, ACPs induced apoptosis in all of them. The research on mechanism of action revealed that ACPs disrupted the cell membranes, with ROS increasing and cellular mitochondrial membrane potential decreasing. SIGNIFICANCE: ACPs could be promising candidates for combating fluconazole-resistant C. albicans infections.


Assuntos
Antifúngicos , Peptídeos Antimicrobianos , Biofilmes , Candida albicans , Fluconazol , Testes de Sensibilidade Microbiana , Candida albicans/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Biofilmes/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Fluconazol/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
4.
Int J Antimicrob Agents ; 63(6): 107172, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608845

RESUMO

OBJECTIVES: This study aimed to discover novel antifungals targeting Candida albicans glyceraldehyde-3-phosphate dehydrogenase (CaGAPDH), have an insight into inhibitory mode, and provide evidence supporting CaGAPDH as a target for new antifungals. METHODS: Virtual screening was utilized to discover inhibitors of CaGAPDH. The inhibitory effect on cellular GAPDH was evaluated by determining the levels of ATP, NAD, NADH, etc., as well as examining GAPDH mRNA and protein expression. The role of GAPDH inhibition in C. albicans was supported by drug affinity responsive target stability and overexpression experiments. The mechanism of CaGAPDH inhibition was elucidated by Michaelis-Menten enzyme kinetics and site-specific mutagenesis based on docking. Chemical synthesis was used to produce an improved candidate. Different sources of GAPDH were used to evaluate inhibitory selectivity across species. In vitro and in vivo antifungal tests, along with anti-biofilm activity, were carried out to evaluate antifungal potential of GAPDH inhibitors. RESULTS: A natural xanthone was identified as the first competitive inhibitor of CaGAPDH. It demonstrated in vitro anti-C. albicans potential but also caused hemolysis. XP-W, a synthetic side-chain-optimized xanthone, demonstrated a better safety profile, exhibiting a 50-fold selectivity for CaGAPDH over human GAPDH. XP-W also exhibited potent anti-biofilm activity and displayed broad-spectrum anti-Candida activities in vitro and in vivo, including multi-azole-resistant C. albicans. CONCLUSIONS: These results demonstrate for the first time that CaGAPDH is a valuable target for antifungal drug discovery, and XP-W provides a promising lead.


Assuntos
Antifúngicos , Candida albicans , Gliceraldeído-3-Fosfato Desidrogenases , Xantonas , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Xantonas/farmacologia , Xantonas/química , Antifúngicos/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Animais , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Humanos , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Camundongos , Descoberta de Drogas
5.
Fundam Clin Pharmacol ; : e13007, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738393

RESUMO

Candida spp. is an opportunistic pathogen capable of causing superficial to invasive infections. Morphological transition is one of the main virulence factors of this genus and, therefore, is an important variable to be considered in pharmacological interventions. Riparins I, II, III, and IV are alkamide-type alkaloids extracted from the unripe fruit of Aniba riparia, whose remarkable pharmacological properties were previously demonstrated. This work aimed to evaluate in silico and in vitro the inhibitory effects of Riparins on the morphological transition of Candida albicans, Candida tropicalis, and Candida krusei. Molecular docking was applied to analyze the inhibitory effects of riparins against proteins such as N-acetylglucosamine, CYP-51, and protein kinase A (PKA) using the Ramachandran plot. The ligands were prepared by MarvinSketch and Spartan software version 14.0, and MolDock Score and Rerank Score were used to analyze the affinity of the compounds. In vitro analyses were performed by culturing the strains in humid chambers in the presence of riparins or fluconazole (FCZ). The morphology was observed through optical microscopy, and the size of the hyphae was determined using the ToupView software. In silico analysis demonstrated that all riparins are likely to interact with the molecular targets: GlcNAc (>50%), PKA (>60%), and CYP-51 (>70%). Accordingly, in vitro analysis showed that these compounds significantly inhibited the morphological transition of all Candida strains. In conclusion, this study demonstrated that riparins inhibit Candida morphological transition and, therefore, can be used to overcome the pathogenicity of this genus.

6.
Rev. argent. microbiol ; 54(4): 91-100, dic. 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1422970

RESUMO

Abstract Diverse habitats have been screened for novel antimicrobial actinomycetes, while others remain unexplored. In this study, we analyzed the bioactivities of actinomycetes cul-tured from rhizosphere soils of the desert plant Artemisia tridentata and the nearby bulk soils. Actinomycetes were screened for antifungal and antibacterial activities toward a panel of plant pathogens; all comparisons were between activities of rhizosphere soil isolates toward those of its counterpart bulk soil. A selected group of the strongest antifungal isolates were also tested against two antifungal-drug resistant strains of Candida albicans. 16S rDNA partial sequences and phylogenetic analysis of isolates that showed broad-spectrum antifungal activities were performed. Forty-two out of 200 and two soil isolated actinomycetes were selected for their strong antifungal activities. The highest proportion of isolates (p <0.05) from rhizosphere soil of an old plant showed antagonism against gram-positive bacteria (0.483 and 0.224 propor-tions against Bacillus subtilis and Rathayibacter tritici, respectively), and phytopathogenic fungi (0.259, 0.431, and 0.345 proportions against Fusarium oxysporum, Rhizoctonia solani and Pythium ultimum, respectively), while the highest antagonism against the gram-negative bacteria predominated in isolates from the bulk soils. Isolates from a rhizosphere soil of a young plant were characterized for strong antagonist activities against Fusarium oxysporum (0.333 proportion, p<0.05). Phylogenetic analysis of 16S rDNA sequences showed that isolates that exhibited strong antifungal activity were genetically similar. We conclude that the rhizosphere soil of A. tridentata is an excellent source for discovery of actinomycetes with potentially novel antifungal compounds.


Resumen En la búsqueda de actinomicetos antimicrobianos se han estudiado diversos hábitats, pero muchos permanecen aún sin explorar. En este estudio analizamos las actividades biológicas de cultivos de actinomicetos provenientes de suelos rizosféricos de la planta desértica Artemisia tridentata y de suelos no asociados a sus raíces. Los actinomicetos fueron seleccionados por sus actividades antifúngicas y antibacterianas contra un panel de patógenos de plantas. Todas las comparaciones fueron entre las actividades de los aislados rizosféricos y aquellas de los aislados no asociados a las raíces. Un grupo selecto de los aislados con las mayores actividades antifúngicas fueron también evaluados contra 2 cepas de Candida albicans resistentes a antifúngicos. Se realizó la secuenciación parcial del ARNr 16S y el análisis filogenético de los aislados que mostraron actividades antifúngicas de amplio espectro. Se seleccionaron 42 de 202 actinomicetos aislados por sus fuertes actividades antifúngicas. La mayor proporción de aislados de suelo rizosférico de plantas viejas mostraron antagonismo contra bacterias gram positivas y hongos fitopatógenos (proporciones de 0,259; 0,431 y 0,345 contra Fusarium oxyspo-rum, Rhizoctonia solani y Pythium ultimum, respectivamente), mientras que la mayor actividad antagónica contra las bacterias gram negativas predominaron en aislados de suelo no asociado a raíces. Los aislados de suelo rizosférico de plantas jóvenes se caracterizaron por una fuerte actividad antagónica contra F. oxysporum (proporción de 0,333, p < 0,05). El análisis filogenético de secuencias del ADNr 16S mostró que los aislados que presentaron fuerte actividad antifúng-ica fueron genéticamente similares. Concluimos que el suelo rizosférico de A. tridentata es una fuente excelente para el descubrimiento de actinomicetos productores de compuestos antifúngicos potencialmente novedosos.

7.
Braz. j. pharm. sci ; 52(2): 265-272, Apr.-June 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-794996

RESUMO

ABSTRACT This study evaluated the influence of glucose and stirring in the fermentation process in order to produce anti-Candida metabolites produced by Streptomyces sp. MPO4 isolated from Amazon soil. The anti-Candida metabolites production was registered after 24 h of fermentation in stirred ISP2 medium, having antifungal inhibition halos between 12.3 mm and 25.3 mm, yielding higher production of anti-Candida agents after 96 h. Stirring was a determining factor for the production of anti-Candida secondary metabolites, since the absence of glucose reflected in the late production of the antifungal starting from Streptomyces sp.


RESUMO Este estudo avaliou a influência da glicose e agitação no processo de fermentação para a produção de metabólitos anti-Candida produzidos por Streptomyces sp. MPO4 isolado do solo da Amazônia. A produção dos metabólitos anti-Candida foi registrada a partir de 24 h de fermentação sob agitação em meio ISP2, apresentando halos de inibição entre 12,3 mm e 25,3 mm, obtendo-se maior produção do antifúngico em 96 h. A agitação foi um fator determinante para a produção de metabólitos secundários anti-Candida e a ausência de glicose refletiu na produção tardia do antifúngico a partir do Streptomyces sp.


Assuntos
Streptomyces/química , Candida albicans/química , Fermentação/efeitos dos fármacos , Glucose/análise , Antifúngicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA