Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 355, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822832

RESUMO

Getah virus (GETV) is a re-emerging mosquito-borne alphavirus that is highly pathogenic, mainly to pigs and horses. There are no vaccines or treatments available for GETV in swine in China. Therefore, the development of a simple, rapid, specific, and sensitive serological assay for GETV antibodies is essential for the prevention and control of GETV. Current antibody monitoring methods are time-consuming, expensive, and dependent on specialized instrumentation, and these features are not conducive to rapid detection in clinical samples. To address these problem, we developed immunochromatographic test strips (ICTS) using eukaryotically expressed soluble recombinant p62-E1 protein of GETV as a labelled antigen, which has good detection sensitivity and no cross-reactivity with other common porcine virus-positive sera. The ICTS is highly compatible with IFA and ELISA and can be stored for 1 month at 37 °C and for at least 3 months at room temperature. Hence, p62-E1-based ICTS is a rapid, accurate, and convenient method for rapid on-site detection of GETV antibodies. KEY POINTS: • We established a rapid antibody detection method that can monitor GETV infection • We developed colloidal gold test strips with high sensitivity and specificity • The development of colloidal gold test strips will aid in the field serologic detection of GETV.


Assuntos
Alphavirus , Anticorpos Antivirais , Coloide de Ouro , Sensibilidade e Especificidade , Animais , Coloide de Ouro/química , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Alphavirus/imunologia , Suínos , Cromatografia de Afinidade/métodos , Infecções por Alphavirus/diagnóstico , Infecções por Alphavirus/imunologia , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , Fitas Reagentes , China , Ensaio de Imunoadsorção Enzimática/métodos
2.
Mikrochim Acta ; 191(9): 543, 2024 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153033

RESUMO

A nanohybrid-modified glassy carbon electrode based on conducting polypyrrole doped with carbon quantum dots (QDs) was developed and used for the electrochemical detection of anti-tissue transglutaminase (anti-tTG) antibodies. To improve the polypyrrole conductivity, carrier mobility, and carrier concentration, four types of carbon nanoparticles were tested. Furthermore, a polypyrrole-modified electrode doped with QDs was functionalized with a PAMAM dendrimer and transglutaminase 2 protein by cross-linking with N-hydroxysuccinimide (NHS)/N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC). The steps of electrode surface modification were surveyed via electrochemical measurements (differential pulse voltammetry (DPV), impedance spectroscopy, and X-ray photoelectron spectroscopy (XPS)). The surface characteristics were observed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and contact angle measurements. The obtained modified electrode exhibited good stability and repeatability. DPV between - 0.1 and 0.6 V (vs. Ag/AgCl 3 M KCl reference electrode) was used to evaluate the electrochemical alterations that occur after the antibody interacts with the antigen (transglutaminase 2 protein), for which the limit of detection was 0.79 U/mL. Without the use of a secondary label, (anti-tTG) antibodies may be detected at low concentrations because of these modified electrode features.


Assuntos
Dendrímeros , Proteína 2 Glutamina gama-Glutamiltransferase , Pirróis , Pontos Quânticos , Transglutaminases , Humanos , Anticorpos/imunologia , Anticorpos/química , Técnicas Biossensoriais/métodos , Carbono/química , Dendrímeros/química , Técnicas Eletroquímicas/métodos , Eletrodos , Proteínas de Ligação ao GTP/imunologia , Polímeros/química , Pirróis/química , Pontos Quânticos/química , Transglutaminases/imunologia , Transglutaminases/química
3.
Small ; 19(51): e2207731, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36916701

RESUMO

The rapid transmission and resilience of coronavirus disease 2019 (COVID-19) have led to urgent demands in monitoring humoral response for effective vaccine development, thus a multiplex co-detection platform to discriminate infection-induced from vaccine-induced antibodies is needed. Here a duplex electrochemical immunosensor for co-detection of anti-nucleocapsid IgG (N-IgG) and anti-spike IgG (S-IgG) is developed by using a two-working electrode system, via an indirect immunoassay, with antibody quantification obtained by differential pulse voltammetry. The screen-printed electrodes (SPEs) are modified by carbon black and electrodeposited gold nanoflowers for maximized surface areas, enabling the construction of an immunological chain for S-IgG and N-IgG electrochemical detection with enhanced performance. Using an optimized immunoassay protocol, a wide linear range between 30-750 and 20-1000 ng mL-1 , and a limit of detection of 28 and 15 ng mL-1 are achieved to detect N-IgG and S-IgG simultaneously in serum samples. This duplex immunosensor is then integrated in a microfluidic device to obtain significantly reduced detection time (≤ 7 min) while maintaining its analytical performance. The duplex microfluidic immunosensor can be easily expanded into multiplex format to achieve high throughput screening for the sero-surveillance of COVID-19  and other infectious diseases.


Assuntos
Técnicas Biossensoriais , COVID-19 , Vacinas , Humanos , COVID-19/diagnóstico , Imunoensaio/métodos , Microfluídica , Anticorpos Antivirais , Imunoglobulina G , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro
4.
J Med Virol ; 95(12): e29261, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38054557

RESUMO

The monkeypox virus (MPXV) outbreak in 2022 has renewed interest in the detection of antibodies against orthopox viruses (OPXV) and MPXV, as serological methods can aid diagnostics and are key to epidemiological studies. Here three complementary serological methods are described with different strengths to aid the development and evaluation of in-house assays: An immunofluorescence assay (IFA) for specific detection of IgG and IgM, an enzyme-linked immunosorbent assay for higher sample throughput to aid epidemiological studies and a neutralization test to detect virus neutralizing antibodies. As implementation of MPXV-specific diagnostics is often hampered by the requirement for a dedicated biosafety level 3 laboratory (BSL-3), the focus of this study is on biosafety aspects to facilitate safe testing also under BSL-2 conditions. To this aim, it was analyzed whether OPXV, which can be handled under BSL-2 conditions, could be used as less virulent alternatives to MPXV. Furthermore, an inactivation method was established to remove up to five log-steps of infectious virus particles from viraemic sera without compromising antibody detection. The results show that immunological cross-reactivity between OPXV provides an opportunity for the interchangeable usage of different OPXV species in serological assays, enabling MPXV serology outside of BSL-3 facilities.


Assuntos
Contenção de Riscos Biológicos , Monkeypox virus , Humanos , Laboratórios , Anticorpos Antivirais , Testes de Neutralização
5.
J Med Virol ; 95(5): e28765, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37212273

RESUMO

Accurate surveillance of coronavirus disease 2019 (COVID-19) incidence includes large-scale antibody testing of the population. Current testing methods require collection of venous blood samples by a healthcare worker, or dried blood spot (DBS) collection using finger prick, however this might have some logistic and processing limitations. We investigated the performance of the Ser-Col device for detecting severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antibodies using a finger prick: DBS-like collection system that includes a lateral flow paper for serum separation and allows for automated large scale analysis. For this prospective study, adult patients with moderate to severe COVID-19 were included 6 weeks post-symptom onset. Healthy, adult volunteers were included as a negative control group. Venous blood and capillary blood using the Ser-Col device were collected and the Wantai SARS-CoV-2 total antibody ELISA was performed on all samples. We included 50 subjects in the study population and 49 in the control group. Results obtained with venous blood versus Ser-Col capillary blood showed 100% sensitivity (95% CI: 0.93-1.00) and 100% specificity (95% CI: 0.93-1.00). Our study shows the feasibility of SARS-CoV-2 total antibody screening using a standardized DBS technique with semiautomated processing for large scale analysis.


Assuntos
COVID-19 , Adulto , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Estudos Prospectivos , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Sensibilidade e Especificidade , Teste em Amostras de Sangue Seco
6.
Int Arch Allergy Immunol ; 184(1): 43-53, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36279853

RESUMO

INTRODUCTION: The effect of the COVID-19 pandemic on allergic diseases is not certain, as people's living habits and the environment have been affected by the pandemic. The present study described the influence of the COVID-19 pandemic on the allergen sensitization rate in patients with allergic diseases in central China. The results provide reliable epidemiological data for the prevention and control of allergic diseases during the COVID-19 epidemic. METHODS: Data were collected from a total of 6,915 patients with symptoms of allergic diseases who visited the Third Xiangya Hospital of Central South University in China for allergen testing from January 1, 2018, to December 31, 2021. Patients were divided into a children group (<14 years old), youth group (15∼44 years old), middle-aged group (45∼59 years old), and elderly group (>60 years old). Immunoblotting was used to detect 20 serum allergen-specific IgE (sIgE) antibodies in patient serum samples. We compared the positive rates of various allergens in different age and sex groups before and during the COVID-19 epidemic, and the prevalence data of sIgE sensitization were analysed. RESULTS: Among the 6,915 patients with symptoms of allergic diseases, 2,838 (41.04%) patients were positive for at least one of the allergens. The top three positive rates of inhaled allergens were Dermatophagoides farinae (1,764 cases, 25.51%), Dermatophagoides pteronyssinus (1,616 cases, 23.37%), and house dust (645 cases, 9.33%). The top three positive rates of food allergens were eggs (686 cases, 9.92%), milk (509 cases, 7.36%), and crabs (192 cases, 2.78%). The total positive rate of allergens was higher in men (46.99%) than in women (37.30%). Compared to 2 years before the COVID-19 epidemic, the rate of sensitization to indoor inhalant allergens increased, but outdoor inhalant allergens showed no significant change. The positive rates of milk and eggs peaked during the outbreak of COVID-19 (2020) then declined in 2021. The total positive rate of allergens was higher in males than females before and during the COVID-19 epidemic, but more allergens were different between males and females during the pandemic. Compared to middle-aged and older adults, the children and youth groups were more susceptible to allergic diseases, and they exhibited an increasing positive rate for most common allergens, especially indoor inhalant allergens, during the COVID-19 epidemic than before the pandemic. CONCLUSION: D. pteronyssinus and D. farinae are the most common allergens in South China. Under the background of normalization of epidemic prevention, indoor inhaled allergens should be first in the prevention and control of allergic diseases, and a combination of various indoor cleaning measures should be used to improve the efficiency of interventions.


Assuntos
COVID-19 , Hipersensibilidade , Masculino , Criança , Idoso , Adolescente , Pessoa de Meia-Idade , Humanos , Feminino , Adulto , Alérgenos , Pandemias , Prevalência , COVID-19/epidemiologia
7.
Appl Microbiol Biotechnol ; 107(10): 3329-3339, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37060465

RESUMO

Pandemics like SARS-Cov-2 very frequently have their origin in different animals and in particular herds of camels could be a source of zoonotic diseases. This study took advantage on a highly sensitive and adaptable method for the fast and reliable detection of viral antibodies in camels using low-cost equipment. Magnetic nanoparticles (MNP) have high variability in their functionalization with different peptides and proteins. We confirm that 3-aminopropyl triethoxysilane (APTES)-coated MNP could be functionalized with viral proteins. The protein loading could be confirmed by simple loading controls using FACS-analysis (p < 0.05). Complementary combination of antigen and antibody yields in a significant signal increase could be proven by both FACS and COMPASS. However, COMPASS needs only a few seconds for the measurement. In COMPASS, the phase φn on selected critical point of the fifth higher harmonic (n = 5th). Here, positive sera display highly significant signal increase over the control or negative sera. Furthermore, a clear distinction could be made in antibody detection as an immune response to closely related viruses (SARS-CoV2 and MERS). Using modified MNPs along with COMPASS offers a fast and reliable method that is less cost intensive than current technologies and offers the possibility to be quickly adapted in case of new occurring viral infections. KEY POINTS: • COMPASS (critical offset magnetic particle spectroscopy) allows the fast detection of antibodies. • Magnetic nanoparticles can be adapted by exchange of the linked bait molecule. • Antibodies could be detected in camel sera without washing steps within seconds.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Anticorpos Antivirais , Camelus , RNA Viral , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , SARS-CoV-2 , Análise Espectral , Fenômenos Magnéticos
8.
Appl Microbiol Biotechnol ; 107(11): 3779-3788, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37099055

RESUMO

The p30 protein is abundantly expressed in the early stage of African swine fever virus (ASFV) infection. Thus, it is an ideal antigen candidate for serodiagnosis with the use of an immunoassay. In this study, a chemiluminescent magnetic microparticle immunoassay (CMIA) was developed for the detection of antibodies (Abs) against ASFV p30 protein in porcine serum. Purified p30 protein was coupled to magnetic beads, and the experimental conditions including concentration, temperature, incubation time, dilution ratio, buffers, and other relevant variables were evaluated and optimized. To evaluate the performance of the assay, a total of 178 pig serum samples (117 negative and 61 positive samples) were tested. According to receiver operator characteristic curve analysis, the cut-off value of the CMIA was 104,315 (area under the curve, 0.998; Youden's index, 0.974; 95% confidence interval: 99.45 to 100%). Sensitivity results showed that the dilution ratio of p30 Abs in ASFV-positive sera detected by the CMIA is much higher when compared to commercial blocking ELISA kit. Specificity testing showed that no cross-reactivity was observed with sera positive for other porcine disease viruses. The intraassay coefficient of variation (CV) was < 5%, and the interassay CV was < 10%. The p30-magnetic beads could be stored at 4 °C for more than 15 months without loss of activity. The kappa coefficient between CMIA and INGENASA blocking ELISA kit was 0.946, showing strong agreement. In conclusion, our method showed superiority with high sensitivity, specificity, reproducibility, and stability and potentialized its application in the development of a diagnostic kit for the detection of ASF in clinical samples. KEY POINTS: • ASFV tag-free p30 was successfully purified. • High sensitivity, specificity, relatively simple, and time-saving to detect antibody against ASFV were developed. • The development of CMIA will help the clinical diagnosis of ASFV and will be useful for large-scale serological test.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Reprodutibilidade dos Testes , Febre Suína Africana/diagnóstico , Imunoensaio/métodos , Anticorpos Antivirais , Fenômenos Magnéticos
9.
BMC Vet Res ; 19(1): 46, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36765329

RESUMO

BACKGROUND: Porcine epidemic diarrhea (PED), caused by PED virus (PEDV), is a severe enteric disease burdening the global swine industry in recent years. Especially, the mortality of PED in neonatal piglets approaches 100%. Maternal antibodies in milk, particularly immunoglobulin A (IgA) antibodies, are of great importance for protection neonatal suckling piglets against PEDV infection as passive lactogenic immunity. Therefore, appropriate detection methods are required for detecting PEDV IgA antibodies in milk. In the current study, we prepared monoclonal antibodies (mAbs) against PEDV spike (S) glycoprotein. An enzyme-linked immunosorbent assay (ELISA) was subsequently developed based on PEDV antigen capture by a specific anti-S mAb. RESULTS: The developed ELISA showed high sensitivity (the maximum dilution of milk samples up to 1:1280) and repeatability (coefficient of variation values < 10%) in detecting PEDV IgA antibody positive and negative milk samples. More importantly, the developed ELISA showed a high coincidence rate with a commercial ELISA kit for PEDV IgA antibody detection in clinical milk samples. CONCLUSIONS: The developed ELISA in the current study is applicable for PEDV IgA antibody detection in milk samples, which is beneficial for evaluating vaccination efficacies and neonate immune status against the virus.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Leite , Anticorpos Antivirais , Antígenos Virais , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/prevenção & controle , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos Monoclonais , Imunoglobulina A
10.
J Clin Lab Anal ; 37(21-22): e24978, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37964630

RESUMO

BACKGROUND: At different stages of the disease, biomarkers can help to determine disease progression and recurrence and provide a personalized indicator of therapeutic effectiveness. The serological identification of antigens by recombinant cDNA expression cloning (SEREX) has identified five SEREX antigens. RESULTS: Compared with healthy donors, anti-FIRΔexon2 and anti-SOHLH antibodies (Abs) in the sera of patients with colorectal cancer (CRC) were markedly higher. Furthermore, no correlation was noted between five SEREX antigens and the three tumor markers (CEA, CA19-9, and anti-p53 Abs), indicating that anti-FIRΔexon2 Abs are an independent candidate marker for patients with CRC. Generally, the levels of anti-FIRΔexon2 Abs combined with clinically available tumor markers were determined to be significantly higher compared with CEA, CA19-9. Moreover, in early-stage CRC, the levels of anti-FIRΔexon2 Abs combined with existing tumor markers were higher than those of CEA, CA19-9. CONCLUSION: Due to the highly heterogeneous nature of CRC, a single tumor marker is unlikely to become a standalone diagnostic test due to its commonly insufficient sensitivity and/or specificity. Using a combination antibody detection approach of tumor markers for CRC diagnosis has the potential to be an effective approach. Therefore, the use of serum protein biomarker candidates holds promise for the development of inexpensive, noninvasive, and inexpensive tests for the detection of CRC.


Assuntos
Anti-Infecciosos , Neoplasias Colorretais , Humanos , Antígeno CA-19-9 , Detecção Precoce de Câncer , Neoplasias Colorretais/genética , Biomarcadores Tumorais , Anticorpos , Antígeno Carcinoembrionário
11.
Chem Eng J ; 468: 143616, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37251501

RESUMO

Förster or fluorescence resonance energy transfer (FRET) enables to probe biomolecular interactions, thus playing a vital role in bioassays. However, conventional FRET platforms suffer from limited sensitivity due to the low FRET efficiency and poor anti-interference of existing FRET pairs. Here we report a NIR-II (1000-1700 nm) FRET platform with extremely high FRET efficiency and exceptional anti-interference capability. This NIR-II FRET platform is established based on a pair of lanthanides downshifting nanoparticles (DSNPs) by employing Nd3+ doped DSNPs as an energy donor and Yb3+ doped DSNPs as an energy acceptor. The maximum FRET efficiency of this well-engineered NIR-II FRET platform reaches up to 92.2%, which is much higher than most commonly used ones. Owing to the all-NIR advantage (λex = 808 nm, λem = 1064 nm), this highly efficient NIR-II FRET platform exhibits extraordinary anti-interference in whole blood, and thus enabling background-free homogeneous detection of SARS-CoV-2 neutralizing antibodies in clinical whole blood sample with high sensitivity (limit of detection = 0.5 µg/mL) and specificity. This work opens up new opportunities for realizing highly sensitive detection of various biomarkers in biological samples with severe background interference.

12.
Nano Lett ; 22(23): 9596-9605, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36394551

RESUMO

Clinical serology assays for detecting the antibodies of the virus are time-consuming, are less sensitive/selective, or rely on sophisticated detection instruments. Here, we develop a sandwiched plasmonic biosensor (SPB) for supersensitive thickness-sensing via utilizing the distance-dependent electromagnetic coupling in sandwiched plasmonic nanostructures. SPBs quantitatively amplify the thickness changes on the nanoscale range (sensitivity: ∼2% nm-1) into macroscopically visible signals, thereby enabling the rapid, label-free, and naked-eye detection of targeted biomolecular species (via the thickness change caused by immunobinding events). As a proof of concept, this assay affords a broad dynamic range (7 orders of magnitude) and a low LOD (∼0.3 pM), allowing for the extremely accurate SARS-CoV-2 antibody quantification (sensitivity/specificity: 100%/∼99%, with a portable optical fiber device). This strategy is suitable for high-throughput multiplexed detection and smartphone-based sensing at the point-of-care, which can be expanded for various sensing applications beyond the fields of viral infections and vaccination.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Ressonância de Plasmônio de Superfície , Ouro/química , SARS-CoV-2 , COVID-19/diagnóstico
13.
Retrovirology ; 19(1): 7, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585539

RESUMO

BACKGROUND: The potential risk and association of bovine leukemia virus (BLV) with human remains controversial as it has been reported to be both positive and negative in human breast cancer and blood samples. Therefore, establishing the presence of BLV in comprehensive human clinical samples in different geographical locations is essential. RESULT: In this study, we examined the presence of BLV proviral DNA in human blood and breast cancer tissue specimens from Japan. PCR analysis of BLV provirus in 97 Japanese human blood samples and 23 breast cancer tissues showed negative result for all samples tested using long-fragment PCR and highly-sensitive short-fragment PCR amplification. No IgG and IgM antibodies were detected in any of the 97 human serum samples using BLV gp51 and p24 indirect ELISA test. Western blot analysis also showed negative result for IgG and IgM antibodies in all tested human serum samples. CONCLUSION: Our results indicate that Japanese human specimens including 97 human blood, 23 breast cancer tissues, and 97 serum samples were negative for BLV.


Assuntos
Anticorpos Antivirais , DNA Viral , Vírus da Leucemia Bovina , Provírus , Anticorpos Antivirais/isolamento & purificação , Sangue/virologia , Neoplasias da Mama/virologia , DNA Viral/isolamento & purificação , Feminino , Humanos , Imunoglobulina G/isolamento & purificação , Imunoglobulina M/isolamento & purificação , Japão , Vírus da Leucemia Bovina/genética , Vírus da Leucemia Bovina/imunologia , Provírus/genética
14.
J Med Virol ; 94(12): 5808-5826, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35981973

RESUMO

Rapid detection of antibodies during infection and after vaccination is critical for the control of infectious outbreaks, understanding immune response, and evaluating vaccine efficacy. In this manuscript, we evaluate a simple ultrarapid test for SARS-CoV-2 antibodies in COVID-19 patients, which gives quantitative results (i.e., antibody concentration) in 10-12 s using a previously reported nanomaterial-based three-dimensional (3D)-printed biosensing platform. This platform consists of a micropillar array electrode fabricated via 3D printing of aerosolized gold nanoparticles and coated with nanoflakes of graphene and specific SARS-CoV-2 antigens, including spike S1, S1 receptor-binding domain (RBD) and nucleocapsid (N). The sensor works on the principle of electrochemical transduction, where the change of sensor impedance is realized by the interactions between the viral proteins attached to the sensor electrode surface and the antibodies. The three sensors were used to test samples from 17 COVID-19 patients and 3 patients without COVID-19. Unlike other serological tests, the 3D sensors quantitatively detected antibodies at a concentration as low as picomole within 10-12 s in human plasma samples. We found that the studied COVID-19 patients had higher concentrations of antibodies to spike proteins (RBD and S1) than to the N protein. These results demonstrate the enormous potential of the rapid antibody test platform for understanding patients' immunity, disease epidemiology and vaccine efficacy, and facilitating the control and prevention of infectious epidemics.


Assuntos
Técnicas Biossensoriais , COVID-19 , Grafite , Nanopartículas Metálicas , Anticorpos Antivirais , COVID-19/diagnóstico , Ouro , Humanos , Impressão Tridimensional , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
15.
BMC Infect Dis ; 22(1): 458, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562700

RESUMO

BACKGROUND: Prospective observational data show that infected persons with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain polymerase chain reaction (PCR) positive for a prolonged duration, and that detectable antibodies develop slowly with time. We aimed to analyze how these effects can bias key epidemiological metrics used to track and monitor SARS-CoV-2 epidemics. METHODS: An age-structured mathematical model was constructed to simulate progression of SARS-CoV-2 epidemics in populations. PCR testing to diagnose infection and cross-sectional surveys to measure seroprevalence were also simulated. Analyses were conducted on simulated outcomes assuming a natural epidemic time course and an epidemic in presence of interventions. RESULTS: The prolonged PCR positivity biased the epidemiological measures. There was a lag of 10 days between the true epidemic peak and the actually-observed peak. Prior to epidemic peak, PCR positivity rate was twofold higher than that based only on current active infection, and half of those tested positive by PCR were in the prolonged PCR positivity stage after infection clearance. Post epidemic peak, PCR positivity rate poorly predicted true trend in active infection. Meanwhile, the prolonged PCR positivity did not appreciably bias estimation of the basic reproduction number R0. The time delay in development of detectable antibodies biased measured seroprevalence. The actually-observed seroprevalence substantially underestimated true prevalence of ever infection, with the underestimation being most pronounced around epidemic peak. CONCLUSIONS: Caution is warranted in interpreting PCR and serological testing data, and any drawn inferences need to factor the effects of the investigated biases for an accurate assessment of epidemic dynamics.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Benchmarking , Viés , COVID-19/diagnóstico , COVID-19/epidemiologia , Estudos Transversais , Humanos , Reação em Cadeia da Polimerase , SARS-CoV-2/genética , Estudos Soroepidemiológicos
16.
Appl Microbiol Biotechnol ; 106(7): 2703-2714, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35291024

RESUMO

African swine fever virus (ASFV) causes a highly contagious and often lethal swine viral disease, and leads to tremendous economic losses to the swine industry. Unfortunately, there are no vaccines and effective antiviral agents available to prevent and control ASFV outbreaks. Therefore, it is necessary to develop simple and rapid strategies to monitor ASFV-infected pigs to restrain its spread. In the current study, ASFV capsid protein p72 was expressed along with its chaperone pB602L to form trimers in human embryonic kidney 293 (HEK293) cells. The p72 trimers were subsequently labeled with colloidal gold to develop a immunochromatographic strip. The strip showed high specificity to ASFV-positive serum and no cross-reactivity to other swine virus positive sera. Importantly, the strip showed a higher sensitivity of detecting ASFV antibodies in both positive standard serum and clinical serum samples than a commercial enzyme-linked immunosorbent assay (ELISA) kit. Taken together, these results demonstrate the strip as a reliable diagnostic tool against ASFV infection, which will be appropriate for application in prevention and control of ASFV. KEY POINTS : • ASFV p72 trimers were successfully generated. • A colloidal gold strip was developed based on ASFV p72 trimers. • The strip is appropriate for detecting ASFV antibodies in the field.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/diagnóstico , Animais , Anticorpos Antivirais , Coloide de Ouro , Células HEK293 , Humanos , Suínos
17.
Appl Microbiol Biotechnol ; 106(18): 6225-6238, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35976427

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic has adversely affected humankind and caused millions of deaths globally since January 2020. Robust and quick serological tests such as antibody detection assays for SARS-CoV-2 provide relevant information and aid in the process of vaccine development and diagnostics, as well as in sero-epidemiological monitoring of antibody response to the virus. The receptor-binding domain (RBD) of spike and nucleocapsid protein are specific targets for detecting SARS-CoV-2 antibodies. Here, we present the development of a stable spike (S) and nucleocapsid (N) protein-based ELISA antibody detection test "CoroSuchak," with 99% sensitivity, 98% specificity, cost-effective, and detection in a minimum time for serodiagnosis and mass screening of the population for antibodies against SARS-CoV-2. Blood samples were analyzed from 374 SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) positive, 772 negative and asymptomatic, and 874 random groups of subjects. We found that the antibody titer was significantly higher (p < 0.0001) in infected and vaccinated group compared to the only vaccinated and only infected group. Using enzyme-linked immunosorbent assay (ELISA), we detected SARS-CoV-2 immunoglobulin G (IgG) antibodies in 118/123 (96%) infected individuals, 570/653 (87%) non-infected but vaccinated individuals, 231/237 (97%) individuals who were both infected and vaccinated, and 499/874 (57%) from randomly selected individuals from the first and second waves of the pandemic. Similarly in the third wave, 14/14 (100%) infected and 16/20 (80%) RT-PCR-negative but symptomatic subjects were detected. Thus, the highly sensitive and specific in-house developed ELISA antibody detection kit "CoroSuchak" is extremely useful to determine the seroprevalence of SARS-CoV-2 antibodies in the coronavirus-exposed population. KEY POINTS: •Indigenous kit using a combination of spike and nucleocapsid proteins and peptide sequences. •High sensitivity and specificity to detect variants. •Highly sensitive for mass screening.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G , Programas de Rastreamento , Proteínas do Nucleocapsídeo , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus
18.
Indian J Med Res ; 155(1): 11-21, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35859424

RESUMO

Antibody detection by serological methods gained a lot of interest in recent years and has become the backbone of virological diagnosis. Despite the detection of all five classes of immunoglobulins in urine, not much attention has been paid to the use of urine as a diagnostic sample to detect viral antibodies. Unlike venipuncture, this non-invasive mode of sample collection can help cover all age groups, especially paediatric and old age patients, where blood collection is difficult. Using urine as a sample is also economical and involves lesser risk in sample collection. The antibodies are found to be stable in urine at room temperature for a prolonged period, which makes the sample transport management easier as well. A few recent studies, have also shown that the detection limit of antibodies in urine is at par with serum or other clinical material. So, the ease in sample collection, availability of samples in large quantity and stability of immunoglobulins in urine for prolonged periods can make urine an ideal sample for viral diagnosis.


Assuntos
Anticorpos Antivirais , Manejo de Espécimes , Criança , Humanos
19.
BMC Pediatr ; 22(1): 372, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35765042

RESUMO

BACKGROUND: This study attempts to explore the influencing factors and solutions of the colloidal gold method for novel coronavirus (2019-nCoV)-specific IgM/IgG antibody detection, summarize the clinical experience and perfect the examination process, improving the application value of antibody detection in COVID-19 diagnosis. METHODS: A total of 13,329 peripheral whole blood/plasma/serum samples were obtained for COVID-19 screening from children who visited the Children's Hospital of the Capital Institute of Pediatrics outpatient clinic from April 22, 2020, to November 30, 2020. The colloidal gold method was adopted for 2019-nCoV-specific IgM/IgG antibody detection. The virus nucleic acid test results, clinical records, and serum protein fingerprint results of antibody-positive patients were collected. RESULTS: All samples were examined using the colloidal gold method with two 2019-nCoV-specific IgM/IgG antibody detection kits. Four patients were tested single antibody-positive using both kits. The details were as follows: two cases of IgM ( +) and IgG (-) using plasma and serum separately, two cases of IgM (-) and IgG ( +) using serum and whole blood. The protein fingerprinting results and nucleic acid tests of 2019-nCoV antibodies were negative in the 4 cases. Considering the epidemiological history, clinical manifestations, and test results, these 4 children were ruled out for 2019-nCoV infection. CONCLUSIONS: When the colloidal gold method was used to detect 2019-nCoV-specific IgM/IgG antibodies, it was important to ascertain the test results as precisely as possible. Specimen type and patient history may interfere with the diagnosis.


Assuntos
COVID-19 , Ácidos Nucleicos , COVID-19/diagnóstico , Teste para COVID-19 , Criança , Coloide de Ouro , Humanos , Imunoglobulina G , Imunoglobulina M , SARS-CoV-2
20.
Lett Appl Microbiol ; 74(6): 1001-1007, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35255156

RESUMO

African swine fever (ASF), a highly contagious and lethal disease, poses a tremendous threat and burden to the swine industry worldwide. Lack of available vaccines or treatments leaves rapid diagnosis as the key tool to control the disease. Quantum dots (QDs) are unique fluorescent semiconductor nanoparticles, highly versatile for biological applications. In this study, we developed a quantum dots-based fluorescent immunochromatographic assay (QDs-FICA) using CD2v as the diagnosis antigen to detect ASFV antibodies. The titre of the test strip was 1 : 5·12 × 105 . In addition, the strip was highly specific to anti-ASFV serum and had no cross-reaction with CSFV, PPV, PRRSV, PCV-2, PRV and FMDV. Moreover, a comparative test of 71 clinical samples showed that the coincidence rate was 85·92% between the test strip and the commercial ELISA kit (coated with p30, p62 and p72). The QDs-FICA can be used to detect ASFV antibodies, which is meaningful for the surveillance, control and purification of ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Pontos Quânticos , Febre Suína Africana/diagnóstico , Febre Suína Africana/prevenção & controle , Animais , Diagnóstico Diferencial , Imunoensaio , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA