Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Circ Res ; 134(11): 1483-1494, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38666386

RESUMO

BACKGROUND: Neutrophil extracellular traps (NETs) are composed of DNA, enzymes, and citrullinated histones that are expelled by neutrophils in the process of NETosis. NETs accumulate in the aorta and kidneys in hypertension. PAD4 (protein-arginine deiminase-4) is a calcium-dependent enzyme that is essential for NETosis. TRPV4 (transient receptor potential cation channel subfamily V member 4) is a mechanosensitive calcium channel expressed in neutrophils. Thus, we hypothesize that NETosis contributes to hypertension via NET-mediated endothelial cell (EC) dysfunction. METHODS: NETosis-deficient Padi4-/- mice were treated with Ang II (angiotensin II). Blood pressure was measured by radiotelemetry, and vascular reactivity was measured with wire myography. Neutrophils were cultured with or without ECs and exposed to normotensive or hypertensive uniaxial stretch. NETosis was measured by flow cytometry. ECs were treated with citrullinated histone H3, and gene expression was measured by quantitative reverse transcription PCR. Aortic rings were incubated with citrullinated histone H3, and wire myography was performed to evaluate EC function. Neutrophils were treated with the TRPV4 agonist GSK1016790A. Calcium influx was measured using Fluo-4 dye, and NETosis was measured by immunofluorescence. RESULTS: Padi4-/- mice exhibited attenuated hypertension, reduced aortic inflammation, and improved EC-dependent vascular relaxation in response to Ang II. Coculture of neutrophils with ECs and exposure to hypertensive uniaxial stretch increased NETosis and accumulation of neutrophil citrullinated histone H3. Histone H3 and citrullinated histone H3 exposure attenuates EC-dependent vascular relaxation. Treatment of neutrophils with the TRPV4 agonist GSK1016790A increases intracellular calcium and NETosis. CONCLUSIONS: These observations identify a role of NETosis in the pathogenesis of hypertension. Moreover, they define an important role of EC stretch and TRPV4 as initiators of NETosis. Finally, they define a role of citrullinated histones as drivers of EC dysfunction in hypertension.


Assuntos
Armadilhas Extracelulares , Hipertensão , Camundongos Knockout , Proteína-Arginina Desiminase do Tipo 4 , Canais de Cátion TRPV , Animais , Armadilhas Extracelulares/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Camundongos , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Neutrófilos/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Angiotensina II/farmacologia , Humanos , Histonas/metabolismo , Pressão Sanguínea , Células Cultivadas , Células Endoteliais/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34992141

RESUMO

Saccharibacteria are a group of widespread and genetically diverse ultrasmall bacteria with highly reduced genomes that belong to the Candidate Phyla Radiation. Comparative genomic analyses suggest convergent evolution of key functions enabling the adaptation of environmental Saccharibacteria to mammalian microbiomes. Currently, our understanding of this environment-to-mammal niche transition within Saccharibacteria and their obligate episymbiotic association with host bacteria is limited. Here, we identified a complete arginine deiminase system (ADS), found in further genome streamlined mammal-associated Saccharibacteria but missing in their environmental counterparts, suggesting acquisition during environment-to-mammal niche transition. Using TM7x, the first cultured Saccharibacteria strain from the human oral microbiome and its host bacterium Actinomyces odontolyticus, we experimentally tested the function and impact of the ADS. We demonstrated that by catabolizing arginine and generating adenosine triphosphate, the ADS allows metabolically restrained TM7x to maintain higher viability and infectivity when disassociated from the host bacterium. Furthermore, the ADS protects TM7x and its host bacterium from acid stress, a condition frequently encountered within the human oral cavity due to bacterial metabolism of dietary carbohydrates. Intriguingly, with a restricted host range, TM7x forms obligate associations with Actinomyces spp. lacking the ADS but not those carrying the ADS, suggesting the acquired ADS may also contribute to partner selection for cooperative episymbiosis within a mammalian microbiome. These data present experimental characterization of a mutualistic interaction between TM7x and their host bacteria, and illustrate the benefits of acquiring a novel pathway in the transition of Saccharibacteria to mammalian microbiomes.


Assuntos
Bactérias/enzimologia , Hidrolases/metabolismo , Actinomyces , Adaptação Fisiológica , Animais , Arginina/metabolismo , Bactérias/classificação , Bactérias/genética , Genoma Bacteriano , Especificidade de Hospedeiro , Humanos , Hidrolases/genética , Mamíferos/genética , Microbiota , Boca/microbiologia , Filogenia , Simbiose
3.
Artigo em Inglês | MEDLINE | ID: mdl-39137524

RESUMO

Elastin is an extracellular matrix protein (ECM) that supports elasticity of the lung, and in patients with chronic obstructive pulmonary disease (COPD) and emphysema, the structural changes that reduce the amount of elastic recoil, lead to loss of pulmonary function. We recently demonstrated that elastin is a target of peptidyl arginine deiminase (PAD) enzyme-induced citrullination, thereby leading to enhanced susceptibility of this ECM protein to proteolysis. The current study aimed to investigate the impact of PAD activity in vivo and furthermore assessed whether pharmacological inhibition of PAD activity protects against pulmonary emphysema. Using a Serpina1a-e knockout mouse model, previously shown to develop inflammation-mediated emphysema, we validated the involvement of PADs in airway disease. In line with emphysema development, intratracheal administration of lipopolysaccharide in combination with PADs provoked significant airspace enlargement (P < 0.001) and diminished lung function, including loss of lung tissue elastance (P = 0.0217) and increases in lung volumes (P = 0.0463). Intraperitoneal treatment of mice with the PAD inhibitor, BB-Cl-amidine, prevented PAD/LPS-mediated lung function decline and emphysema and reduced levels of citrullinated airway elastin (P = 0.0199). These results provide evidence for the impact of PADs on lung function decline, indicating promising potential for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.

4.
BMC Microbiol ; 24(1): 44, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297214

RESUMO

L-arginine deiminase (ADI, EC 3.5.3.6) hydrolyzes arginine to ammonia and citrulline which is a natural supplement in health care. ADI was purified from Penicillium chrysogenum using 85% ammonium sulfate, DEAE-cellulose and Sephadex G200. ADI was purified 17.2-fold and 4.6% yield with a specific activity of 50 Umg- 1 protein. The molecular weight was 49 kDa. ADI expressed maximum activity at 40oC and an optimum pH of 6.0. ADI thermostability was investigated and the values of both t0.5 and D were determined. Kd increased by temperature and the Z value was 38oC. ATP, ADP and AMP activated ADI up to 0.6 mM. Cysteine and dithiothreitol activated ADI up to 60 µmol whereas the activation by thioglycolate and reduced glutathione (GSH) prolonged to 80 µmol. EDTA, α,α-dipyridyl, and o-phenanthroline inactivated ADI indicating that ADI is a metalloenzyme. N-ethylmaleimide (NEM), N-bromosuccinimide (NBS), butanedione (BD), dansyl chloride (DC), diethylpyrocarbonate (DEPC) and N-acetyl-imidazole (NAI) inhibited ADI activity indicating the necessity of sulfhydryl, tryptophanyl, arginyl, lysyl, histidyl and tyrosyl groups, respectively for ADI catalysis. The obtained results show that ADI from P. chrysogenum could be a potential candidate for industrial and biotechnological applications.


Assuntos
Penicillium chrysogenum , Hidrolases/química , Hidrolases/farmacologia , Compostos de Sulfidrila , Cisteína , Arginina
5.
Microb Cell Fact ; 23(1): 82, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38481270

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers, posing a serious public health challenge that necessitates the development of new therapeutics, therapies, and prevention methods. Among the various therapeutic approaches, interventions involving lactic acid bacteria (LAB) as probiotics and postbiotics have emerged as promising candidates for treating and preventing CRC. While human-isolated LAB strains are considered highly favorable, those sourced from environmental reservoirs such as dairy and fermented foods are also being recognized as potential sources for future therapeutics. RESULTS: In this study, we present a novel and therapeutically promising strain, Lactococcus lactis ssp. lactis Lc4, isolated from dairy sources. Lc4 demonstrated the ability to release the cytostatic agent - arginine deiminase (ADI) - into the post-cultivation supernatant when cultured under conditions mimicking the human gut environment. Released arginine deiminase was able to significantly reduce the growth of HT-29 and HCT116 cells due to the depletion of arginine, which led to decreased levels of c-Myc, reduced phosphorylation of p70-S6 kinase, and cell cycle arrest. The ADI release and cytostatic properties were strain-dependent, as was evident from comparison to other L. lactis ssp. lactis strains. CONCLUSION: For the first time, we unveil the anti-proliferative properties of the L. lactis cell-free supernatant (CFS), which are independent of bacteriocins or other small molecules. We demonstrate that ADI, derived from a dairy-Generally Recognized As Safe (GRAS) strain of L. lactis, exhibits anti-proliferative activity on cell lines with different levels of argininosuccinate synthetase 1 (ASS1) expression. A unique feature of the Lc4 strain is also its capability to release ADI into the extracellular space. Taken together, we showcase L. lactis ADI and the Lc4 strain as promising, potential therapeutic agents with broad applicability.


Assuntos
Citostáticos , Lactococcus lactis , Humanos , Citostáticos/metabolismo , Lactococcus lactis/metabolismo , Hidrolases/metabolismo , Linhagem Celular Tumoral , Arginina
6.
J Gastroenterol Hepatol ; 39(6): 1123-1133, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38576269

RESUMO

BACKGROUND AND AIM: Nonsteroidal anti-inflammatory drugs (NSAIDs) damage the small intestine via neutrophil infiltration driven by the mucosal invasion of enterobacteria. The antimicrobial function of neutrophils is partially dependent on neutrophil extracellular traps (NETs). Excessive NET formation has been associated with several inflammatory diseases. Here, we aimed to investigate the role of NETs in NSAID-induced small intestinal damage using human samples and an experimental mouse model. METHODS: Human small intestine specimens were obtained from NSAID users during double-balloon enteroscopy. Wild-type, protein arginine deiminase 4 (PAD4) knockout, and antibiotic-treated mice were administered indomethacin to induce small intestinal injury. The expression of NET-associated proteins, including PAD4, citrullinated histone H3 (CitH3), cell-free DNA, and myeloperoxidase (MPO), was evaluated. RESULTS: The double-positive stained area with CitH3 and MPO, which is specific for neutrophil-derived extracellular traps, was significantly high in the injured small intestinal mucosa of NSAID users. In a mouse model, small intestinal damage developed at 6 h after indomethacin administration, accompanied by increased mRNA levels of interleukin-1ß and keratinocyte chemoattractant and elevated NET-associated protein levels of PAD4, CitH3, and MPO in small intestine and serum levels of cell-free DNA. Both genetic deletion and pharmacological inhibition of PAD4 attenuated this damage by reducing the mRNA expression of inflammatory cytokines and NET-associated proteins. Furthermore, mice pretreated with antibiotics showed resistance to indomethacin-induced small intestinal damage, with less NET formation. CONCLUSION: These results suggest that NETs aggravate NSAID-induced small intestinal injury. Therefore, NET inhibition could be a potential treatment for NSAID-induced small intestinal injury.


Assuntos
Anti-Inflamatórios não Esteroides , Modelos Animais de Doenças , Armadilhas Extracelulares , Indometacina , Intestino Delgado , Peroxidase , Proteína-Arginina Desiminase do Tipo 4 , Animais , Armadilhas Extracelulares/metabolismo , Anti-Inflamatórios não Esteroides/efeitos adversos , Intestino Delgado/patologia , Intestino Delgado/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Humanos , Indometacina/efeitos adversos , Peroxidase/metabolismo , Masculino , Neutrófilos/metabolismo , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Enteropatias/induzido quimicamente , Enteropatias/patologia , Interleucina-1beta/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Camundongos Knockout , Feminino , Ácidos Nucleicos Livres/sangue , Citrulinação
7.
J Clin Periodontol ; 51(4): 452-463, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38115803

RESUMO

AIM: We sought to investigate the release of neutrophil extracellular traps (NETs) in neutrophils from individuals with rheumatoid arthritis (RA) and controls and compare the presence of NETs in gingival tissues according to periodontal status. Also, the association between single nucleotide polymorphisms (SNPs) of the peptidyl arginine deaminase type 4 (PADI4) gene and the GTG haplotype with RA, periodontitis and NETs was evaluated in vitro. MATERIALS AND METHODS: Peripheral neutrophils were isolated by density gradient, and NET concentration was determined by the PicoGreen method. Immunofluorescence was studied to identify NETs by co-localization of myeloperoxidase (MPO)-citrullinated histone H3 (H3Cit). Genotyping for SNPs (PADI4_89; PADI4_90; PADI4_92; and PADI4_104) was performed in 87 individuals with RA and 111 controls. RESULTS: The release of NETs in vitro was significantly higher in individuals with RA and periodontitis and when stimulated with Porphyromonas gingivalis. Gingival tissues from subjects with RA and periodontitis revealed increased numbers of MPO-H3Cit-positive cells. Individuals with the GTG haplotype showed a higher release of NETs in vitro and worse periodontal parameters. CONCLUSIONS: The release of NETs by circulating neutrophils is associated with RA and periodontitis and is influenced by the presence of the GTG haplotype.


Assuntos
Artrite Reumatoide , Armadilhas Extracelulares , Periodontite , Humanos , Desiminases de Arginina em Proteínas/genética , Artrite Reumatoide/genética , Periodontite/genética , Neutrófilos , Polimorfismo de Nucleotídeo Único
8.
Sensors (Basel) ; 24(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39066069

RESUMO

The present study reports on the development, adaptation, and optimization of a novel monoenzyme conductometric biosensor based on a recombinant arginine deiminase (ADI) for the determination of arginine in dietary supplements with a high accuracy of results. Aiming for the highly sensitive determination of arginine in real samples, we studied the effect of parameters of the working buffer solution (its pH, buffer capacity, ionic strength, temperature, and protein concentration) on the sensitivity of the biosensor to arginine. Thus, it was determined that the optimal buffer is a 5 mM phosphate buffer solution with pH 6.2, and the optimal temperature is 39.5 °C. The linear functioning range is 2.5-750 µM of L-arginine with a minimal limit of detection of 2 µM. The concentration of arginine in food additive samples was determined using the developed ADI-based biosensor. Based on the obtained results, the most effective method of biosensor analysis using the method of standard additions was chosen. It was also checked how the reproducibility of the biosensor changes during the analysis of pharmaceutical samples. The results of the determination of arginine in real samples using a conductometric biosensor based on ADI clearly correlated with the data obtained using the method of ion-exchange chromatography and enzymatic spectrophotometric analysis. We concluded that the developed biosensor would be effective for the accurate and selective determination of arginine in dietary supplements intended for the prevention and/or elimination of arginine deficiency.


Assuntos
Arginina , Técnicas Biossensoriais , Suplementos Nutricionais , Hidrolases , Arginina/química , Arginina/análise , Técnicas Biossensoriais/métodos , Suplementos Nutricionais/análise , Hidrolases/química , Concentração de Íons de Hidrogênio , Temperatura , Concentração Osmolar , Reprodutibilidade dos Testes , Limite de Detecção
9.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673749

RESUMO

The anticancer potential of Levilactobacillus brevis KU15176 against the stomach cancer cell line AGS has been reported previously. In this study, we aimed to analyze the genome of L. brevis KU15176 and identify key genes that may have potential anticancer properties. Among potential anticancer molecules, the role of arginine deiminase (ADI) in conferring an antiproliferative functionality was confirmed. In vitro assay against AGS cell line confirmed that recombinant ADI from L. brevis KU15176 (ADI_br, 5 µg/mL), overexpressed in E. coli BL21 (DE3), exerted an inhibitory effect on AGS cell growth, resulting in a 65.32% reduction in cell viability. Moreover, the expression of apoptosis-related genes, such as bax, bad, caspase-7, and caspase-3, as well as the activity of caspase-9 in ADI_br-treated AGS cells, was higher than those in untreated (culture medium-only) cells. The cell-scattering behavior of ADI_br-treated cells showed characteristics of apoptosis. Flow cytometry analyses of AGS cells treated with ADI_br for 24 and 28 h revealed apoptotic rates of 11.87 and 24.09, respectively, indicating the progression of apoptosis in AGS cells after ADI_br treatment. This study highlights the potential of ADI_br as an effective enzyme for anticancer applications.


Assuntos
Apoptose , Proliferação de Células , Hidrolases , Levilactobacillus brevis , Neoplasias Gástricas , Humanos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hidrolases/metabolismo , Hidrolases/genética , Hidrolases/farmacologia , Levilactobacillus brevis/genética , Levilactobacillus brevis/enzimologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
10.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891866

RESUMO

Vibrio fluvialis is an emerging foodborne pathogenic bacterium that can cause severe cholera-like diarrhea and various extraintestinal infections, posing challenges to public health and food safety worldwide. The arginine deiminase (ADI) pathway plays an important role in bacterial environmental adaptation and pathogenicity. However, the biological functions and regulatory mechanisms of the pathway in V. fluvialis remain unclear. In this study, we demonstrate that L-arginine upregulates the expression of the ADI gene cluster and promotes the growth of V. fluvialis. The ADI gene cluster, which we proved to be comprised of two operons, arcD and arcACB, significantly enhances the survival of V. fluvialis in acidic environments both in vitro (in culture medium and in macrophage) and in vivo (in mice). The mRNA level and reporter gene fusion analyses revealed that ArgR, a transcriptional factor, is necessary for the activation of both arcD and arcACB transcriptions. Bioinformatic analysis predicted the existence of multiple potential ArgR binding sites at the arcD and arcACB promoter regions that were further confirmed by electrophoretic mobility shift assay, DNase I footprinting, or point mutation analyses. Together, our study provides insights into the important role of the ArgR-ADI pathway in the survival of V. fluvialis under acidic conditions and the detailed molecular mechanism. These findings will deepen our understanding of how environmental changes and gene expression interact to facilitate bacterial adaptations and virulence.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Hidrolases , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Camundongos , Hidrolases/metabolismo , Hidrolases/genética , Regiões Promotoras Genéticas , Óperon/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Vibrio/genética , Vibrio/metabolismo , Vibrio/patogenicidade , Arginina/metabolismo , Família Multigênica , Virulência/genética , Viabilidade Microbiana
11.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062840

RESUMO

Neutrophils release neutrophil extracellular traps (NETs) as a defense strategy in response to broad-spectrum infections and sterile triggers. NETs consist of a DNA scaffold decorated with antimicrobial peptides (AMPs) and enzymatically active proteases, including peptidyl arginine deiminase type 4 (PAD4). Susceptibility to infections and inflammatory dysregulation are hallmarks of alcohol-related liver disease (ALD). Sixty-two patients with ALD were prospectively recruited, and they were followed for 90 days. Twenty-four healthy volunteers served as the control group. PAD4 concentrations were quantified using immunoenzymatic ELISAs. Correlation coefficients between PAD4 blood concentrations and markers of systemic inflammation; liver dysfunction severity scores; and ALD complications were calculated. The receiver operating curves (ROCs) and their areas under the curve (AUCs) were checked in order to assess the accuracy of PAD4 expression in predicting the degree of liver failure and the development of ALD complications. Systemic concentrations of PAD4 were significantly increased in the patients with ALD in comparison with controls. PAD4 levels correlated with the standard markers of inflammation and revealed a good predictive AUC (0.76) for survival in the whole ALD group. PAD4 seems to be an inflammatory mediator and may be potentially applied as a predictor of patient survival in ALD.


Assuntos
Biomarcadores , Hepatopatias Alcoólicas , Neutrófilos , Proteína-Arginina Desiminase do Tipo 4 , Humanos , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Masculino , Feminino , Neutrófilos/metabolismo , Pessoa de Meia-Idade , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Adulto , Biomarcadores/sangue , Armadilhas Extracelulares/metabolismo , Idoso , Curva ROC , Estudos de Casos e Controles
12.
Int J Mol Sci ; 25(16)2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39201443

RESUMO

Neutrophil extracellular trap formation has been identified as a new cell death mediator, termed NETosis, which is distinct from apoptosis and necrosis. NETs capture foreign substances, such as bacteria, by releasing DNA into the extracellular environment, and have been associated with inflammatory diseases and altered immune responses. Short-chain fatty acids, such as acetate, are produced by the gut microbiota and reportedly enhance innate immune responses; however, the underlying molecular mechanisms remain unclear. Here, we investigated the effects of sodium acetate, which has the highest SCFA concentration in the blood and gastrointestinal tract, on NETosis by focusing on the mechanisms associated with histone acetylation in neutrophil-like HL-60 cells. Sodium acetate enhanced NETosis, as shown by fluorescence staining with SYTOX green, and the effect was directly proportional to the treatment duration (16-24 h). Moreover, the addition of sodium acetate significantly enhanced the acetylation of Ace-H3, H3K9ace, and H3K14ace. Sodium acetate-induced histone acetylation rapidly decreased upon stimulation with the calcium ionophore A23187, whereas histone citrullination markedly increased. These results demonstrate that sodium acetate induces NETosis via histone acetylation in neutrophil-like HL-60 cells, providing new insights into the therapeutic effects based on the innate immunity-enhancing effect of dietary fiber.


Assuntos
Armadilhas Extracelulares , Histonas , Neutrófilos , Acetato de Sódio , Humanos , Células HL-60 , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Histonas/metabolismo , Acetilação/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Acetato de Sódio/farmacologia
13.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39201398

RESUMO

Protein expression is regulated through multiple mechanisms, including post-translational modifications (PTMs), which can alter protein structure, stability, localization, and function. Among these, citrullination stands out due to its ability to convert arginine residues into citrulline, altering protein charge and mass. This modification is catalyzed by calcium-dependent protein arginine deiminases (PADs), enzymes implicated in various inflammatory diseases. We have recently shown that human cytomegalovirus (HCMV) and herpes simplex virus type 1 (HSV-1) exploit these enzymes to enhance their replication capabilities. Although the role of PADs in HCMV and HSV-1 infections is well documented, their involvement in HSV-2 infection has not yet been thoroughly investigated. Here, we demonstrate that HSV-2 manipulates the overall protein citrullination profile by activating three PAD isoforms: PAD2, PAD3, and PAD4. However, as previously observed during HSV-1 infection, PAD3 is the most significantly upregulated isoform, both at the mRNA and protein levels. Consistently, we demonstrate that inhibiting PAD3, either through the specific inhibitor CAY10727 or via CRISPR/Cas9-mediated gene silencing, markedly reduces HSV-2 replication and viral protein expression. Lastly, we show that CAY10727 displays an IC50 value of 0.3 µM, which is extremely close to what was previously observed for HSV-1. Overall, our findings highlight the crucial role of PAD3 in the life cycle of HSV-2 and suggest that the targeted inhibition of PAD3 may represent a promising approach for treating HSV-2 infections, especially in cases resistant to existing antiviral therapies.


Assuntos
Herpesvirus Humano 2 , Proteína-Arginina Desiminase do Tipo 3 , Humanos , Herpesvirus Humano 2/fisiologia , Herpesvirus Humano 2/genética , Proteína-Arginina Desiminase do Tipo 3/metabolismo , Citrulinação , Herpes Simples/virologia , Herpes Simples/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , Herpes Genital/metabolismo , Herpes Genital/virologia , Herpes Genital/tratamento farmacológico , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Antivirais/farmacologia
14.
Arterioscler Thromb Vasc Biol ; 42(9): 1103-1112, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35861953

RESUMO

The activating interplay of thrombosis and inflammation (thromboinflammation) has been established as a major underlying pathway, driving not only cardiovascular disease but also autoimmune disease and most recently, COVID-19. Throughout the years, innate immune cells have emerged as important modulators of this process. As the most abundant white blood cell in humans, neutrophils are well-positioned to propel thromboinflammation. This includes their ability to trigger an organized cell death pathway with the release of decondensed chromatin structures called neutrophil extracellular traps. Decorated with histones and cytoplasmic and granular proteins, neutrophil extracellular traps exert cytotoxic, immunogenic, and prothrombotic effects accelerating disease progression. Distinct steps leading to extracellular DNA release (NETosis) require the activities of PAD4 (protein arginine deiminase 4) catalyzing citrullination of histones and are supported by neutrophil inflammasome. By linking the immunologic function of neutrophils with the procoagulant and proinflammatory activities of monocytes and platelets, PAD4 activity holds important implications for understanding the processes that fuel thromboinflammation. We will also discuss mechanisms whereby vascular occlusion in thromboinflammation depends on the interaction of neutrophil extracellular traps with ultra-large VWF (von Willebrand Factor) and speculate on the importance of PAD4 in neutrophil inflammasome assembly and neutrophil extracellular traps in thromboinflammatory diseases including atherosclerosis and COVID-19.


Assuntos
Aterosclerose , COVID-19 , Armadilhas Extracelulares , Trombose , Aterosclerose/metabolismo , Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Neutrófilos/metabolismo , Tromboinflamação , Trombose/etiologia , Trombose/metabolismo , Fator de von Willebrand/metabolismo
15.
Biotechnol Appl Biochem ; 70(2): 526-536, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35761421

RESUMO

In recent years, arginine deiminase (ADI, EC 3.5.3.6) has attracted much attention as a biocatalyst that produces the functional amino acid l-citrulline from l-arginine and also as an anticancer enzyme. Here, we identified and characterized a putative ADI from the thermophilic bacterium Halothermothrix orenii. The H. orenii ADI (H-ADI) protein was expressed in Escherichia coli BL21(DE3) with a specific activity of 91.8 U/mg protein at 55°C and pH 6.5. The enzyme remained at 74% relative activity after incubation at 45°C for 180 min, only 25% at 50°C. The melting temperature was 56°C. H-ADI is not a metal-requiring enzyme; Ni2+ slightly improved the catalytic activity. The Km and Vmax for l-arginine were 55.5 mM and 156.8 µmol/min/mg protein, respectively. Moreover, three residues (Arg183, Arg237, and His273) were key to the formation of l-citrulline, as analyzed by alanine-scanning mutagenesis. Finally, the enzymatic synthesis of l-citrulline was carried out at 50°C with a conversion ratio reaching 99.03%. Together, these findings show that H-ADI is a promising biocatalyst for the production of l-citrulline.


Assuntos
Citrulina , Hidrolases , Citrulina/química , Citrulina/metabolismo , Hidrolases/química , Arginina
16.
Cell Mol Life Sci ; 79(3): 155, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35218410

RESUMO

Cellular senescence is closely related to tissue aging including bone. Bone homeostasis is maintained by the tight balance between bone-forming osteoblasts and bone-resorbing osteoclasts, but it undergoes deregulation with age, causing age-associated osteoporosis, a main cause of which is osteoblast dysfunction. Oxidative stress caused by the accumulation of reactive oxygen species (ROS) in bone tissues with aging can accelerate osteoblast senescence and dysfunction. However, the regulatory mechanism that controls the ROS-induced senescence of osteoblasts is poorly understood. Here, we identified Peptidyl arginine deiminase 2 (PADI2), a post-translational modifying enzyme, as a regulator of ROS-accelerated senescence of osteoblasts via RNA-sequencing and further functional validations. PADI2 downregulation by treatment with H2O2 or its siRNA promoted cellular senescence and suppressed osteoblast differentiation. CCL2, 5, and 7 known as the elements of the senescence-associated secretory phenotype (SASP) which is a secretome including proinflammatory cytokines and chemokines emitted by senescent cells and a representative feature of senescence, were upregulated by H2O2 treatment or Padi2 knockdown. Furthermore, blocking these SASP factors with neutralizing antibodies or siRNAs alleviated the senescence and dysfunction of osteoblasts induced by H2O2 treatment or Padi2 knockdown. The elevated production of these SASP factors was mediated by the activation of NFκB signaling pathway. The inhibition of NFκB using the pharmacological inhibitor or siRNA effectively relieved H2O2 treatment- or Padi2 knockdown-induced senescence and osteoblast dysfunction. Together, our study for the first time uncover the role of PADI2 in ROS-accelerated cellular senescence of osteoblasts and provide new mechanistic and therapeutic insights into excessive ROS-promoted cellular senescence and aging-related bone diseases.


Assuntos
Senescência Celular/efeitos dos fármacos , Quimiocinas CC/metabolismo , Peróxido de Hidrogênio/farmacologia , NF-kappa B/metabolismo , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL5/antagonistas & inibidores , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocina CCL7/antagonistas & inibidores , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Quimiocinas CC/antagonistas & inibidores , Quimiocinas CC/genética , Dano ao DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Proteína-Arginina Desiminase do Tipo 2/antagonistas & inibidores , Proteína-Arginina Desiminase do Tipo 2/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Food Microbiol ; 113: 104281, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37098426

RESUMO

Arginine deiminase pathway, controlled by arginine deiminase, ornithine carbamoyltransferase and carbamate kinase, could affect and modulate the intracellular pH homeostasis of lactic acid bacteria under acid stress. Herein, strategy based on exogenous addition of arginine had been proposed to improve the robustness of Tetragenococcus halophilus during acid stressed condition. Results indicated cells cultured in the presence of arginine acquired high tolerance to acid stress mainly through maintaining the homeostasis of intracellular microenvironment. Additionally, metabolomic analysis and q-PCR showed the content of intracellular metabolites and expression levels of genes involved in ADI pathway significantly increased when cells encountered acid stress with the presence of exogenous arginine. Furthermore, Lactococcus lactis NZ9000 with heterologous overexpression of arcA and arcC from T. halophilus exhibited high stress tolerance to acidic condition. This study may provide an insight into the systematical understanding about the mechanism underlying acid tolerance and improve the fermentation performance of LAB during harsh condition.


Assuntos
Lactobacillales , Lactobacillales/metabolismo , Enterococcaceae/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Arginina
18.
Mikrochim Acta ; 191(1): 47, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133683

RESUMO

Amino acid L-arginine (Arg), usually presented in food products and biological liquids, can serve both as a useful indicator of food quality and an important biomarker in medicine. The biosensors based on Arg-selective enzymes are the most promising devices for Arg assay. In this research, three types of amperometric biosensors have been fabricated. They exploit arginine oxidase (ArgO), recombinant arginase I (ARG)/urease, and arginine deiminase (ADI) coupled with the ammonium-chelating redox-active nanoparticles. Cadmium-copper nanoparticles (nCdCu) as the most effective nanochelators were used for the development of ammonium chemosensors and enzyme-coupled Arg biosensors. The fabricated enzyme/nCdCu-containing bioelectrodes show wide linear ranges (up to 200 µM), satisfactory storage stabilities (14 days), and high sensitivities (A⋅M-1⋅m-2) to Arg: 1650, 1700, and 4500 for ADI-, ArgO- and ARG/urease-based sensors, respectively. All biosensors have been exploited to estimate Arg content in commercial juices. The obtained data correlate well with the values obtained by the reference method. A hypothetic scheme for mechanism of action of ammonium nanochelators in electron transfer reaction on the arginine-sensing electrodes has been proposed.


Assuntos
Compostos de Amônio , Técnicas Biossensoriais , Urease/química , Arginina , Arginase/metabolismo
19.
Int J Mol Sci ; 24(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37762218

RESUMO

Hydroquinine has antimicrobial potential with demonstrated activity against several bacteria, including multidrug-resistant (MDR) P. aeruginosa reference strains. Despite this, there is limited evidence confirming the antibacterial activity of hydroquinine against clinical isolates and the underlying mechanism of action. Here, we aimed to investigate the antibacterial effect of hydroquinine in clinical P. aeruginosa strains using phenotypic antimicrobial susceptibility testing and synergistic testing. In addition, we examined the potential inhibitory mechanisms against MDR P. aeruginosa isolates using informatic-driven molecular docking analysis in combination with RT-qPCR. We uncovered that hydroquinine inhibits and kills clinical P. aeruginosa at 2.50 mg/mL (MIC) and 5.00 mg/mL (MBC), respectively. Hydroquinine also showed partial synergistic effects with ceftazidime against clinical MDR P. aeruginosa strains. Using SwissDock, we identified potential interactions between arginine deiminase (ADI)-pathway-related proteins and hydroquinine. Furthermore, using RT-qPCR, we found that hydroquinine directly affects the mRNA expression of arc operon. We demonstrated that the ADI-related genes, including the arginine/ornithine antiporter (arcD) and the three enzymes (arginine deiminase (arcA), ornithine transcarbamylase (arcB), and carbamate kinase (arcC)), were significantly downregulated at a half MIC of hydroquinine. This study is the first report that the ADI-related proteins are potential molecular targets for the inhibitory effect of hydroquinine against clinically isolated MDR P. aeruginosa strains.


Assuntos
Anti-Infecciosos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Simulação de Acoplamento Molecular , Genes Bacterianos , Anti-Infecciosos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Testes de Sensibilidade Microbiana , Arginina/metabolismo
20.
Inflammopharmacology ; 31(2): 731-744, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36806957

RESUMO

Peptidyl arginine deiminases (PADs) are a family of post-translational modification enzymes that irreversibly citrullinate (deiminate) arginine residues of protein and convert them to a non-classical amino acid citrulline in the presence of calcium ions. It has five isotypes, such as PAD1, PAD2, PAD3, PAD4, and PAD6, found in mammalian species. It has been suggested that increased PAD expression in various tissues contributes to the development of multiple inflammatory diseases, including rheumatoid arthritis (RA), cancer, diabetes, and neurological disorders. Elevation of PAD enzyme expression depends on several factors like rising intracellular Ca2+ levels, oxidative stress, and proinflammatory cytokines. PAD inhibitors originating from natural or synthetic sources can be used as a novel therapeutic approach concerning inflammatory disorders. Here, we review the pathological role of PAD in several inflammatory disorders, factors that trigger PAD expression, epigenetic role and finally, decipher the therapeutic approach of PAD inhibitors in multiple inflammatory disorders.


Assuntos
Hidrolases , Proteínas , Animais , Desiminases de Arginina em Proteínas/química , Desiminases de Arginina em Proteínas/metabolismo , Hidrolases/metabolismo , Arginina , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA