Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39081013

RESUMO

Diversification of plant chemical phenotypes is typically associated with spatially and temporally variable plant-insect interactions. Floral scent is often assumed to be the target of pollinator-mediated selection, whereas foliar compounds are considered targets of antagonist-mediated selection. However, floral and vegetative phytochemicals can be biosynthetically linked and may thus evolve as integrated phenotypes. Utilizing a common garden of 28 populations of the perennial herb Arabis alpina (Brassicaceae), we investigated integration within and among floral scent compounds and foliar defense compounds (both volatile compounds and tissue-bound glucosinolates). Within floral scent volatiles, foliar volatile compounds, and glucosinolates, phytochemicals were often positively correlated, and correlations were stronger within these groups than between them. Thus, we found no evidence of integration between compound groups indicating that these are free to evolve independently. Relative to self-compatible populations, self-incompatible populations experienced stronger correlations between floral scent compounds, and a trend toward lower integration between floral scent and foliar volatiles. Our study serves as a rare test of integration of multiple, physiologically related plant traits that each are potential targets of insect-mediated selection. Our results suggest that independent evolutionary forces are likely to diversify different axes of plant chemistry without major constraints.

2.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548402

RESUMO

The timing of reproduction is an adaptive trait in many organisms. In plants, the timing, duration, and intensity of flowering differ between annual and perennial species. To identify interspecies variation in these traits, we studied introgression lines derived from hybridization of annual and perennial species, Arabis montbretiana and Arabis alpina, respectively. Recombination mapping identified two tandem A. montbretiana genes encoding MADS-domain transcription factors that confer extreme late flowering on A. alpina These genes are related to the MADS AFFECTING FLOWERING (MAF) cluster of floral repressors of other Brassicaceae species and were named A. montbretiana (Am) MAF-RELATED (MAR) genes. AmMAR1 but not AmMAR2 prevented floral induction at the shoot apex of A. alpina, strongly enhancing the effect of the MAF cluster, and MAR1 is absent from the genomes of all A. alpina accessions analyzed. Exposure of plants to cold (vernalization) represses AmMAR1 transcription and overcomes its inhibition of flowering. Assembly of the tandem arrays of MAR and MAF genes of six A. alpina accessions and three related species using PacBio long-sequence reads demonstrated that the MARs arose within the Arabis genus by interchromosomal transposition of a MAF1-like gene followed by tandem duplication. Time-resolved comparative RNA-sequencing (RNA-seq) suggested that AmMAR1 may be retained in A. montbretiana to enhance the effect of the AmMAF cluster and extend the duration of vernalization required for flowering. Our results demonstrate that MAF genes transposed independently in different Brassicaceae lineages and suggest that they were retained to modulate adaptive flowering responses that differ even among closely related species.


Assuntos
Arabis/metabolismo , Flores/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Arabis/genética , Arabis/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética
3.
Plant J ; 105(6): 1459-1476, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33336445

RESUMO

Perennial plants maintain their lifespan through several growth seasons. Arabis alpina serves as a model Brassicaceae species to study perennial traits. Lateral stems of A. alpina have a proximal vegetative zone with a dormant bud zone and a distal senescing seed-producing inflorescence zone. We addressed how this zonation is distinguished at the anatomical level, whether it is related to nutrient storage and which signals affect the zonation. We found that the vegetative zone exhibits secondary growth, which we termed the perennial growth zone (PZ). High-molecular-weight carbon compounds accumulate there in cambium and cambium derivatives. Neither vernalization nor flowering were requirements for secondary growth and the sequestration of storage compounds. The inflorescence zone with only primary growth, termed the annual growth zone (AZ), or roots exhibited different storage characteristics. Following cytokinin application cambium activity was enhanced and secondary phloem parenchyma was formed in the PZ and also in the AZ. In transcriptome analysis, cytokinin-related genes represented enriched gene ontology terms and were expressed at a higher level in the PZ than in the AZ. Thus, A. alpina primarily uses the vegetative PZ for nutrient storage, coupled to cytokinin-promoted secondary growth. This finding lays a foundation for future studies addressing signals for perennial growth.


Assuntos
Arabis/metabolismo , Citocininas/metabolismo , Caules de Planta/metabolismo , Arabis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Amido/metabolismo
4.
New Phytol ; 236(2): 729-744, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35832005

RESUMO

Arabis alpina is a polycarpic perennial, in which PERPETUAL FLOWERING1 (PEP1) regulates flowering and perennial traits in a vernalization-dependent manner. Mutagenesis screens of the pep1 mutant established the role of other flowering time regulators in PEP1-parallel pathways. Here we characterized three allelic enhancers of pep1 (eop002, 085 and 091) which flower early. We mapped the causal mutations and complemented mutants with the identified gene. Using quantitative reverse transcriptase PCR and reporter lines, we determined the protein spatiotemporal expression patterns and localization within the cell. We also characterized its role in Arabidopsis thaliana using CRISPR and in A. alpina by introgressing mutant alleles into a wild-type background. These mutants carried lesions in an AAA+ ATPase of unknown function, FLOWERING REPRESSOR AAA+ ATPase 1 (AaFRAT1). AaFRAT1 was detected in the vasculature of young leaf primordia and the rib zone of flowering shoot apical meristems. At the subcellular level, AaFRAT1 was localized at the interphase between the endoplasmic reticulum and peroxisomes. Introgression lines carrying Aafrat1 alleles required less vernalization to flower and reduced number of vegetative axillary branches. By contrast, A. thaliana CRISPR lines showed weak flowering phenotypes. AaFRAT1 contributes to flowering time regulation and the perennial growth habit of A. alpina.


Assuntos
Arabidopsis , Arabis , Adenosina Trifosfatases/metabolismo , Arabidopsis/metabolismo , Arabis/genética , Arabis/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(24): 12078-12083, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31123146

RESUMO

The genetic and molecular analysis of trichome development in Arabidopsis thaliana has generated a detailed knowledge about the underlying regulatory genes and networks. However, how rapidly these mechanisms diverge during evolution is unknown. To address this problem, we used an unbiased forward genetic approach to identify most genes involved in trichome development in the related crucifer species Arabisalpina In general, we found most trichome mutant classes known in A. thaliana We identified orthologous genes of the relevant A. thaliana genes by sequence similarity and synteny and sequenced candidate genes in the A. alpina mutants. While in most cases we found a highly similar gene-phenotype relationship as known from Arabidopsis, there were also striking differences in the regulation of trichome patterning, differentiation, and morphogenesis. Our analysis of trichome patterning suggests that the formation of two classes of trichomes is regulated differentially by the homeodomain transcription factor AaGL2 Moreover, we show that overexpression of the GL3 basic helix-loop-helix transcription factor in A. alpina leads to the opposite phenotype as described in A. thaliana Mathematical modeling helps to explain how this nonintuitive behavior can be explained by different ratios of GL3 and GL1 in the two species.


Assuntos
Arabis/genética , Tricomas/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas/genética , Morfogênese/genética , Mutação/genética , Fenótipo , Fatores de Transcrição/genética
6.
New Phytol ; 229(1): 444-459, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32745288

RESUMO

Polycarpic perennials maintain vegetative growth after flowering. PERPETUAL FLOWERING 1 (PEP1), the orthologue of FLOWERING LOCUS C (FLC) in Arabis alpina regulates flowering and contributes to polycarpy in a vernalisation-dependent pathway. pep1 mutants do not require vernalisation to flower and have reduced return to vegetative growth as all of their axillary branches become reproductive. To identify additional genes that regulate flowering and contribute to perennial traits we performed an enhancer screen of pep1. Using mapping-by-sequencing, we cloned a mutant (enhancer of pep1-055, eop055), performed transcriptome analysis and physiologically characterised the role it plays on perennial traits in an introgression line carrying the eop055 mutation and a functional PEP1 wild-type allele. eop055 flowers earlier than pep1 and carries a lesion in the A. alpina orthologue of the APETALA2 (AP2)-like gene, TARGET OF EAT2 (AaTOE2). AaTOE2 is a floral repressor and acts upstream of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 5 (AaSPL5). In the wild-type background, which requires cold treatment to flower, AaTOE2 regulates the age-dependent response to vernalisation. In addition, AaTOE2 ensures the maintenance of vegetative growth by delaying axillary meristem initiation and repressing flowering of axillary buds before and during cold exposure. We conclude that AaTOE2 is instrumental in fine tuning different developmental traits in the perennial life cycle of A. alpina.


Assuntos
Proteínas de Arabidopsis , Arabis , Proteínas de Arabidopsis/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Ann Bot ; 127(6): 737-747, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33555338

RESUMO

BACKGROUND AND AIMS: The transition from outcrossing to selfing is a frequent evolutionary shift in flowering plants and is predicted to result in reduced allocation to pollinator attraction if plants can self-pollinate autonomously. The evolution of selfing is associated with reduced visual floral signalling in many systems, but effects on floral scent have received less attention. We compared multiple populations of the arctic-alpine herb Arabis alpina (Brassicaceae), and asked whether the transition from self-incompatibility to self-compatibility has been associated with reduced visual and chemical floral signalling. We further examined whether floral signalling differ between self-compatible populations with low and high capacity for autonomous self-pollination, as would be expected if benefits of signalling decrease with reduced dependence on pollinators for pollen transfer. METHODS: In a common garden we documented flower size and floral scent emission rate and composition in eight self-compatible and nine self-incompatible A. alpina populations. These included self-compatible Scandinavian populations with high capacity for autonomous self-pollination, self-compatible populations with low capacity for autonomous self-pollination from France and Spain, and self-incompatible populations from Italy and Greece. KEY RESULTS: The self-compatible populations produced smaller and less scented flowers than the self-incompatible populations. However, flower size and scent emission rate did not differ between self-compatible populations with high and low capacity for autonomous self-pollination. Floral scent composition differed between self-compatible and self-incompatible populations, but also varied substantially among populations within the two categories. CONCLUSIONS: Our study demonstrates extensive variation in floral scent among populations of a geographically widespread species. Contrary to expectation, floral signalling did not differ between self-compatible populations with high and low capacity for autonomous self-pollination, indicating that dependence on pollinator attraction can only partly explain variation in floral signalling. Additional variation may reflect adaptation to other aspects of local environments, genetic drift, or a combination of these processes.


Assuntos
Arabis , Polinização , Flores , França , Grécia , Itália , Odorantes , Reprodução , Espanha
8.
Photochem Photobiol Sci ; 20(7): 889-901, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34159569

RESUMO

The present work aimed to compare antioxidant response and lipid peroxide detoxification capacity of an arctic-alpine species Arabis alpina to its close relative model species Arabidopsis thaliana under acute short duration (3 h and 6 h) UV-B stress (4.6 and 8.2 W/m2). After 3 and 6 h exposure to UV-B, A. alpina showed lower lipid peroxidation and H2O2 accumulation when compared to A. thaliana. Moreover, Fv/Fm value of A. thaliana dropped to 0.70, while A. alpina dropped to 0.75 indicating better protection of PSII in this species. For elucidation of the antioxidant response, activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), glutathione reductase (GR) and dehydroascorbate reductase (DHAR) were measured. SOD induction with 6 h of UV-B was more prominent in A. alpina. Also, A. alpina had higher chloroplastic FeSOD activity when compared to A. thaliana. APX activity was also significantly induced in A. alpina, while its activity decreased at 3 h or did not change at 6 h in A. thaliana. A. alpina was able to maintain constant CAT activity, but drastic decreases were observed in A. thaliana at both time points. Moreover, A. alpina was able to maintain or induce aldehyde dehydrogenase (ALDH), alkenal reductases (AERs) and glutathione-S-transferases (GST) activity, while an opposite trend was observed in A. thaliana. These findings indicate that A. alpina was able to maintain/induce its antioxidant defence and lipid peroxide detoxification conferring better protection against UV-B.


Assuntos
Arabidopsis/metabolismo , Arabis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta
9.
Ecol Lett ; 23(5): 870-880, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32216007

RESUMO

Demographic compensation arises when vital rates change in opposite directions across populations, buffering the variation in population growth rates, and is a mechanism often invoked to explain the stability of species geographic ranges. However, studies on demographic compensation have disregarded the effects of temporal variation in vital rates and their temporal correlations, despite theoretical evidence that stochastic dynamics can affect population persistence in temporally varying environments. We carried out a seven-year-long demographic study on the perennial plant Arabis alpina (L.) across six populations encompassing most of its elevational range. We discovered demographic compensation in the form of negative correlations between the means of plant vital rates, but also between their temporal coefficients of variation, correlations and elasticities. Even if their contribution to demographic compensation was small, this highlights a previously overlooked, but potentially important, role of stochastic processes in stabilising population dynamics at range margins.


Assuntos
Arabis , Plantas , Demografia , Dinâmica Populacional , Processos Estocásticos
10.
New Phytol ; 227(1): 116-131, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32112411

RESUMO

In many seed plants, perennialism is achieved through axillary buds and side shoots that remain vegetative. This work aimed to analyse the pattern of axillary bud (AB) formation in the perennial model plant Arabis alpina and to study the role of the LATERAL SUPPRESSOR (AaLAS) gene. This study combines stereomicroscopic analysis with RNA sequencing to monitor the correlation between patterns of AB formation and gene expression. The role of AaLAS was studied using an RNA interference (RNAi) approach. During vegetative development, ABs initiate at a distance from the shoot apical meristem (SAM), whereas after floral induction, they initiate adjacent to the SAM. Dormant buds are established before the onset of vernalization. Transcript profiles of ABs initiated at a distance differed from those in the SAM, whereas those of buds initiated in close proximity were similar. Knockdown of AaLAS leads to the loss of dormant buds and vegetative side shoots, strongly compromising the perennial life cycle. AB formation is regulated differently during vegetative and reproductive development. New meristems that possess different gene expression profiles from those in the SAM are established at a distance from the SAM. AaLAS is essential for the perennial life cycle by modulating the establishment of dormant buds and vegetative side shoots.


Assuntos
Arabis , Meristema , Regulação da Expressão Gênica de Plantas , Estilo de Vida , Meristema/genética , Brotos de Planta , Transcriptoma/genética
11.
New Phytol ; 227(1): 99-115, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32022273

RESUMO

Perennials have a complex shoot architecture with axillary meristems organized in zones of differential bud activity and fate. This includes zones of buds maintained dormant for multiple seasons and used as reservoirs for potential growth in case of damage. The shoot of Arabis alpina, a perennial relative of Arabidopsis thaliana, consists of a zone of dormant buds placed between subapical vegetative and basal flowering branches. This shoot architecture is shaped after exposure to prolonged cold, required for flowering. To understand how vernalization ensures the maintenance of dormant buds, we performed physiological and transcriptome studies, followed the spatiotemporal changes of auxin, and generated transgenic plants. Our results demonstrate that the complex shoot architecture in A. alpina is shaped by its flowering behavior, specifically the initiation of inflorescences during cold treatment and rapid flowering after subsequent exposure to growth-promoting conditions. Dormant buds are already formed before cold treatment. However, dormancy in these buds is enhanced during, and stably maintained after, vernalization by a BRC1-dependent mechanism. Post-vernalization, stable maintenance of dormant buds is correlated with increased auxin response, transport, and endogenous indole-3-acetic acid levels in the stem. Here, we provide a functional link between flowering and the maintenance of dormant buds in perennials.


Assuntos
Arabis , Arabis/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Proteínas de Plantas/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(51): E11037-E11046, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29203652

RESUMO

Genome-wide landscapes of transcription factor (TF) binding sites (BSs) diverge during evolution, conferring species-specific transcriptional patterns. The rate of divergence varies in different metazoan lineages but has not been widely studied in plants. We identified the BSs and assessed the effects on transcription of FLOWERING LOCUS C (FLC) and PERPETUAL FLOWERING 1 (PEP1), two orthologous MADS-box TFs that repress flowering and confer vernalization requirement in the Brassicaceae species Arabidopsis thaliana and Arabis alpina, respectively. We found that only 14% of their BSs were conserved in both species and that these contained a CArG-box that is recognized by MADS-box TFs. The CArG-box consensus at conserved BSs was extended compared with the core motif. By contrast, species-specific BSs usually lacked the CArG-box in the other species. Flowering-time genes were highly overrepresented among conserved targets, and their CArG-boxes were widely conserved among Brassicaceae species. Cold-regulated (COR) genes were also overrepresented among targets, but the cognate BSs and the identity of the regulated genes were usually different in each species. In cold, COR gene transcript levels were increased in flc and pep1-1 mutants compared with WT, and this correlated with reduced growth in pep1-1 Therefore, FLC orthologs regulate a set of conserved target genes mainly involved in reproductive development and were later independently recruited to modulate stress responses in different Brassicaceae lineages. Analysis of TF BSs in these lineages thus distinguishes widely conserved targets representing the core function of the TF from those that were recruited later in evolution.


Assuntos
Brassicaceae/genética , Brassicaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Meio Ambiente , Flores/genética , Flores/metabolismo , Interação Gene-Ambiente , Variação Genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Motivos de Nucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Análise de Sequência de DNA
13.
Mol Ecol ; 28(6): 1550-1562, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30633406

RESUMO

Recombination and selection drive the extent of linkage disequilibrium (LD) among loci and therefore affect the reshuffling of adaptive genetic variation. However, it is poorly known to what extent the enrichment of transposable elements (TEs) in recombinationally-inert regions reflects their inefficient removal by purifying selection and whether the presence of polymorphic TEs can modify the local recombination rate. In this study, we investigate how TEs and recombination interact at fine scale along chromosomes and possibly support linked selection in natural populations. Whole-genome sequencing data of 304 individuals from nearby alpine populations of Arabis alpina were used to show that the density of polymorphic TEs is specifically correlated with local LD along chromosomes. Consistent with TEs modifying recombination, the characterization of 28 such LD blocks of up to 5.5 Mb in length revealed strong evidence of selective sweeps at a few loci through either site frequency spectrum or haplotype structure. A majority of these blocks were enriched in genes related to ecologically relevant functions such as responses to cold, salt stress or photoperiodism. In particular, the S-locus (i.e., supergene responsible for strict outcrossing) was identified in a LD block with high levels of polymorphic TEs and evidence of selection. Another such LD block was enriched in cold-responding genes and presented evidence of adaptive loci related to photoperiodism and flowering being increasingly linked by polymorphic TEs. These results are consistent with the hypothesis that TEs modify recombination landscapes and thus interact with selection in driving blocks of linked adaptive loci in natural populations.


Assuntos
Elementos de DNA Transponíveis/genética , Desequilíbrio de Ligação/genética , Recombinação Genética , Seleção Genética/genética , Cromossomos/genética , Haplótipos/genética , Humanos , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único/genética
14.
Mol Ecol ; 28(5): 1183-1201, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30712274

RESUMO

The life cycles of plants are characterized by two major life history transitions-germination and the initiation of flowering-the timing of which are important determinants of fitness. Unlike annuals, which make the transition from the vegetative to reproductive phase only once, perennials iterate reproduction in successive years. The floral repressor PERPETUAL FLOWERING 1 (PEP1), an ortholog of FLOWERING LOCUS C, in the alpine perennial Arabis alpina ensures the continuation of vegetative growth after flowering and thereby restricts the duration of the flowering episode. We performed greenhouse and garden experiments to compare flowering phenology, fecundity and seed traits between A. alpina accessions that have a functional PEP1 allele and flower seasonally and pep1 mutants and accessions that carry lesions in PEP1 and flower perpetually. In the garden, perpetual genotypes flower asynchronously and show higher winter mortality than seasonal ones. PEP1 also pleiotropically regulates seed dormancy and longevity in a way that is functionally divergent from FLC. Seeds from perpetual genotypes have shallow dormancy and reduced longevity regardless of whether they after-ripened in plants grown in the greenhouse or in the experimental garden. These results suggest that perpetual genotypes have higher mortality during winter but compensate by showing higher seedling establishment. Differences in seed traits between seasonal and perpetual genotypes are also coupled with differences in hormone sensitivity and expression of genes involved in hormonal pathways. Our study highlights the existence of pleiotropic regulation of seed traits by hub developmental regulators such as PEP1, suggesting that seed and flowering traits in perennial plants might be optimized in a coordinated fashion.


Assuntos
Proteínas de Arabidopsis/genética , Arabis/genética , Reprodução/genética , Sementes/genética , Transativadores/genética , Alelos , Arabis/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genótipo , Germinação/genética , Fenótipo , Dormência de Plantas/genética , Sementes/crescimento & desenvolvimento
15.
J Exp Bot ; 70(12): 3197-3209, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31071215

RESUMO

A protein complex consisting of a MYB, basic Helix-Loop-Helix, and a WDR protein, the MBW complex, regulates five traits, namely the production of anthocyanidin, proanthocyanidin, and seed-coat mucilage, and the development of trichomes and root hairs. For complexes involved in trichome and root hair development it has been shown that the interaction of two MBW proteins can be counteracted by the respective third protein (called competitive complex formation). We examined competitive complex formation for selected MBW proteins from Arabidopsis thaliana, Arabis alpina, Gossypium hirsutum, Petunia hybrida, and Zea mays. Quantitative analyses of the competitive binding of MYBs and WDRs to bHLHs were done by pull-down assays using ProtA- and luciferase-tagged proteins expressed in human HEC cells. We found that some bHLHs show competitive complex formation whilst others do not. Competitive complex formation strongly correlated with a phylogenetic tree constructed with the bHLH proteins under investigation, suggesting a functional relevance. We demonstrate that this different behavior can be explained by changes in one amino acid and that this position is functionally relevant in trichome development but not in anthocyanidin regulation.


Assuntos
Evolução Molecular , Magnoliopsida/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabis/genética , Arabis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Gossypium/genética , Gossypium/metabolismo , Magnoliopsida/metabolismo , Petunia/genética , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/genética , Zea mays/metabolismo
16.
Plant J ; 90(5): 979-993, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28244250

RESUMO

Transposable elements support genome diversification, but comparison of their proliferation and genomic distribution within and among species is necessary to characterize their role in evolution. Such inferences are challenging because of potential bias with incomplete sampling of repetitive genome regions. Here, using the assembled genome as well as genome skimming datasets in Arabis alpina, we assessed the limits of current approaches inferring the biology of transposable elements. Long terminal repeat retrotransposons (LTR-RTs) identified in the assembled genome were classified into monophyletic lineages (here called tribes), including families of similar copies in Arabis along with elements from related Brassicaceae. Inference of their dynamics using divergence of LTRs in full-length copies and mismatch distribution of genetic variation among all copies congruently highlighted recent transposition bursts, although ancient proliferation events were apparent only with mismatch distribution. Similar inferences of LTR-RT dynamics based on random sequences from genome skimming were highly correlated with assembly-based estimates, supporting accurate analyses from shallow sequencing. Proportions of LTR-RT copies next to genes from both assembled genomes and genome skimming were congruent, pointing to tribes being over- or under-represented in the vicinity of genes. Finally, genome skimming at low coverage revealed accurate inferences of LTR-RT dynamics and distribution, although only the most abundant families appeared robustly analysed at 0.1X. Examining the pitfalls and benefits of approaches relying on different genomic resources, we highlight that random sequencing reads represent adequate data suitably complementing biased samples of LTR-RT copies retrieved from assembled genomes towards comprehensive surveys of the biology of transposable elements.


Assuntos
Genoma de Planta/genética , Retroelementos/genética , Sequências Repetidas Terminais/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Variação Genética/genética , Genômica , Filogenia , Proteínas de Plantas/genética
17.
J Exp Bot ; 66(1): 355-67, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25371506

RESUMO

In annual plants with determinate growth, sugar accumulation signals high carbon availability once growth has ceased, resulting in senescence-dependent nutrient recycling to the seeds. However, this senescence-inducing effect of sugars is abolished at cold temperature, where sugar accumulation is important for protection. Here, natural variation was exploited to analyse the effect of chilling on interactions between leaf senescence, sugars, and phytohormones in Arabis alpina, a perennial plant with indeterminate growth. Eight accessions of A. alpina originating from between 2090 and 3090 m above sea level in the French Alps were used to identify heritable adaptations in senescence, stress response, sugars, and phytohormones to altitude. Accessions from high altitudes showed an enhanced capacity for sucrose accumulation and a diminished loss of chlorophyll in response to chilling. At warm temperature, sucrose content was negatively correlated with chlorophyll content, and sucrose treatment induced leaf senescence. Chilling resulted in lower indole-3-acetic acid, but higher zeatin and jasmonic acid contents. Interactions between sugar and phytohormones included a positive correlation between sucrose and jasmonic acid contents that may be involved in promoting the stress-dependent decline in chlorophyll. These findings reveal regulatory interactions that underlie adaptation in the senescence and stress response to chilling.


Assuntos
Arabis/fisiologia , Metabolismo dos Carboidratos , Temperatura Baixa , Reguladores de Crescimento de Plantas/metabolismo , Aclimatação , Altitude , Arabis/crescimento & desenvolvimento , França , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia
18.
Front Plant Sci ; 15: 1352830, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38693930

RESUMO

Arctic alpine species experience extended periods of cold and unpredictable conditions during flowering. Thus, often, alpine plants use both sexual and asexual means of reproduction to maximize fitness and ensure reproductive success. We used the arctic alpine perennial Arabis alpina to explore the role of prolonged cold exposure on adventitious rooting. We exposed plants to 4°C for different durations and scored the presence of adventitious roots on the main stem and axillary branches. Our physiological studies demonstrated the presence of adventitious roots after 21 weeks at 4°C saturating the effect of cold on this process. Notably, adventitious roots on the main stem developing in specific internodes allowed us to identify the gene regulatory network involved in the formation of adventitious roots in cold using transcriptomics. These data and histological studies indicated that adventitious roots in A. alpina stems initiate during cold exposure and emerge after plants experience growth promoting conditions. While the initiation of adventitious root was not associated with changes of DR5 auxin response and free endogenous auxin level in the stems, the emergence of the adventitious root primordia was. Using the transcriptomic data, we discerned the sequential hormone responses occurring in various stages of adventitious root formation and identified supplementary pathways putatively involved in adventitious root emergence, such as glucosinolate metabolism. Together, our results highlight the role of low temperature during clonal growth in alpine plants and provide insights on the molecular mechanisms involved at distinct stages of adventitious rooting.

19.
Mol Plant ; 17(1): 141-157, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38115580

RESUMO

To compensate for their sessile nature, plants have evolved sophisticated mechanisms enabling them to adapt to ever-changing environments. One such prominent feature is the evolution of diverse life history strategies, particularly such that annuals reproduce once followed by seasonal death, while perennials live longer by cycling growth seasonally. This intrinsic phenology is primarily genetic and can be altered by environmental factors. Although evolutionary transitions between annual and perennial life history strategies are common, perennials account for most species in nature because they survive well under year-round stresses. This proportion, however, is reversed in agriculture. Hence, perennial crops promise to likewise protect and enhance the resilience of agricultural ecosystems in response to climate change. Despite significant endeavors that have been made to generate perennial crops, progress is slow because of barriers in studying perennials, and many developed species await further improvement. Recent findings in model species have illustrated that simply rewiring existing genetic networks can lead to lifestyle variation. This implies that engineering plant life history strategy can be achieved by manipulating only a few key genes. In this review, we summarize our current understanding of genetic basis of perenniality and discuss major questions and challenges that remain to be addressed.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ecossistema , Agricultura
20.
Evolution ; 77(4): 1019-1030, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36734045

RESUMO

Mating system shifts from outcrossing to selfing are frequent in plant evolution. Relative to outcrossing, selfing is associated with reduced parental conflict over seed provisioning, which may result in postzygotic, asymmetric, reproductive isolation in crosses between populations of different mating systems. To test the hypothesis that post-pollination reproductive isolation between populations increases with increasing differences in mating system and predicted parental conflict, we performed a crossing experiment involving all combinations of three self-compatible populations (with low outcrossing rates), and three self-incompatible populations (with high outcrossing rates) of the arctic-alpine herb Arabis alpina, assessing fitness-related seed and plant traits of the progeny. Predicted levels of parental conflict ("genome strength") were quantified based on strength of self-incompatibility and estimates of outcrossing rates. Crosses between self-compatible and self-incompatible populations yielded very small seeds of low viability, resulting in strong reproductive isolation. In 14 of 15 reciprocal between-population crosses, seeds were heavier when the paternal plant had the stronger genome, and seed mass differences between cross directions increased with an increased difference in parental conflict. Overall, our results suggest that, when sufficiently large, differences in mating system and hence in expected parental conflict may result in strong post-pollination reproductive barriers contributing to speciation.


Assuntos
Magnoliopsida , Polinização , Magnoliopsida/genética , Isolamento Reprodutivo , Cruzamentos Genéticos , Reprodução , Sementes/genética , Flores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA