Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732125

RESUMO

"Ganghwal" is a widely used herbal medicine in Republic of Korea, but it has not been reported as a treatment strategy for obesity and diabetes within adipocytes. In this study, we determined that Ostericum koreanum extract (OKE) exerts an anti-obesity effect by inhibiting adipogenesis and an anti-diabetic effect by increasing the expression of genes related to glucose uptake in adipocytes and inhibiting α-glucosidase activity. 3T3-L1 preadipocytes were differentiated for 8 days in methylisobutylxanthine, dexamethasone, and insulin medium, and the effect of OKE was confirmed by the addition of 50 and 100 µg/mL of OKE during the differentiation process. This resulted in a reduction in lipid accumulation and the expression of PPARγ (Peroxisome proliferator-activated receptor γ) and C/EBPα (CCAAT enhancer binding protein α). Significant activation of AMPK (AMP-activated protein kinase), increased expression of GLUT4 (Glucose Transporter Type 4), and inhibition of α-glucosidase activity were also observed. These findings provide the basis for the anti-obesity and anti-diabetic effects of OKE. In addition, OKE has a significant antioxidant effect. This study presents OKE as a potential natural product-derived material for the treatment of patients with metabolic diseases such as obesity- and obesity-induced diabetes.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Fármacos Antiobesidade , Hipoglicemiantes , PPAR gama , Extratos Vegetais , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Adipogenia/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Fármacos Antiobesidade/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , alfa-Glucosidases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Crassulaceae/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos
2.
Crit Rev Biotechnol ; 43(2): 242-257, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35156475

RESUMO

Diabetes is a chronic metabolic disease caused by insufficient insulin secretion and insulin resistance. Natural product is one of the most important resources for anti-diabetic drug. However, due to the extremely complex composition, this research is facing great challenges. After the advent of ligand fishing technology based on enzyme immobilization, the efficiency of screening anti-diabetic components has been greatly improved. In order to provide critical knowledge for future research in this field, the application progress of immobilized enzyme in screening anti-diabetic components from complex natural extracts in recent years was reviewed comprehensively, including novel preparation technologies and strategies of immobilized enzyme and its outstanding application prospect in many aspects. The basic principles and preparation steps of immobilized enzyme were briefly described, including entrapment, physical adsorption, covalent binding, affinity immobilization, multienzyme system and carrier-free immobilization. New formatted immobilized enzymes with different carriers, hollow fibers, magnetic materials, microreactors, metal organic frameworks, etc., were widely used to screen anti-diabetic compositions from various natural products, such as Ginkgo biloba, Morus alba, lotus leaves, Pueraria lobata, Prunella vulgaris, and Magnolia cortex. Furthermore, the challenges and future prospects in this field were put forward in this review.


Assuntos
Produtos Biológicos , Diabetes Mellitus , Humanos , Produtos Biológicos/química , Enzimas Imobilizadas/química , Ligantes
3.
EMBO Rep ; 22(1): e51352, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33295692

RESUMO

Fibroblast growth factor 21 (FGF21) is a regulator of glucose and lipid metabolism. It has been widely considered as a promising candidate for the treatment of type 2 diabetes mellitus (T2DM) and other related metabolic disorders. However, lack of structural and dynamic information has limited FGF21-based drug development. Here, using nuclear magnetic resonance (NMR) spectroscopy, we determine the structure of FGF21 and find that its non-canonical flexible ß-trefoil conformation affects the folding of ß2-ß3 hairpin and further overall protein stability. To modulate folding dynamics, we designed an FGF21-FGF19 chimera, FGF21SS . As expected, FGF21SS shows better thermostability without inducing hepatocyte proliferation. Functional characterization of FGF21SS shows its better insulin sensitivity, reduced inflammation in 3T3-L1 adipocytes, and lower blood glucose and insulin levels in ob/ob mice compared with wild type. Our dynamics-based rational design provides a promising approach for FGF21-based therapeutic development against T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Fatores de Crescimento de Fibroblastos , Resistência à Insulina , Animais , Glicemia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Fatores de Crescimento de Fibroblastos/genética , Resistência à Insulina/genética , Camundongos
4.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902218

RESUMO

Type-2 Diabetes Mellitus is a complex, chronic illness characterized by persistent high blood glucose levels. Patients can be prescribed anti-diabetes drugs as single agents or in combination depending on the severity of their condition. Metformin and empagliflozin are two commonly prescribed anti-diabetes drugs which reduce hyperglycemia, however their direct effects on macrophage inflammatory responses alone or in combination are unreported. Here, we show that metformin and empagliflozin elicit proinflammatory responses on mouse bone-marrow-derived macrophages with single agent challenge, which are modulated when added in combination. In silico docking experiments suggested that empagliflozin can interact with both TLR2 and DECTIN1 receptors, and we observed that both empagliflozin and metformin increase expression of Tlr2 and Clec7a. Thus, findings from this study suggest that metformin and empagliflozin as single agents or in combination can directly modulate inflammatory gene expression in macrophages and upregulate the expression of their receptors.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Macrófagos , Metformina , Animais , Camundongos , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Quimioterapia Combinada , Expressão Gênica/efeitos dos fármacos , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Receptor 2 Toll-Like/uso terapêutico
5.
Molecules ; 28(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959693

RESUMO

Ligustrum robustum has been not only used as a heat-clearing and detoxicating functional tea (Ku-Ding-Cha) but also consumed as a hypotensive, anti-diabetic, and weight-reducing folk medicine. From the leaves of L. robustum, ten new monoterpenoid glycosides named ligurobustosides T10 (1a), T11 (1b), T12 (2a), T13 (2b), T14 (3a), T15 (3b), F1 (4b), T16 (5a), T17 (5b), and E1 (6b), together with five known ones (4a, 6a, 7, 8a, 8b), were separated and identified using the spectroscopic method and chemical method in this research. The results of biological tests exhibited that the fatty acid synthase (FAS) inhibitory action of compound 5 (IC50: 4.38 ± 0.11 µM) was as strong as orlistat (IC50: 4.46 ± 0.13 µM), a positive control; the α-glucosidase inhibitory actions of compounds 1-4 and 7-8, and the α-amylase inhibitory actions of compounds 1-8 were medium; the ABTS radical scavenging capacities of compounds 1-3 and 5-8 (IC50: 6.27 ± 0.23 ~ 8.59 ± 0.09 µM) were stronger than l-(+)-ascorbic acid (IC50: 10.06 ± 0.19 µM) served as a positive control. This research offered a theoretical foundation for the leaves of L. robustum to prevent diabetes and its complications.


Assuntos
Ligustrum , Ligustrum/química , Glicosídeos/farmacologia , Glicosídeos/química
6.
Saudi Pharm J ; 31(11): 101776, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37868645

RESUMO

Chronic diabetes mellites related hyperglycemia is a major cause of mortality and morbidity due to further complications like retinopathy, hypertension and cardiovascular diseases. Though several synthetic anti-diabetes drugs specifically targeting glucose-metabolism enzymes are available, they have their own limitations, including adverse side-effects. Unlike other natural or marine-derived pharmacologically important molecules, deep-sea fungi metabolites still remain under-explored for their anti-diabetes potential. We performed structure-based virtual screening of deep-sea fungal compounds selected by their physiochemical properties, targeting crucial enzymes viz., α -amylase, α -glucosidase, pancreatic-lipoprotein lipase, hexokinase-II and protein tyrosine phosphatase-1B involved in glucose-metabolism pathway. Following molecular docking scores and MD simulation analyses, the selected top ten compounds for each enzyme, were subjected to pharmacokinetics prediction based on their AdmetSAR- and pharmacophore-based features. Of these, cladosporol C, tenellone F, ozazino-cyclo-(2,3-dihydroxyl-trp-tyr), penicillactam and circumdatin G were identified as potential inhibitors of α -amylase, α -glucosidase, pancreatic-lipoprotein lipase, hexokinase-II and protein tyrosine phosphatase-1B, respectively. Our in silico data therefore, warrants further experimental and pharmacological studies to validate their anti-diabetes therapeutic potential.

7.
Crit Rev Food Sci Nutr ; : 1-26, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35866515

RESUMO

Diabetes mellitus (DM) is a long-term metabolic disorder that manifests as chronic hyperglycemia and impaired insulin, bringing a heavy load on the global health care system. Considering the inevitable side effects of conventional anti-diabetic drugs, saponins-rich natural products exert promising therapeutic properties to serve as safer and more cost-effective alternatives for DM management. Herein, this review systematically summarized the research progress on the anti-diabetic properties of dietary saponins and their underlying molecular mechanisms in the past 20 years. Dietary saponins possessed the multidirectional anti-diabetic capabilities by concurrent regulation of various signaling pathways, such as IRS-1/PI3K/Akt, AMPK, Nrf2/ARE, NF-κB-NLRP3, SREBP-1c, and PPARγ, in liver, pancreas, gut, and skeletal muscle. However, the industrialization and commercialization of dietary saponin-based drugs are confronted with a significant challenge due to the low bioavailability and lack of the standardization. Hence, in-depth evaluations in pharmacological profile, function-structure interaction, drug-signal pathway interrelation are essential for developing dietary saponins-based anti-diabetic treatments in the future.

8.
Bioorg Med Chem Lett ; 76: 129018, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209967

RESUMO

With the target to develop small molecules based anti-diabetic agents, we, herein, report the design, synthesis and biological studies on Lys-Pro and Gly-Pro esters, and a Phe-Pro-Phe tripeptide inhibiting the activity of glycoprotein dipeptidyl peptidase-4 (DPP-4). Since DPP-4 cleaves the glucagon like peptide (GLP-1) and glucose dependent insulinotropic polypeptide (GIP) hormones which are responsible for inducing insulin secretion, the results of present studies could be significant in making control over glycemia. The structural analysis of DPP-4 and its binding mode with the substrate as well as the reported inhibitors provided the background for the design of new molecules. Among the 17 compounds screened against DPP-4, 14 compounds displayed IC50 better than the known drug Sitagliptin. Collectively, a highly encouraging set of molecules was identified that may prove as the clinical candidates for the treatment of diabetes.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Desenho de Fármacos , Hipoglicemiantes , Oligopeptídeos , Glicemia/metabolismo , Inibidores da Dipeptidil Peptidase IV/síntese química , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Ésteres/síntese química , Ésteres/química , Ésteres/farmacologia , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Prolina/química , Fosfato de Sitagliptina/química , Fosfato de Sitagliptina/farmacologia , Oligopeptídeos/síntese química , Oligopeptídeos/química , Oligopeptídeos/farmacologia
9.
Molecules ; 27(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163903

RESUMO

Neuropeltis racemosa Wall. (Convolvulaceae) is wildly distributed in Asia. Its stem is used as the component in traditional Thai recipes for treatments of muscle rigidity, skin disorder, dysentery, and hypoglycemia. However, the chemical constituents and biological activities of N. racemosa have not been reported. From a screening assay, N. racemosa stem crude extract showed the potent effect on alpha-glucosidase inhibition at 2 mg/mL as 96.09%. The bioassay-guiding isolation led to 5 compounds that were identified by spectroscopic techniques as scopoletin (1), syringic acid (2), methyl 3-methyl-2-butenoate (3), N-trans-feruloyltyramine (4), and N-trans- coumaroyltyramine (5). Compounds 1, 4, and 5 exhibited an IC50 of 110.97, 29.87, and 0.92 µg/mL, respectively, while the IC50 of positive standard, acarbose was 272.72 µg/mL. Kinetic study showed that compound 1 performed as the mixed-type inhibition mechanism, whereas compounds 4 and 5 displayed the uncompetitive inhibition mechanism. The docking study provided the molecular understanding of isolated aromatic compounds (1, 2, 4 and 5) to alpha-glucosidase. Hence, this study would be the first report of isolated compounds and their anti-alpha-glucosidase activity with the mechanism of action from N. racemosa. Thus, these active compounds will be further studied to be the lead compounds among natural antidiabetic drugs.


Assuntos
Convolvulaceae , Plantas Medicinais , Inibidores de Glicosídeo Hidrolases/química , Hipoglicemiantes/química , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Plantas Medicinais/química , Tailândia , alfa-Glucosidases/química
10.
Molecules ; 27(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35164038

RESUMO

Essential oils (EOs) of Clausena indica fruits, Zanthoxylum rhetsa fruits, and Michelia tonkinensis seeds were analyzed for their phytochemical profiles and biological activities, including anti-diabetes, anti-gout, and anti-leukemia properties. Sixty-six volatile compounds were identified by gas chromatography-mass spectrometry (GC-MS), in which, myristicin (68.3%), limonene (44.2%), and linalool (49.3%) were the most prominent components of EOs extracted from C. indica, Z. rhetsa, and M. tonkinensis, respectively. In addition, only EOs from C. indica inhibited the activities of all tested enzymes comprising α-amylase (IC50 = 7.73 mg/mL), α-glucosidase (IC50 = 0.84 mg/mL), and xanthine oxidase (IC50 = 0.88 mg/mL), which are related to type 2 diabetes and gout. Remarkably, all EOs from C. indica, Z. rhetsa (IC50 = 0.73 mg/mL), and M. tonkinensis (IC50 = 1.46 mg/mL) showed a stronger anti-α-glucosidase ability than acarbose (IC50 = 2.69 mg/mL), a known anti-diabetic agent. Moreover, the growth of leukemia cell Meg-01 was significantly suppressed by all EOs, of which, the IC50 values were recorded as 0.32, 0.64, and 0.31 mg/mL for EOs from C. indica, Z. rhetsa, and M. tonkinensis, respectively. As it stands, this is the first report about the inhibitory effects of EOs from C. indica and Z. rhetsa fruits, and M. tonkinensis seeds on the human leukemia cell line Meg-01 and key enzymes linked to diabetes and gout. In conclusion, the present study suggests that EOs from these natural spices may be promising candidates for pharmaceutical industries to develop nature-based drugs to treat diabetes mellitus or gout, as well as malignant hematological diseases such as leukemia.


Assuntos
Antineoplásicos/uso terapêutico , Clausena/química , Supressores da Gota/uso terapêutico , Hipoglicemiantes/uso terapêutico , Leucemia/tratamento farmacológico , Magnoliaceae/química , Óleos Voláteis/uso terapêutico , Zanthoxylum/química , Humanos , Óleos Voláteis/química
11.
Molecules ; 27(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080446

RESUMO

Since the outbreak of the COVID-19 pandemic, traditional Chinese medicine has played an important role in the treatment process. Furthermore, the discovery of artemisinin in Artemisia annua has reduced the incidence of malaria all over the world. Therefore, it is becoming urgent and important to establish a novel method of conducting systematic research on Chinese herbal medicine, improving the medicinal utilization value of traditional Chinese medicine and bringing great benefits to human health all over the world. Fructus Malvae, a kind of Chinese herbal medicine which has been recorded in the "Chinese Pharmacopoeia" (2020 edition), refers to the dry, ripe fruits of Malva verticillata L. Recently, some studies have shown that Fructus Malvae exhibits some special pharmacological activities; for example, it has diuretic, anti-diabetes, antioxidant and anti-tumor properties, and it alleviates hair loss. Furthermore, according to the reports, the active ingredients separated and identified from Fructus Malvae contain some very novel compounds such as nortangeretin-8-O-ß-d-glucuronopyranoside and 1-O-(6-deoxy-6-sulfo)-glucopyranosyl-2-O-linolenoyl-3-O-palmitoyl glyceride, which could be screened as important candidate compounds for diabetes- or tumor-treatment drugs, respectively. Therefore, in this research, we take Fructus Malvae as an example and systematically summarize the chemical constituents and pharmacological activity research progress of it. This review will be helpful in promoting the development and application of Fructus Malvae and will also provide an example for other investigations of traditional Chinese medicine.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Frutas , Humanos , Medicina Tradicional Chinesa , Pandemias
12.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3258-3264, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35851119

RESUMO

To investigate the active components against diabetes, the present study isolated eight hydrolyzable tannins from the ethyl acetate extract of Punica granatum flowers by MCI, reversed-phase chromatography(ODS), Sephadex LH-20 chromatography, and HPLC, and the structures were elucidated as 1-O-galloyl-6-O-feruloyl-ß-D-glucose(1), 1,2,3,4,6-penta-O-gally-ß-D-glucopyranose(2), punicafolin(3), corilagin(4), telimagrandin Ⅰ(5), 1,2-di-O-galloyl-4,6-O-(S)-hexahydroxydiphenoyl-ß-D-glucose(6), heterophylliin A(7), and eugeniin(8) on the basis of spectral data and literature records. Among them, compound 1 is a new compound, and compounds 5-8 were isolated from this species for the first time. All isolated compounds were tested for inhibitory activities against α-glucosidase and DPP-Ⅳ. The results indicated that compounds 2, 3, and 5-8 showed significant inhibitory activities against α-glucosidase, while compounds 1 and 4 exhibited moderate inhibitory activities. Compounds 5, 7, and 8 showed moderate inhibitory effects on DPP-Ⅳ. In addition, the type of enzyme inhibition of compound 5 was determined.


Assuntos
Diabetes Mellitus , Lythraceae , Punica granatum , Flores/química , Glucose , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/farmacologia , Lythraceae/química , Extratos Vegetais/química , alfa-Glucosidases
13.
Diabetologia ; 64(7): 1492-1503, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33765180

RESUMO

AIMS/HYPOTHESIS: It is unclear whether glucose per se has a causal impact on risk of stroke and whether glucose-lowering drugs reduce this risk. This is important for the choice of treatment for individuals at risk. We tested the hypotheses that high plasma glucose has a causal impact on increased risk of ischaemic stroke, and that glucose-lowering drugs reduce this risk. METHODS: Using a Mendelian randomisation design, we examined 118,838 individuals from two Copenhagen cohorts, the Copenhagen General Population Study and the Copenhagen City Heart Study, and 440,328 individuals from the MEGASTROKE study. Effects of eight glucose-lowering drugs on risk of stroke were summarised by meta-analyses. RESULTS: In genetic, causal analyses, a 1 mmol/l higher plasma glucose had a risk ratio of 1.48 (95% CI 1.04, 2.11) for ischaemic stroke in the Copenhagen studies. The corresponding risk ratio from the MEGASTROKE study combined with the Copenhagen studies was 1.74 (1.31, 2.18). In meta-analyses of glucose-lowering drugs, the risk ratio for stroke was 0.85 (0.77, 0.94) for glucagon-like peptide-1 receptor agonists and 0.82 (0.69, 0.98) for thiazolidinediones, while sulfonylureas, dipeptidyl peptidase-4 inhibitors, sodium-glucose cotransporter 2 inhibitors, α-glucosidase inhibitors, meglitinides and metformin individually lacked statistical evidence of an effect on stroke risk. CONCLUSIONS/INTERPRETATION: Genetically high plasma glucose has a causal impact on increased risk of ischaemic stroke. Treatment with glucose-lowering glucagon-like peptide-1 receptor agonists and thiazolidinediones reduces this risk. These results may guide clinicians in the treatment of individuals at high risk of ischaemic stroke.


Assuntos
Controle Glicêmico/estatística & dados numéricos , Hiperglicemia/complicações , AVC Isquêmico/complicações , Glicemia/metabolismo , Isquemia Encefálica/epidemiologia , Isquemia Encefálica/etiologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/epidemiologia , Hiperglicemia/etiologia , Hipoglicemiantes/uso terapêutico , AVC Isquêmico/sangue , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/epidemiologia , Análise da Randomização Mendeliana , Fatores de Risco , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia
14.
Int J Mol Sci ; 22(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34502417

RESUMO

Diabetes, a glucose metabolic disorder, is considered one of the biggest challenges associated with a complex complication of health crises in the modern lifestyle. Inhibition or reduction of the dipeptidyl peptidase IV (DPP-IV), alpha-glucosidase, and protein-tyrosine phosphatase 1B (PTP-1B) enzyme activities or expressions are notably considered as the promising therapeutic strategies for the management of type 2 diabetes (T2D). Various food protein-derived antidiabetic bioactive peptides have been isolated and verified. This review provides an overview of the DPP-IV, PTP-1B, and α-glucosidase inhibitors, and updates on the methods for the discovery of DPP-IV inhibitory peptides released from food-protein hydrolysate. The finding of novel bioactive peptides involves studies about the strategy of separation fractionation, the identification of peptide sequences, and the evaluation of peptide characteristics in vitro, in silico, in situ, and in vivo. The potential of bioactive peptides suggests useful applications in the prevention and management of diabetes. Furthermore, evidence of clinical studies is necessary for the validation of these peptides' efficiencies before commercial applications.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas Alimentares/química , Inibidores Enzimáticos , Hipoglicemiantes , Peptídeos , Animais , Diabetes Mellitus Tipo 2/enzimologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Peptídeos/química , Peptídeos/uso terapêutico
15.
Molecules ; 26(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34684851

RESUMO

The purpose of this study was to reuse cassava wastewater (CW) for scaled-up production, via the fermentation of prodigiosin (PG), and to conduct an evaluation of its bioactivities. PG was produced at the yield of high 6150 mg/L in a 14 L-bioreactor system, when the designed novel medium (7 L), containing CW and supplemented with 0.25% casein, 0.05% MgSO4, and 0.1% K2HPO4, was fermented with Serratia marcescens TNU01 at 28 °C in 8 h. The PG produced and purified in this study was assayed for some medical effects and showed moderate antioxidant, high anti-NO (anti-nitric oxide), and potential α-glucosidase inhibitory activities. Notably, PG was first reported as a novel effective α-glucosidase inhibitor with a low IC50 value of 0.0183 µg/mL. The commercial anti-diabetic drug acarbose was tested for comparison and had a lesser effect with a high IC50 value of 328.4 µg/mL, respectively. In a docking study, the cation form of PG (cation-PG) was found to bind to the enzyme α-glucosidase by interacting with two prominent amino acids, ASP568 and PHE601, at the binding site on the target enzyme, creating six linkages and showing a better binding energy score (-14.6 kcal/mol) than acarbose (-10.5 kcal/mol). The results of this work suggest that cassava wastewater can serve as a low-cost raw material for the effective production of PG, a potential antidiabetic drug candidate.


Assuntos
Inibidores de Glicosídeo Hidrolases/química , Prodigiosina/química , Serratia marcescens/química , Águas Residuárias/química , Acarbose/química , Antioxidantes/química , Reatores Biológicos , Fermentação/fisiologia , Hipoglicemiantes/química
16.
Arch Biochem Biophys ; 686: 108364, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32315653

RESUMO

Fucoxanthin (Fx), a major carotenoid found in brown seaweed, is known to show a unique and wide variety of biological activities. Upon absorption, Fx is metabolized to fucoxanthinol and amarouciaxanthin, and these metabolites mainly accumulate in visceral white adipose tissue (WAT). As seen in other carotenoids, Fx can quench singlet oxygen and scavenge a wide range of free radicals. The antioxidant activity is related to the neuroprotective, photoprotective, and hepatoprotective effects of Fx. Fx is also reported to show anti-cancer activity through the regulation of several biomolecules and signaling pathways that are involved in either cell cycle arrest, apoptosis, or metastasis suppression. Among the biological activities of Fx, anti-obesity is the most well-studied and most promising effect. This effect is primarily based on the upregulation of thermogenesis by uncoupling protein 1 expression and the increase in the metabolic rate induced by mitochondrial activation. In addition, Fx shows anti-diabetic effects by improving insulin resistance and promoting glucose utilization in skeletal muscle.


Assuntos
Suplementos Nutricionais/análise , Alga Marinha/química , Xantofilas/química , Xantofilas/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Fármacos Antiobesidade/química , Fármacos Antiobesidade/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Descoberta de Drogas , Radicais Livres/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Resistência à Insulina , Fígado/metabolismo , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Depuradores/metabolismo , Oxigênio Singlete/metabolismo , Proteína Desacopladora 1/química , Proteína Desacopladora 1/metabolismo , Xantofilas/efeitos adversos , beta Caroteno/análogos & derivados , beta Caroteno/química
17.
J Enzyme Inhib Med Chem ; 35(1): 565-573, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31969031

RESUMO

Embelin is a naturally occurring para-benzoquinone isolated from Embelia ribes (Burm. f.) of the Myrsinaceae family. It was first discovered to have potent inhibitory activity (IC50 = 4.2 µM) against α-glucosidase in this study. Then, four series of novel embelin derivatives were designed, prepared and evaluated in α-glucosidase inhibition assays. The results show that most of the embelin derivatives synthesised are effective α-glucosidase inhibitors, with IC50 values at the micromolar level, especially 10d, 12d, and 15d, the IC50 values of which are 1.8, 3.3, and 3.6 µM, respectively. Structure-activity relationship (SAR) studies suggest that hydroxyl groups in the 2/5-position of para-benzoquinone are very important, and long-chain substituents in the 3-position are highly preferred. Moreover, the inhibition mechanism and kinetics studies reveal that all of 10d, 12d, 15d, and embelin are reversible and mixed-type inhibitors. Furthermore, docking experiments were carried out to study the interactions between 10d and 15d with α-glucosidase.


Assuntos
Benzoquinonas/farmacologia , Desenho de Fármacos , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Glucosidases/metabolismo , Benzoquinonas/síntese química , Benzoquinonas/química , Relação Dose-Resposta a Droga , Embelia/química , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
18.
Mar Drugs ; 18(4)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326065

RESUMO

Inspired by the significant -glucosidase inhibitory activities of (+)- and (-)-pericosine E, we herein designed and synthesized 16 analogs of these marine natural products bearing a methoxy group instead of a chlorine atom at C6. Four of these compounds exhibited moderate -glucosidase inhibitory activities, which were weaker than those of the corresponding chlorine-containing species. The four compounds could be prepared by coupling reactions utilizing the (-)-pericosine B moiety. An additional in silico docking simulation suggested that the reason of reduced activity of the C6-methoxylated analogs might be an absence of hydrogen bonding between a methoxy group with the surrounding amino acid residues in the active site in -glucosidase.


Assuntos
Inibidores de Glicosídeo Hidrolases/análise , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/síntese química , Ácido Chiquímico/análogos & derivados , Simulação por Computador , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Ácido Chiquímico/química , Relação Estrutura-Atividade , alfa-Glucosidases
19.
Int J Neurosci ; 130(11): 1136-1141, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32053409

RESUMO

Purpose: Depression, which affects about 52% of Alzheimer's disease (AD) patients, can worsen cognitive impairment and increase mortality and suicide rates. We hope to provide clinical evidence for the prevention and treatment of depression in AD patients by investigating related risk factors of depression in AD patients.Methods: 158 AD inpatients of the Department of Neurology, Daping Hospital from September 2017 to March 2019 were enrolled. General information, laboratory tests, cognitive and emotional function assessments of the inpatients were collected. Logistic regression was used to analyze the risk factors of depression in AD patients, and the relationship between 17 Hamilton depression scale scores and HbA1c levels in AD patients was further analyzed.Results: The prevalence of age, gender, hypertension, hyperlipidemia, Type 2 diabetes mellitus (T2DM), and white matter lesions (WML) in the AD with depression group was significantly different from without depression group. Hypertension, T2DM, and WML are independent risk factors for depression in AD patients. The depression scores of AD patients with HbA1c>6.5% were significantly higher than AD patients with HbA1c ≤ 6.5%, and there were significant difference in depression scale scores between using anti-diabetes drugs group and not using anti-diabetes drugs group whose HbA1c level is >6.5%, while no difference in depression scores between using anti-diabetes drugs group and not using anti-diabetes drugs group whose HbA1c level is ≤6.5%.Conclusion: T2DM is an independent risk factor for AD patients with depression. Increased HbA1c levels aggravate depression in AD patients, and controlling HbA1c levels and anti-diabetes drugs can reduce the severity of depression in AD patients.


Assuntos
Doença de Alzheimer/epidemiologia , Transtorno Depressivo/epidemiologia , Transtorno Depressivo/etiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/sangue , China/epidemiologia , Comorbidade , Transtorno Depressivo/sangue , Transtorno Depressivo/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Hemoglobinas Glicadas , Humanos , Hipoglicemiantes/uso terapêutico , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Índice de Gravidade de Doença
20.
Zhongguo Zhong Yao Za Zhi ; 45(4): 816-824, 2020 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-32237481

RESUMO

Citrullus colocynthis is widely distributed in the desert regions of the world. C. colocynthis has shown to improve constipation, liver diseases, jaundice, typhoid fever, diabetes and asthma in traditional use. As a kind of exterritorialy medicinal material, C. colocynthis has been used in China and introduced successfully. The main active ingredients of C. colocynthis are cucurbitacin, flavonoids, alkaloids and phenolic acids, which have been proven to have antioxidant, anti-diabetic, anti-pathogenic microorganisms and anti-cancer activities in modern pharmacological research. This paper reviews the traditional application, chemical composition and pharmacological effects of C. colocynthis, and provides reference for the in-depth study for the efficacy and mechanism of different components of C. colocynthis.


Assuntos
Citrullus colocynthis/química , Medicamentos de Ervas Chinesas/farmacologia , Compostos Fitoquímicos/farmacologia , China , Medicamentos de Ervas Chinesas/química , Compostos Fitoquímicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA