Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
EBioMedicine ; 67: 103348, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33906067

RESUMO

BACKGROUND: Antibody tests are essential tools to investigate humoral immunity following SARS-CoV-2 infection or vaccination. While first-generation antibody tests have primarily provided qualitative results, accurate seroprevalence studies and tracking of antibody levels over time require highly specific, sensitive and quantitative test setups. METHODS: We have developed two quantitative, easy-to-implement SARS-CoV-2 antibody tests, based on the spike receptor binding domain and the nucleocapsid protein. Comprehensive evaluation of antigens from several biotechnological platforms enabled the identification of superior antigen designs for reliable serodiagnostic. Cut-off modelling based on unprecedented large and heterogeneous multicentric validation cohorts allowed us to define optimal thresholds for the tests' broad applications in different aspects of clinical use, such as seroprevalence studies and convalescent plasma donor qualification. FINDINGS: Both developed serotests individually performed similarly-well as fully-automated CE-marked test systems. Our described sensitivity-improved orthogonal test approach assures highest specificity (99.8%); thereby enabling robust serodiagnosis in low-prevalence settings with simple test formats. The inclusion of a calibrator permits accurate quantitative monitoring of antibody concentrations in samples collected at different time points during the acute and convalescent phase of COVID-19 and disclosed antibody level thresholds that correlate well with robust neutralization of authentic SARS-CoV-2 virus. INTERPRETATION: We demonstrate that antigen source and purity strongly impact serotest performance. Comprehensive biotechnology-assisted selection of antigens and in-depth characterisation of the assays allowed us to overcome limitations of simple ELISA-based antibody test formats based on chromometric reporters, to yield comparable assay performance as fully-automated platforms. FUNDING: WWTF, Project No. COV20-016; BOKU, LBI/LBG.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Sítios de Ligação , Células CHO , COVID-19/imunologia , Cricetulus , Diagnóstico Precoce , Células HEK293 , Humanos , Imunoglobulina G/sangue , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem
2.
Sheng Wu Gong Cheng Xue Bao ; 36(11): 2357-2366, 2020 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-33244930

RESUMO

Antigenic purity is important for quality control of the foot-and-mouth (FMD) whole virus inactivated vaccine. The recommended method for evaluation the antigenic purity of FMD vaccine is to check the serum conversion to non-structural protein (NSP) 3AB antibody after 2 to 3 times inoculation of animals with inactivated vaccine. In this study, we developed a quantitative ELISA to detect the amount of residual 3AB in vaccine antigen, to provide a reference to evaluate the antigenic purity of FMD vaccine. Monoclonal antibody (Mab) of NSP 3A and HRP-conjugated Mab of NSP 3B were used to establish a sandwich ELISA to quantify the NSP 3AB in vaccine antigen of FMD. Purified NSP 3AB expressed in Escherichia coli was serially diluted and detected to draw the standard curve. The detectable limit was determined to be the lowest concentration of standard where the ratio of its OD value to OD blank well was not less than 2.0. Results: The OD value was linearly corelated with the concentration of 3AB protein within the range between 4.7 and 600 ng/mL. The correlation coefficient R² is greater than 0.99, and the lowest detectable limit is 4.7 ng/mL. The amount of 3AB protein in non-purified inactivated virus antigen was detected between 9.3 and 200 ng/mL depending on the 12 different virus strains, whereas the amount of 3AB in purified virus antigen was below the lowest detectable limit. The amount of 3AB in 9 batches of commercial FMD vaccine antigens was between 9.0 and 74 ng/mL, whereas it was below the detectable limit in other 24 batches of commercial vaccine antigens. Conclusion: the sandwich ELISA established in this study is specific and sensitive to detect the content of 3AB protein in vaccine antigen of FMD, which will be a useful method for evaluation of the antigenic purity and quality control of FMD inactivated vaccine.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Febre Aftosa/prevenção & controle , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA