Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Immunol Rev ; 321(1): 115-127, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37667466

RESUMO

Type I interferon (IFN) is a class of proinflammatory cytokines with a dual role on malignant transformation, tumor progression, and response to therapy. On the one hand, robust, acute, and resolving type I IFN responses have been shown to mediate prominent anticancer effects, reflecting not only their direct cytostatic/cytotoxic activity on (at least some) malignant cells, but also their pronounced immunostimulatory functions. In line with this notion, type I IFN signaling has been implicated in the antineoplastic effects of various immunogenic therapeutics, including (but not limited to) immunogenic cell death (ICD)-inducing agents and immune checkpoint inhibitors (ICIs). On the other hand, weak, indolent, and non-resolving type I IFN responses have been demonstrated to support tumor progression and resistance to therapy, reflecting the ability of suboptimal type I IFN signaling to mediate cytoprotective activity, promote stemness, favor tolerance to chromosomal instability, and facilitate the establishment of an immunologically exhausted tumor microenvironment. Here, we review fundamental aspects of type I IFN signaling and their context-dependent impact on malignant transformation, tumor progression, and response to therapy.


Assuntos
Antineoplásicos , Interferon Tipo I , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Citocinas , Microambiente Tumoral
2.
Immunity ; 48(5): 923-936.e4, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29752065

RESUMO

The development of T cell tolerance in the thymus requires the presentation of host proteins by multiple antigen-presenting cell (APC) types. However, the importance of transferring host antigens from transcription factor AIRE-dependent medullary thymic epithelial cells (mTECs) to bone marrow (BM) APCs is unknown. We report that antigen was primarily transferred from mTECs to CD8α+ dendritic cells (DCs) and showed that CD36, a scavenger receptor selectively expressed on CD8α+ DCs, mediated the transfer of cell-surface, but not cytoplasmic, antigens. The absence of CD8α+ DCs or CD36 altered thymic T cell selection, as evidenced by TCR repertoire analysis and the loss of allo-tolerance in murine allogeneic BM transplantation (allo-BMT) studies. Decreases in these DCs and CD36 expression in peripheral blood of human allo-BMT patients correlated with graft-versus-host disease. Our findings suggest that CD36 facilitates transfer of mTEC-derived cell-surface antigen on CD8α+ DCs to promote tolerance to host antigens during homeostasis and allo-BMT.


Assuntos
Antígenos de Superfície/imunologia , Antígenos CD36/imunologia , Tolerância Imunológica/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Timo/imunologia , Animais , Antígenos de Superfície/metabolismo , Transplante de Medula Óssea , Antígenos CD36/genética , Antígenos CD36/metabolismo , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Timo/metabolismo , Transplante Homólogo
3.
Immunity ; 47(5): 913-927.e6, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29150239

RESUMO

Although apoptotic cells (ACs) contain nucleic acids that can be recognized by Toll-like receptors (TLRs), engulfment of ACs does not initiate inflammation in healthy organisms. Here we identified macrophage populations that continually engulf ACs in distinct tissues and found that these macrophages share characteristics compatible with immunologically silent clearance of ACs; such characteristics include high expression of AC recognition receptors, low expression of TLR9, and reduced TLR responsiveness to nucleic acids. Removal of the macrophages from tissues resulted in loss of many of these characteristics and the ability to generate inflammatory responses to AC-derived nucleic acids, suggesting that cues from the tissue microenvironment program macrophages for silent AC clearance. The transcription factors KLF2 and KLF4 control the expression of many genes within this AC clearance program. The coordinated expression of AC receptors with genes that limit responses to nucleic acids might ensure maintenance of homeostasis and thus represent a central feature of tissue macrophages.


Assuntos
Apoptose , Macrófagos/imunologia , Animais , Feminino , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/fisiologia , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor 7 Toll-Like/fisiologia , Receptor Toll-Like 9/fisiologia
4.
Mol Ther ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38872307

RESUMO

Efferocytosis, the clearance of apoptotic cells by macrophages, plays a crucial role in inflammatory responses and effectively prevents secondary necrosis. However, the mechanisms underlying efferocytosis in acute pancreatitis (AP) remain unclear. In this study, we demonstrated the presence of efferocytosis in injured human and mouse pancreatic tissues. We also observed significant upregulation of CD47, an efferocytosis-related the "do not eat me" molecule in injured acinar cells. Subsequently, we used CRISPR-Cas9 gene editing, anti-adeno-associated virus (AAV) gene modification, and anti-CD47 antibody to investigate the potential therapeutic role of AP. CD47 expression was negatively regulated by upstream miR133a, which is controlled by the transcription factor TRIM28. To further investigate the regulation of efferocytosis and reduction of pancreatic necrosis in AP, we used miR-133a-agomir and pancreas-specific AAV-shTRIM28 to modulate CD47 expression. Our findings confirmed that CD47-mediated efferocytosis is critical for preventing pancreatic necrosis and suggest that targeting the TRIM28-miR133a-CD47 axis is clinically relevant for the treatment of AP.

5.
Neurochem Res ; 49(5): 1373-1386, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38512424

RESUMO

Interleukin 3 (IL-3) is a well-known pleiotropic cytokine that regulates the proliferation and differentiation of hematopoietic progenitor cells, triggering classical signaling pathways such as JAK/STAT, Ras/MAPK, and PI3K/Akt to carry out its functions. Interestingly, the IL-3 receptor is also expressed in non-hematopoietic cells, playing a crucial role in cell survival. Our previous research demonstrated the expression of the IL-3 receptor in neuron cells and its protective role in neurodegeneration. Glutamate, a principal neurotransmitter in the central nervous system, can induce cellular stress and lead to neurotoxicity when its extracellular concentrations surpass normal levels. This excessive glutamate presence is frequently observed in various neurological diseases. In this study, we uncover the protective role of IL-3 as an inhibitor of glutamate-induced cell death, analyzing the cytokine's signaling pathways during its protective effect. Specifically, we examined the relevance of JAK/STAT, Ras/MAPK, and PI3 K signaling pathways in the molecular mechanism triggered by IL-3. Our results show that the inhibition of JAK, ERK, and PI3 K signaling pathways, using pharmacological inhibitors, effectively blocked IL-3's protective role against glutamate-induced cell death. Additionally, our findings suggest that Bcl-2 and Bax proteins may be involved in the molecular mechanism triggered by IL-3. Our investigation into IL-3's ability to protect neuronal cells from glutamate-induced damage offers a promising therapeutic avenue with potential clinical implications for several neurological diseases characterized by glutamate neurotoxicity.


Assuntos
Interleucina-3 , Neuroblastoma , Humanos , Ácido Glutâmico/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Interleucina-3 , Linhagem Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
Am J Obstet Gynecol ; 231(1): 115.e1-115.e11, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38408622

RESUMO

BACKGROUND: Diabetes is an independent risk factor for mesh complications in women undergoing mesh-augmented surgical repairs of stress urinary incontinence and/or pelvic organ prolapse. The underlying mechanism remains unclear. OBJECTIVE: This study aimed to define the diabetes-associated alterations in the host inflammatory response to mesh and correlate them with perioperative glucose management. STUDY DESIGN: Deidentified demographics and medical records of patients who underwent mesh removal and participated in a mesh biorepository study were reviewed (n=200). In patients with diagnosed diabetes (n=25), blood glucose management before initial mesh implantation and before and after mesh removal was assessed by blood glucose and hemoglobin A1c levels. Age- and body mass index-matched tissue samples excised from patients with and without diabetes were examined. Transcriptomic profiles of immune cell markers, immune mediators, key inflammatory regulators, cell senescence, and epigenetic enzymes were determined by multiplex transcriptomic assays (NanoString). Ratios of apoptotic cells to CD68+ macrophages were examined with immunofluorescence. Protein profiles of 12 molecules involved in apoptotic cell clearance were examined with a multiplex protein assay (Luminex). RESULTS: Demographic and clinical characteristics, including duration between mesh implantation and removal, reason for removal, and type of mesh, etc., were comparable between patients with and without diabetes, except for 11.6% higher body mass index in the former (P=.005). In patients with diabetes, suboptimal management of blood glucose following mesh implantation was observed, with 59% of the patients having loosely or poorly controlled glucose before and after the mesh removal. Ongoing chronic inflammatory response was observed in the excised mesh-tissue complexes in both groups, whereas markers for M2 macrophages (Mrc1 [mannose receptor C-type 1]) and helper T cells (Cd4 [CD4 molecule]) were increasingly expressed in the diabetic vs nondiabetic group (P=.023 and .047, respectively). Furthermore, the gene expressions of proinflammatory Ccl24 (C-C motif chemokine ligand 24) and Ccl13 (C-C motif chemokine ligand 13) were upregulated by 1.5- and 1.8-fold (P=.035 and .027, respectively), whereas that of Il1a (interleukin 1 alpha) was paradoxically downregulated by 2.2-fold (P=.037) in the diabetic vs nondiabetic group. Interestingly, strong positive correlations were found between the expression of Ccl13, Setdb2 (SET domain bifurcated histone lysine methyltransferase 2), and M2 macrophage markers, and between the expression of Il1a, Fosl1 (activator protein-1 transcription factor subunit), and dendritic cell markers, suggesting the involvement of macrophages and dendritic cells in the diabetes-dysregulated proinflammatory response. Supportively, apoptotic cell clearance, which is an important function of macrophages, appeared to be impaired in the diabetic group, with a significantly increased protein level of CALR (calreticulin), an "eat-me" signal on the surface of apoptotic cells (P=.031), along with an increase of AXL (AXL receptor tyrosine kinase) (P=.030), which mediates apoptotic cell clearance. CONCLUSION: Diabetes was associated with altered long-term inflammatory response in complicated mesh implantation, particularly involving innate immune cell dysfunction. Suboptimal blood glycemic control following mesh implantation may contribute to this immune dysregulation, necessitating further mechanistic studies.


Assuntos
Prolapso de Órgão Pélvico , Telas Cirúrgicas , Incontinência Urinária por Estresse , Humanos , Feminino , Pessoa de Meia-Idade , Incontinência Urinária por Estresse/cirurgia , Idoso , Prolapso de Órgão Pélvico/cirurgia , Prolapso de Órgão Pélvico/imunologia , Glicemia/metabolismo , Inflamação , Macrófagos/metabolismo , Macrófagos/imunologia , Apoptose , Hemoglobinas Glicadas/metabolismo , Diabetes Mellitus/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Complicações Pós-Operatórias/imunologia
7.
Cell Biochem Funct ; 42(2): e3972, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500392

RESUMO

Cell death and the efficient removal of dead cells are two basic mechanisms that maintain homeostasis in multicellular organisms. efferocytosis, which includes four steps recruitment, recognition, binding and signaling, and engulfment. Effectively and quickly removes apoptotic cells from the body. Any alteration in efferocytosis can lead to several diseases, including autoimmune and inflammatory conditions, atherosclerosis, and cancer. A wide range of dietary components affects apoptosis and, subsequently, efferocytosis. Some vitamins, including fat-soluble vitamins, affect different stages of efferocytosis. Among other things, by affecting macrophages, they are effective in the apoptotic cleansing of cells. Also, polyphenols indirectly intervene in efferocytosis through their effect on apoptosis. Considering that there are limited articles on the effect of nutrition on efferocytosis, in this article we will examine the effect of some dietary components on efferocytosis.


Assuntos
Eferocitose , Fagocitose , Fagocitose/fisiologia , Macrófagos/metabolismo , Apoptose , Vitaminas/farmacologia , Vitaminas/metabolismo
8.
Cell Mol Biol Lett ; 29(1): 76, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762740

RESUMO

BACKGROUND: The role of the scavenger receptor CD36 in cell metabolism and the immune response has been investigated mainly in macrophages, dendritic cells, and T cells. However, its involvement in B cells has not been comprehensively examined. METHODS: To investigate the function of CD36 in B cells, we exposed Cd36fl/flMB1cre mice, which lack CD36 specifically in B cells, to apoptotic cells to trigger an autoimmune response. To validate the proteins that interact with CD36 in primary B cells, we conducted mass spectrometry analysis following anti-CD36 immunoprecipitation. Immunofluorescence and co-immunoprecipitation were used to confirm the protein interactions. RESULTS: The data revealed that mice lacking CD36 in B cells exhibited a reduction in germinal center B cells and anti-DNA antibodies in vivo. Mass spectrometry analysis identified 30 potential candidates that potentially interact with CD36. Furthermore, the interaction between CD36 and the inhibitory Fc receptor FcγRIIb was first discovered by mass spectrometry and confirmed through immunofluorescence and co-immunoprecipitation techniques. Finally, deletion of FcγRIIb in mice led to decreased expression of CD36 in marginal zone B cells, germinal center B cells, and plasma cells. CONCLUSIONS: Our data indicate that CD36 in B cells is a critical regulator of autoimmunity. The interaction of CD36-FcγRIIb has the potential to serve as a therapeutic target for the treatment of autoimmune disorders.


Assuntos
Doenças Autoimunes , Linfócitos B , Antígenos CD36 , Receptores de IgG , Animais , Camundongos , Doenças Autoimunes/metabolismo , Doenças Autoimunes/imunologia , Autoimunidade , Linfócitos B/metabolismo , Linfócitos B/imunologia , Antígenos CD36/metabolismo , Antígenos CD36/genética , Centro Germinativo/metabolismo , Centro Germinativo/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Receptores de IgG/metabolismo , Receptores de IgG/genética
9.
Environ Toxicol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488682

RESUMO

In the realm of glioma treatment, our groundbreaking research has uncovered the pivotal role of Integrin Beta 2 (ITGB2) in non-apoptotic cell death and its profound implications for immunotherapy efficacy. Gliomas, known for their aggressive and infiltrative nature, demand innovative therapeutic strategies for improved patient outcomes. Our study bridges a critical gap by examining the interplay between non-apoptotic cell death and immunotherapy response in gliomas. Through comprehensive analysis of ten diverse glioma datasets, we developed a unique death enrichment score and identified ITGB2 as a significant risk marker. This study demonstrates that ITGB2 can predict immune activity, mutation characteristics, and drug response in glioma patients. We reveal that ITGB2 not only mediates glioma proliferation and migration but also crucially influences immunotherapy responses by modulating the interaction between gliomas and macrophages by single-cell sequencing analysis (iTalk and ICELLNET). Employing a variety of molecular and cellular methodologies, including in vitro models, our findings highlight ITGB2 as a potent marker in glioma biology, particularly impacting macrophage migration and polarization. We present compelling evidence of ITGB2's dual role in regulating tumor cell behavior and shaping the immune landscape, thereby influencing therapeutic outcomes. The study underlines the potential of ITGB2-targeted strategies in enhancing the efficacy of immunotherapy and opens new avenues for personalized treatment approaches in glioma management. In conclusion, this research marks a significant stride in understanding glioma pathology and therapy, positioning ITGB2 as a key biomarker and a promising target in the quest for effective glioma treatments.

10.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612735

RESUMO

The antitumor activity of different ent-kaurane diterpenes has been extensively studied. Several investigations have demonstrated the excellent antitumor activity of synthetic derivatives of the diterpene atractyligenin. In this research, a series of new synthetic amides and their 15,19-di-oxo analogues obtained from atractyligenin by modifying the C-2, C-15, and C-19 positions were designed in order to dispose of a set of derivatives with different substitutions at the amidic nitrogen. Using different concentrations of the obtained compounds (10-300 µM) a reduction in cell viability of HCT116 colon cancer cells was observed at 48 h of treatment. All the di-oxidized compounds were more effective than their alcoholic precursors. The di-oxidized compounds had already reduced the viability of two colon cancer cells (HCT116 and Caco-2) at 24 h when used at low doses (2.5-15 µM), while they turned out to be poorly effective in differentiated Caco-2 cells, a model of polarized enterocytes. The data reported here provide evidence that di-oxidized compounds induced apoptotic cell death, as demonstrated by the appearance of condensed and fragmented DNA in treated cells, as well as the activation of caspase-3 and fragmentation of its target PARP-1.


Assuntos
Atractilosídeo/análogos & derivados , Neoplasias do Colo , Diterpenos do Tipo Caurano , Humanos , Diterpenos do Tipo Caurano/farmacologia , Células CACO-2 , Neoplasias do Colo/tratamento farmacológico , Amidas , Apoptose
11.
Semin Cell Dev Biol ; 119: 72-81, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34246569

RESUMO

Functional heterogeneity in tissue macrophage populations has often been traced to developmental and spatial cues. Upon tissue damage, macrophages are exposed to soluble mediators secreted by activated cells, which shape their polarisation. Interestingly, macrophages are concomitantly exposed to a variety of different dying cells, which carry miscellaneous signals and that need to be recognised and promptly up-taken by professional phagocytes. This review discusses how differences in the nature of the dying cells, like their morphological and biochemical features as well as the specificity of phagocytic receptor usage on macrophages, might contribute to the transcriptional and functional heterogeneity observed in phagocytic cells in the tissue.


Assuntos
Apoptose/fisiologia , Fígado/fisiologia , Macrófagos/fisiologia , Heterogeneidade Genética , Humanos , Transdução de Sinais
12.
Am J Physiol Cell Physiol ; 325(6): C1451-C1469, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37899749

RESUMO

Induction of alternative, non-apoptotic cell death programs such as cell-lethal autophagy and mitophagy represent possible strategies to combat glioblastoma (GBM). Here we report that VLX600, a novel iron chelator and oxidative phosphorylation (OXPHOS) inhibitor, induces a caspase-independent type of cell death that is partially rescued in adherent U251 ATG5/7 (autophagy related 5/7) knockout (KO) GBM cells and NCH644 ATG5/7 knockdown (KD) glioma stem-like cells (GSCs), suggesting that VLX600 induces an autophagy-dependent cell death (ADCD) in GBM. This ADCD is accompanied by decreased oxygen consumption, increased expression/mitochondrial localization of BNIP3 (BCL2 interacting protein 3) and BNIP3L (BCL2 interacting protein 3 like), the induction of mitophagy as demonstrated by diminished levels of mitochondrial marker proteins [e.g., COX4I1 (cytochrome c oxidase subunit 4I1)] and the mitoKeima assay as well as increased histone H3 and H4 lysine tri-methylation. Furthermore, the extracellular addition of iron is able to significantly rescue VLX600-induced cell death and mitophagy, pointing out an important role of iron metabolism for GBM cell homeostasis. Interestingly, VLX600 is also able to completely eliminate NCH644 GSC tumors in an organotypic brain slice transplantation model. Our data support the therapeutic concept of ADCD induction in GBM and suggest that VLX600 may be an interesting novel drug candidate for the treatment of this tumor.NEW & NOTEWORTHY Induction of cell-lethal autophagy represents a possible strategy to combat glioblastoma (GBM). Here, we demonstrate that the novel iron chelator and OXPHOS inhibitor VLX600 exerts pronounced tumor cell-killing effects in adherently cultured GBM cells and glioblastoma stem-like cell (GSC) spheroid cultures that depend on the iron-chelating function of VLX600 and on autophagy activation, underscoring the context-dependent role of autophagy in therapy responses. VLX600 represents an interesting novel drug candidate for the treatment of this tumor.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Mitofagia/fisiologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Autofagia , Antineoplásicos/farmacologia , Apoptose , Proteínas Mitocondriais/metabolismo , Quelantes de Ferro/farmacologia , Ferro , Proteínas Proto-Oncogênicas c-bcl-2 , Linhagem Celular Tumoral
13.
Mol Microbiol ; 117(4): 818-836, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34954851

RESUMO

Reprogramming the host cellular environment is an obligatory facet of viral pathogens to foster their replication and perpetuation. One of such reprogramming events is the dynamic cross-talk between viruses and host cellular death signaling pathways. Rotaviruses (RVs) have been reported to develop multiple mechanisms to induce apoptotic programmed cell death for maximizing viral spread and pathogenicity. However, the importance of non-apoptotic programmed death events has remained elusive in context of RV infection. Here, we report that RV-induced apoptosis accompanies another non-apoptotic mode of programmed cell death pathway called necroptosis to promote host cellular demise at late phase of infection. Phosphorylation of mixed lineage kinase domain-like (MLKL) protein indicative of necroptosis was observed to concur with caspase-cleavage (apoptotic marker) beyond 6 hr of RV infection. Subsequent studies demonstrated phosphorylated-MLKL to oligomerize and to translocate to plasma membrane in RV infected cells, resulting in loss of plasma membrane integrity and release of alarmin molecules e.g., high mobility group box protein 1 (HMGB1) in the extracellular media. Moreover, inhibiting caspase-cleavage and apoptosis could not fully rescue virus-induced cell death but rather potentiated the necroptotic trigger. Interestingly, preventing both apoptosis and necroptosis by small molecules significantly rescued virus-induced host cytopathy by inhibiting viral dissemination.


Assuntos
Necroptose , Rotavirus , Apoptose , Caspases , Fosforilação
14.
Development ; 147(14)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709690

RESUMO

Cell death is an important facet of animal development. In some developing tissues, death is the ultimate fate of over 80% of generated cells. Although recent studies have delineated a bewildering number of cell death mechanisms, most have only been observed in pathological contexts, and only a small number drive normal development. This Primer outlines the important roles, different types and molecular players regulating developmental cell death, and discusses recent findings with which the field currently grapples. We also clarify terminology, to distinguish between developmental cell death mechanisms, for which there is evidence for evolutionary selection, and cell death that follows genetic, chemical or physical injury. Finally, we suggest how advances in understanding developmental cell death may provide insights into the molecular basis of developmental abnormalities and pathological cell death in disease.


Assuntos
Morte Celular , Invertebrados/crescimento & desenvolvimento , Mamíferos/crescimento & desenvolvimento , Animais , Apoptose/genética , Apoptossomas/metabolismo , Autofagia/genética , Caspases/metabolismo , Morte Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Invertebrados/metabolismo , Mamíferos/metabolismo , Transdução de Sinais
15.
EMBO Rep ; 22(9): e52262, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34370384

RESUMO

Programmed cell death plays a fundamental role in development and tissue homeostasis. Professional and non-professional phagocytes achieve the proper recognition, uptake, and degradation of apoptotic cells, a process called efferocytosis. Failure in efferocytosis leads to autoimmune and neurodegenerative diseases. In Drosophila, two transmembrane proteins of the Nimrod family, Draper and SIMU, mediate the recognition and internalization of apoptotic corpses. Beyond this early step, little is known about how apoptotic cell degradation is regulated. Here, we study the function of a secreted member of the Nimrod family, NimB4, and reveal its crucial role in the clearance of apoptotic cells. We show that NimB4 is expressed by macrophages and glial cells, the two main types of phagocytes in Drosophila. Similar to draper mutants, NimB4 mutants accumulate apoptotic corpses during embryogenesis and in the larval brain. Our study points to the role of NimB4 in phagosome maturation, more specifically in the fusion between the phagosome and lysosomes. We propose that similar to bridging molecules, NimB4 binds to apoptotic corpses to engage a phagosome maturation program dedicated to efferocytosis.


Assuntos
Drosophila , Fagócitos , Animais , Apoptose/genética , Cadáver , Drosophila/genética , Fagocitose , Fagossomos
16.
Cell Biol Toxicol ; 39(1): 183-199, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34523043

RESUMO

The autophagy-mediated lysosomal pathway plays an important role in conferring stress tolerance to tumor cells during cellular stress such as increased metabolic demands. Thus, targeted disruption of this function and inducing lysosomal cell death have been proved to be a useful cancer therapeutic approach. In this study, we reported that octyl syringate (OS), a novel phenolic derivate, was preferentially cytotoxic to various cancer cells but was significantly less cytotoxic to non-transformed cells. Treatment with OS resulted in non-apoptotic cell death in a caspase-independent manner. Notably, OS not only enhanced accumulation of autophagic substrates, including lapidated LC3 and sequestosome-1, but also inhibited their degradation via an autophagic flux. In addition, OS destabilized the lysosomal function, followed by the intracellular accumulation of the non-digestive autophagic substrates such as bovine serum albumin and stress granules. Furthermore, OS triggered the release of lysosomal enzymes into the cytoplasm that contributed to OS-induced non-apoptotic cell death. Finally, we demonstrated that OS was well tolerated and reduced tumor growth in mouse xenograft models. Taken together, our study identifies OS as a novel anticancer agent that induces lysosomal destabilization and subsequently inhibits autophagic flux and further supports development of OS as a lysosome-targeting compound in cancer therapy. • Octyl syringate, a phenolic derivate, is preferentially cytotoxic to various cancer cells. • Octyl syringate destabilizes the lysosomal function. • Octyl syringate blocks the autophagic flux. • Octyl syringate is a potential candidate compound for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Camundongos , Animais , Humanos , Apoptose , Antineoplásicos/farmacologia , Morte Celular , Autofagia , Lisossomos/metabolismo , Neoplasias/metabolismo
17.
Mol Biol Rep ; 50(9): 7515-7525, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37493875

RESUMO

BACKGROUND: Hevea brasiliensis latex is generally cultivated for the use of rubber particles. Previous studies have shown that the antiproliferative activity of C-serum in hepatocellular carcinoma is not induced through the classical apoptotic signaling pathway. However, in a leukemic cell line, the anti-proliferation effect of latex C serum remained unclear. METHODS: Leukemic cell lines (K562 and U937) and human peripheral blood mononuclear cells (PBMCs) were examined for cell viability using the MTT assay. Flow cytometry was used for apoptotic cell detection by annexin V/PI staining. The expression levels of proapoptotic and antiapoptotic marker genes were measured by qRT‒PCR. Moreover, the caspase activities of the extrinsic and intrinsic apoptotic pathways were detected by enzymatic activities. RESULTS: Latex C-serum inhibited cell proliferation in the K562 and U937 leukemic cell lines but did not affect human PBMCs. Latex C-serum significantly induced the percentage of early and late apoptotic cells in the leukemic cell line. The expression levels of the pro-apoptotic marker genes BAD, BAX, and CASPASE3 significantly increased in the leukemic cell line after post-latex C-serum leukemic cell treatment. The extrinsic, intrinsic and common apoptotic pathways were also studied through caspase-8, -9, and -3 activities. Latex C-serum treatment significantly induced caspase-8, -9, and -3 activation in the K562 cell line and U937 cell line compared to the untreated cells. CONCLUSIONS: These results indicate that latex C-serum enhanced anti-proliferation in leukemic cell lines by inducing apoptosis and caspase activation.


Assuntos
Hevea , Neoplasias Hepáticas , Humanos , Látex/farmacologia , Hevea/genética , Caspase 8 , Células U937 , Leucócitos Mononucleares , Apoptose , Linhagem Celular
18.
J Biochem Mol Toxicol ; 37(10): e23427, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37354073

RESUMO

Drug-induced liver injury is one of the main challenges that leads to the withdrawal of several drugs in the clinical setting. Cyclosporine is one of the drugs that its long-term administration exerts devastating effects on the hepatocytes. In the present study, we aimed to evaluate the effect of ferulic acid, a natural compound found in plants, on cyclosporine-mediated hepatotoxicity. Forty-eight male Wistar rats were treated with cyclosporine and/or ferulic acid to evaluate the function as well as the morphology of liver cells. We found that ferulic acid dose-dependently recovered the functional as well as histopathological parameters of liver cells, as revealed by the improvement of hepatocellular vacuolation, portal fibroplasia, and necrosis. Moreover, this phenolic compound was able to restore the balance of the redox system in cyclosporine-treated rats by activating the nuclear factor (NF) erythroid 2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) signaling axis. Of note, the protective effects of ferulic acid against cyclosporine-mediated liver toxicity were not restricted only to induction of the potential antioxidant property, as in the presence of this agent, the expression of pro-inflammatory cytokines such as NF-κB, tumor necrosis factor (TNF)-α, and interleukin-1ß was also diminished. Ferulic acid also shifted the equilibrium between the expression levels of proapoptotic to antiapoptotic proteins and thereby prevented the development of cyclosporine-induced liver injury. Overall, these findings highlighted that ferulic acid can reduce cyclosporine-induced liver injury due to its antioxidant properties.

19.
Cell Biochem Funct ; 41(2): 152-165, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36794573

RESUMO

Creating cellular homeostasis within a defined tissue typically relates to the processes of apoptosis and efferocytosis. A great example here is cell debris that must be removed to prevent unwanted inflammatory responses and then reduce autoimmunity. In view of that, defective efferocytosis is often assumed to be responsible for the improper clearance of apoptotic cells (ACs). This predicament triggers off inflammation and even results in disease development. Any disruption of phagocytic receptors, molecules as bridging groups, or signaling routes can also inhibit macrophage efferocytosis and lead to the impaired clearance of the apoptotic body. In this line, macrophages as professional phagocytic cells take the lead in the efferocytosis process. As well, insufficiency in macrophage efferocytosis facilitates the spread of a wide variety of diseases, including neurodegenerative diseases, kidney problems, types of cancer, asthma, and the like. Establishing the functions of macrophages in this respect can be thus useful in the treatment of many diseases. Against this background, this review aimed to recapitulate the knowledge about the mechanisms related to macrophage polarization under physiological or pathological conditions, and shed light on its interaction with efferocytosis.


Assuntos
Macrófagos , Fagocitose , Humanos , Macrófagos/metabolismo , Fagocitose/fisiologia , Inflamação/metabolismo , Transdução de Sinais , Apoptose
20.
Cell Biochem Funct ; 41(8): 959-977, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787641

RESUMO

Recently, efforts have been made to recognize the precise reason(s) for transplant failure and the process of rejection utilizing the molecular signature. Most transplant recipients do not appreciate the unknown length of survival of allogeneic grafts with the existing standard of care. Two noteworthy immunological pathways occur during allogeneic transplant rejection. A nonspecific innate immune response predominates in the early stages of the immune reaction, and allogeneic antigens initiate a donor-specific adaptive reaction. Though the adaptive response is the major cause of allograft rejection, earlier pro-inflammatory responses that are part of the innate immune response are also regarded as significant in graft loss. The onset of the innate and adaptive immune response causes chronic and acute transplant rejection. Currently employed immunosuppressive medications have shown little or no influence on chronic rejection and, as a result, on overall long-term transplant survival. Furthermore, long-term pharmaceutical immunosuppression is associated with side effects, toxicity, and an increased risk of developing diseases, both infectious and metabolic. As a result, there is a need for the development of innovative donor-specific immunosuppressive medications to regulate the allorecognition pathways that induce graft loss and to reduce the side effects of immunosuppression. Efferocytosis is an immunomodulatory mechanism with fast and efficient clearance of apoptotic cells (ACs). As such, AC therapy strategies have been suggested to limit transplant-related sequelae. Efferocytosis-based medicines/treatments can also decrease the use of immunosuppressive drugs and have no detrimental side effects. Thus, this review aims to investigate the impact of efferocytosis on transplant rejection/tolerance and identify approaches using AC clearance to increase transplant viability.


Assuntos
Rejeição de Enxerto , Tolerância ao Transplante , Rejeição de Enxerto/prevenção & controle , Terapia de Imunossupressão , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA