Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 356(9): e2300149, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37339785

RESUMO

Anticancer drug conjugates are an emerging approach for future cancer treatment. Here, we report a series of hybrid ligands merging the neurohormone melatonin with the approved histone deacetylase (HDAC) inhibitor vorinostat, using melatonin's amide side chain (3a-e), its indolic nitrogen (5a-d), and its ether oxygen (7a-d) as attachment points. Several hybrid ligands showed higher potency thanvorinostat in both HDAC inhibition and cellular assays on different cultured cancer cell lines. In the most potent HDAC1 and HDAC6 inhibitors, 3e, 5c, and 7c, the hydroxamic acid moiety of vorinostat is linked to melatonin through a hexamethylene spacer. Hybrid ligands 5c and 7c were also found to be potent growth inhibitors of MCF-7, PC-3M-Luc, and HL-60 cancer cell lines. As these compounds showed only weak agonist activity at melatonin MT1 receptors, the findings indicate that their anticancer actions are driven by HDAC inhibition.


Assuntos
Antineoplásicos , Melatonina , Neoplasias , Vorinostat/farmacologia , Histona Desacetilases/metabolismo , Histona Desacetilases/farmacologia , Melatonina/farmacologia , Ligantes , Relação Estrutura-Atividade , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Ácidos Hidroxâmicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/farmacologia , Desacetilase 6 de Histona
2.
Bioorg Med Chem ; 32: 116012, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33454654

RESUMO

Cantharidin is a potent natural protein phosphatase monoterpene anhydride inhibitor secreted by several species of blister beetle, with its demethylated anhydride analogue, (S)-palasonin, occurring as a constituent of the higher plant Butea frondosa. Cantharidin shows both potent protein phosphatase inhibitory and cancer cell cytotoxic activities, but possible preclinical development of this anhydride has been limited thus far by its toxicity. Thus, several synthetic derivatives of cantharidin have been prepared, of which some compounds exhibit improved antitumor potential and may have use as lead compounds. In the present review, the potential antitumor activity, structure-activity relationships, and development of cantharidin-based anticancer drug conjugates are summarized, with protein phosphatase-related and other types of mechanisms of action discussed. Protein phosphatases play a key role in the tumor microenvironment, and thus described herein is also the potential for developing new tumor microenvironment-targeted cancer chemotherapeutic agents, based on cantharidin and its naturally occurring analogues and synthetic derivatives.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cantaridina/farmacologia , Inibidores Enzimáticos/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Antineoplásicos Fitogênicos/química , Butea/química , Cantaridina/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Fosfoproteínas Fosfatases/metabolismo
3.
Pharmaceutics ; 15(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36678697

RESUMO

Hormone-dependent cancers, such as certain types of breast cancer are characterized by over-expression of estrogen receptors (ERs). Anticancer drug conjugates combining ER ligands with other classes of anticancer agents may not only benefit from dual action at both anti-cancer targets but also from selective delivery of cytotoxic agents to ER-positive tumor cells resulting in less toxicity and adverse effects. Moreover, they could also take advantage of overcoming resistance typical for anti-hormonal monotherapy such as tamoxifen. In this review, we discuss the design, structures and pharmacological effects of numerous series of drug conjugates containing ER ligands such as selective ER modulators (tamoxifen, 4-hydroxytamoxifen, endoxifen), selective ER degraders (ICI-164384) and ER agonists (estradiol) linked to diverse anti-cancer agents including histone-deacetylase inhibitors, DNA-alkylating agents, antimitotic agents and epidermal growth factor receptor inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA