Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Molecules ; 29(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257207

RESUMO

Natural aromas like cinnamaldehyde are suitable solvents to extract curcuminoids, the active ingredients found in the rhizomes of Curcuma longa L. In a pursuit to find other nature-based solvents, capable of solving curcumin, forty fragrances and flavours were investigated in terms of their solubilisation power. Aroma compounds were selected according to their molecular structure and functional groups. Their capabilities of solving curcumin were examined by UV-Vis spectroscopy and COSMO-RS calculations. The trends of these calculations were in accordance with the experimental solubilisation trend of the solubility screening and a list with the respective curcumin concentrations is given; σ-profiles and Gibbs free energy were considered to further investigate the solubilisation process of curcumin, which was found to be based on hydrogen bonding. High curcumin solubility was achieved in the presence of solvent (mixtures) with high hydrogen-bond-acceptor and low hydrogen-bond-donor abilities, like γ- and δ-lactones. The special case of DMSO was also examined, as the highest curcumin solubility was observed with it. Possible specific interactions of selected aroma compounds (citral and δ-hexalactone) with curcumin were investigated via 1H NMR and NOESY experiments. The tested flavours and fragrances were evaluated regarding their potential as green alternative solvents.

2.
J Sci Food Agric ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129453

RESUMO

BACKGROUND: Postharvest dehydration affects the metabolism of grapes, impacting odorous secondary metabolites and therefore the features of the corresponding passito wines - high-quality products with winemaking practices linked to specific territories and related autochthonous grape varieties. Water loss and temperature conditions are the main variables of the dehydration process. This study assessed how they impacted the patterns of free and glycosylated volatile organic compounds (VOCs) of the exocarp (pulp) and epicarp (skin) in Nebbiolo and Aleatico, a neutral and semi-aromatic red grape variety, respectively. Dehydration parameters were set in tunnel conditions, and VOCs were quantitatively analyzed by solid phase extraction-gas chromatography-mass spectrometry. RESULTS: For Nebbiolo grapes, weight loss had a greater impact on free volatiles than dehydration temperature, with a 20% weight loss increasing total VOCs in both exocarp and epicarp. Low temperature (10 °C) significantly increased (P < 0.05) the glycosylated VOCs' terpene content. In Aleatico grapes, weight loss was key in modulating free volatiles, with 30% weight loss and 15 °C leading to significant increases in VOCs, especially exocarp terpenes, acids and benzenoids. More stressful dehydration (30% weight loss at 25 °C) resulted in higher aroma precursor concentrations. CONCLUSION: These findings can assist passito wine production in preserving varietal aromas of original grapes trough optimized dehydration conditions, preventing sensory homologation occurring because of strong uncontrolled dehydration. They can also promote optimization of energy consumption, thus fostering financial and environmental sustainability. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Yeast ; 40(12): 628-639, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37930115

RESUMO

Vitamin B1 , also known as thiamine, is an important vitamin that, besides its role in human health, is converted to meat aromas upon exposure to high temperatures. Therefore, it is relevant for the production of vegan meat-like flavours. In this study, we investigated 48 Saccharomyces cerevisiae strains for their thiamine production capacity by measuring the intracellular and extracellular vitamins produced in the thiamine-free minimal medium after 72 h of growth. We found approximately an 8.2-fold difference in overall thiamine yield between the highest and lowest-producing strains. While the highest thiamine yield was 254.6 nmol/L, the highest thiamine-specific productivity was 160.9 nmol/g DW. To assess whether extracellular thiamine was due to leakage caused by cell damage, we monitored membrane permeabilization using propidium iodide (PI) staining and flow cytometry. We found a good correlation between the percentage of extracellular thiamine and PI-stained cells (Spearman's ρ = 0.85). Finally, we compared S. cerevisiae CEN.PK113-7D (wild type [WT]) to three strains evolved in a thiamine-free medium for their thiamine production capacity. On average, we saw an increase in the amount of thiamine produced. One of the evolved strains had a 49% increase in intracellular thiamine-specific productivity and a biomass increase of 20% compared with the WT. This led to a total increase in thiamine yield of 60% in this strain, reaching 208 nmol/L. This study demonstrated that it is possible to achieve thiamine overproduction in S. cerevisiae via strain selection and adaptive laboratory evolution.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Tiamina , Proteínas de Saccharomyces cerevisiae/metabolismo , Vitaminas
4.
World J Microbiol Biotechnol ; 39(8): 216, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37269405

RESUMO

Kluyveromyces marxianus yeasts represent a valuable industry alternative due to their biotechnological potential to produce aromatic compounds. 2-phenylethanol and 2-phenylethylacetate are significant aromatic compounds widely used in food and cosmetics due to their pleasant odor. Natural obtention of these compounds increases their value, and because of this, bioprocesses such as de novo synthesis has become of great significance. However, the relationship between aromatic compound production and yeast's genetic diversity has yet to be studied. In the present study, the analysis of the genetic diversity in K. marxianus isolated from the natural fermentation of Agave duranguensis for Mezcal elaboration is presented. The results of strains in a haploid and diploid state added to the direct relationship between the mating type locus MAT with metabolic characteristics are studied. Growth rate, assimilate carbohydrates (glucose, lactose, and chicory inulin), and the production of aromatic compounds such as ethyl acetate, isoamyl acetate, isoamyl alcohol, 2-phenylethyl butyrate and phenylethyl propionate and the diversity in terms of the output of 2-phenylethanol and 2-phenylethylacetate by de novo synthesis were determinate, obtaining maximum concentrations of 51.30 and 60.39 mg/L by ITD0049 and ITD 0136 yeasts respectively.


Assuntos
Kluyveromyces , Álcool Feniletílico , Álcool Feniletílico/metabolismo , Odorantes , Kluyveromyces/genética , Leveduras/genética , Leveduras/metabolismo , Fermentação , Lactose/metabolismo
5.
Food Microbiol ; 106: 104037, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690441

RESUMO

Botrytis cinerea, the pathogen causing grey rot (GR) with important economic losses in fruit crops, can also cause noble rot (NR) of grape berries under certain environmental conditions, leading to metabolic and physical changes necessary for producing highly regarded botrytized wines. The functional genes involved in biochemical processes in these harmful vs. beneficial berry rot types are still scarcely understood. We generated and analyzed transcriptomic data from healthy (H), NR and GR grape berries collected in the Tokaj wine region in Hungary. Our study shows that B. cinerea is most active in NR, followed by GR and H berries. In addition, expression profiles differed qualitatively between NR and GR, and to a smaller extent between months. Several functional genes expressed during NR were linked to well-known physico-chemical changes in botrytized grape berries, including berry skin degradation and the formation of metabolites favorable for botrytized wine production. In addition, we found that B. cinerea appeared to express genes involved in the biosynthesis of antimicrobials during NR, but not in GR, which likely contributes to the dominance of this fungus during NR.


Assuntos
Vitis , Vinho , Botrytis/genética , Frutas/microbiologia , Vitis/microbiologia , Vinho/análise
6.
Sensors (Basel) ; 22(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336472

RESUMO

The winemaking industry can benefit greatly by implementing digital technologies to avoid guesswork and the development of off-flavors and aromas in the final wines. This research presents results on the implementation of near-infrared spectroscopy (NIR) and a low-cost electronic nose (e-nose) coupled with machine learning to detect and assess wine faults. For this purpose, red and white base wines were used, and treatments consisted of spiked samples with 12 faults that are traditionally formed in wines. Results showed high accuracy in the classification models using NIR and e-nose for red wines (94-96%; 92-97%, respectively) and white wines (96-97%; 90-97%, respectively). Implementing new and emerging digital technologies could be a turning point for the winemaking industry to become more predictive in terms of decision-making and maintaining and increasing wine quality traits in a changing and challenging climate.


Assuntos
Vinho , Nariz Eletrônico , Aprendizado de Máquina , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Vinho/análise
7.
Molecules ; 27(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458615

RESUMO

Aromas have a powerful influence in our everyday life and are known to exhibit an array of pharmacological properties, including anxiolytic, anti-stress, relaxing, and sedative effects. Numerous animal and human studies support the use of aromas and their constituents to reduce anxiety-related symptoms and/or behaviours. Although the exact mechanism of how these aromas exert their anxiolytic effects is not fully understood, the GABAergic system is thought to be primarily involved. The fragrance emitted from a number of plant essential oils has shown promise in recent studies in modulating GABAergic neurotransmission, with GABAA receptors being the primary therapeutic target. This review will explore the anxiolytic and sedative properties of aromas found in common beverages, such as coffee, tea, and whisky as well aromas found in food, spices, volatile organic compounds, and popular botanicals and their constituents. In doing so, this review will focus on these aromas and their influence on the GABAergic system and provide greater insight into viable anxiety treatment options.


Assuntos
Ansiolíticos , Óleos Voláteis , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Hipnóticos e Sedativos , Odorantes , Óleos Voláteis/farmacologia , Óleos de Plantas , Receptores de GABA-A
8.
Molecules ; 27(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35807543

RESUMO

Spanish-style table olives are one of the most common processed foods in the Mediterranean countries. Lack of control during fermentation can lead to one of the main defects of the olive, called 'Zapateria', caused by the combination of volatile fatty acids reminiscent of rotten leather. In this study, table olives altered with 'Zapateria' defect were stuffed with a hydrocolloid flavoured with the aroma 'Mojo picón' to improve consumer acceptance. Sensory analysis, determination of volatile compounds and electronic nose (E-nose) were used to evaluate the quality of the olives. The control samples had a high concentration of the defect 'Zapateria' and were classified in the second commercial category, while higher 'Mojo picón' flavour concentrations resulted in these olives being classified as 'extra category' (a masking effect). The main volatile compounds in olives with 'Zapateria' defect were cyclohexanecarboxylic acid and pentanoic acid. E-nose allowed discrimination between stuffed olives without added flavouring and olives with 'Mojo picón' flavouring at different concentrations. Finally, PLS regression allowed a predictive linear model to be established between E-nose and sensory analysis values. The RP2 values were 0.74 for perceived defect and 0.86 for perceived aroma. The E-nose was successfully applied for the first time to classify Spanish-style table olives with 'Zapateria' defect intensity and with the addition of the 'Mojo picón' aroma masking the defect.


Assuntos
Olea , Nariz Eletrônico , Aromatizantes/análise , Odorantes/análise , Paladar
9.
Molecules ; 27(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684472

RESUMO

The review summarizes the latest scientific findings and recommendations for the prevention of three very common wine faults of non-microbial origin. The first group, presented by the reductive aromas, is caused mainly by excessive H2S and other volatile sulfur compounds with a negative impact on wine quality. The most efficient prevention of undesirable reductive aromas in wine lies in creating optimal conditions for yeast and controlling the chemistry of sulfur compounds, and the pros and cons of correction methods are discussed. The second is browning which is associated especially with the enzymatic and non-enzymatic reaction of polyphenols and the prevention of this fault is connected with decreasing the polyphenol content in must, lowering oxygen access during handling, the use of antioxidants, and correction stands for the use of fining agents. The third fault, atypical aging, mostly occurs in the agrotechnics of the entire green land cover in the vineyard and the associated stress from lack of nutrients and moisture. Typical fox tones, naphthalene, or wet towel off-odors, especially in white wines are possible to prevent by proper moisture and grassland cover and alternating greenery combined with harmonious nutrition, while the correction is possible only partially with an application of fresh yeast. With the current knowledge, the mistakes in wines of non-microbial origin can be reliably prevented. Prevention is essential because corrective solutions for the faults are difficult and never perfect.


Assuntos
Vinho , Odorantes , Polifenóis , Saccharomyces cerevisiae , Compostos de Enxofre , Vinho/análise
10.
Appl Microbiol Biotechnol ; 105(16-17): 6435-6449, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34423410

RESUMO

In Cognac, the musts are rich in grape solids and fermentations are usually run with turbidities ranging between 500 and 1500 NTU (nephelometric turbidity unit). These conditions, considered favourable for generating the desired organoleptic profiles of the final Eaux-de-vies, are unusual in winemaking, and, consequently, their impact on yeast metabolism is poorly understood. This study aims to better describe and understand the synthesis of fermentative aromas in such lipid-excess conditions, while integrating the effect of two other very important parameters: the initial concentration of assimilable nitrogen and the temperature of fermentation. To reach this objective, a Box-Behnken design was implemented to describe and model the simple effects of these factors as well as their interactions. Although the lipid concentration was very high, impacts on the production of fermentative aromas were observed. Indeed, high lipid levels promoted the synthesis of higher alcohols. Observing this effect was surprising because there is no metabolic connection between the anabolic pathways of production of these alcohols and the lipid pathway. This effect may be partly explained by impairment in the activity of alcohol acetyl transferases in the presence of lipids, which catalyse the conversion of higher alcohols into the corresponding esters. Therefore, in this study, the negative impact of turbidity was very significant on acetate esters related to the production of acetyl-CoA, which was the main molecule disturbed by the strong presence of lipids. Finally, and more surprisingly, lipid intake did not impact the synthesis of ethyl esters, which depended on the concentration of exogenous lipids. KEY POINTS: • Innovative work on the fermentation of white wine musts with very high lipid contents. • Precise fermentation management and monitoring in Cognac-making conditions. • Experimental design to study the impact of lipids, assimilable nitrogen and temperature on fermentative aroma synthesis.


Assuntos
Vinho , Etanol , Fermentação , Lipídeos , Odorantes/análise , Vinho/análise
11.
J Food Sci Technol ; 58(10): 3963-3971, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34471320

RESUMO

A layered hydroxide salt (LHS) was used as an inorganic matrix to obtain multifunctional food compounds. The aim is to obtain higher thermal stability for vitamin anions and a slow release of aroma. Thus, vitamin B3 (nicotinate), vitamin B5 (phantothenate) and vitamin L (2-aminobenzoate) anions were intercalated by co-precipitation method. The results show an increase in thermal stability of intercalated vitamin anion since decomposition of pure vitamin B3 starts at 120 °C and after intercalation, the HSL-B3 decomposition starts at 313 °C. The intercalation products were than reacted with vanillin (3-methoxy-4-hydroxybenzaldehyde). A kinetic study showed that the release of vanillin from its nanohybrid was found to occur in a controlled manner, evidencing that the synthesized compounds can be used in formulations for the sustained release of aromas. Results showed that the intercalated anions and adsolubilized vanillin were not only less volatile since it causes the aroma to remain in the LHS for a longer period of time resulting in slow release but also have higher thermal stability when they are confined between layers. In summary, the multifunctional food supplements obtained seems to have nutraceutical, olfactory and better thermal resistance properties being suitable for potential applications in the food industry.

12.
Crit Rev Biotechnol ; 40(7): 930-950, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32693642

RESUMO

Whey is a liquid residue generated during the production of cheese and yogurt. It has a pH between 3.9 and 5.6, and a high chemical oxygen demand (COD), from 60 to 80 g/L. Whey contains lactose, proteins, and minerals. Globally, approximately 50% of the whey generated is untreated and is released directly into the environment, which represents an environmental risk. To overcome whey management problems, conventional thermo-physical valorization treatments have been explored, which are complex, costly and energy-intensive. As an alternative, whey fermentation processes employing bacteria, fungi and yeast are economical and promising methods. Among them, yeast fermentation creates value-added products such as antimicrobials, biofuels, aromas, flavors, and antioxidants with no need for previous conditioning of the whey, such as hydrolysis of the lactose, prior to whey biorefining. The biorefining concept applied to whey is discussed using chemical and biological transformation pathways, showing their pluses and minuses, such as technical drawbacks. The main challenges and solutions for the production of fusel alcohols, specifically for 2-phenylethanol, are also discussed in this review.


Assuntos
Antioxidantes , Aromatizantes , Odorantes , Soro do Leite , Leveduras/metabolismo , Biotecnologia , Fermentação
13.
Molecules ; 25(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283752

RESUMO

The potential of using the bio-based solvent 2-methyloxolane, also known as 2-methyltetrahydrofuran or 2-MeTHF, as an alternative to petroleum solvents such as hexane, was investigated for the extraction of volatile compounds from hop cones (Humulus lupulus L.). Lab scale extractions were coupled with in silico prediction of solutes solubility to assess the technical potential of this bio-based solvent. The predictive approach was performed using the simulation software COSMO-RS (conductor like screening model for real solvants) and showed that the 2-methyloxolane is as good as or better than hexane to solubilize the majority of aromas from hop cones. The experimental results indicated that the highest aroma yield was obtained with 2-methyloxolane with 20.2% while n-hexane was only able to extract 17.9%. The characterization of aromas extracted by the two solvents showed a similar composition, where lupulone was the main component followed by humulone. No selectivity of the solvents was observed for any of the major analytes. Finally, a sensory analysis was performed on the extracts, showing that both concretes using 2-methyloxolane and hexane have similar olfactory profiles. The results indicate that 2-methyloxolane could be a promising bio-based extraction solvent for hexane substitution.


Assuntos
Química Verde , Humulus/química , Odorantes/análise , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Solventes/química , Extração Líquido-Líquido , Modelos Moleculares , Compostos Fitoquímicos , Extração em Fase Sólida , Solubilidade
14.
Molecules ; 25(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971920

RESUMO

Aromas and flavours can be produced from fungi by either de novo synthesis or biotransformation processes. Herein, the biocatalytic potential of seven basidiomycete species from Colombia fungal strains isolated as endophytes or basidioma was evaluated. Ganoderma webenarium, Ganoderma chocoense, and Ganoderma stipitatum were the most potent strains capable of decolourizing ß,ß-carotene as evidence of their potential as biocatalysts for de novo aroma synthesis. Since a species' biocatalytic potential cannot solely be determined via qualitative screening using ß,ß-carotene biotransformation processes, we focused on using α-pinene biotransformation with mycelium as a measure of catalytic potential. Here, two strains of Trametes elegans-namely, the endophytic (ET-06) and basidioma (EBB-046) strains-were screened. Herein, T. elegans is reported for the first time as a novel biocatalyst for the oxidation of α-pinene, with a product yield of 2.9 mg of cis-Verbenol per gram of dry weight mycelia used. The EBB-046 strain generated flavour compounds via the biotransformation of a Cape gooseberry medium and de novo synthesis in submerged cultures. Three aroma-producing compounds were identified via GC-MS-namely, methyl-3-methoxy-4H-pyran-4-one, hexahydro-3-(methylpropyl)-pyrrolo[1,2-a]pyrazine-1,4-dione, and hexahydro-3-(methylphenyl)-pyrrolo[1,2-a]pyrazine-1,4-dione.


Assuntos
Basidiomycota/metabolismo , Biocatálise , Odorantes/análise , Paladar , Animais , Biotransformação , Colômbia , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo
15.
Molecules ; 25(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927598

RESUMO

The objective of this study was to evaluate the potential of green solvents for extractions of bioactive compounds (BACs) and essential oils from wild thyme (Thymus serpyllum L.) using theoretical and experimental procedures. Theoretical prediction was assessed by Hansen solubility parameters (HSPs) and conductor-like screening model for realistic solvents (COSMO-RS), to predict the most suitable solvents for extraction of BACs. An experimental procedure was performed by nonthermal technology high voltage electrical discharge (HVED) and it was compared with modified conventional extraction (CE). Obtained extracts were analyzed for chemical and physical changes during the treatment. Theoretical results for solution of BACs in ethanol and water, as green solvents, were confirmed by experimental results, while more accurate data was given by COSMO-RS assessment than HSPs. Results confirmed high potential of HVED for extraction of BACs and volatile compounds from wild thyme, in average, 2.03 times higher yield of extraction in terms of total phenolic content was found compared to CE. The main phenolic compound found in wild thyme extracts was rosmarinic acid, while the predominant volatile compound was carvacrol. Obtained extracts are considered safe and high-quality source reach in BACs that could be further used in functional food production.


Assuntos
Fracionamento Químico/métodos , Condutividade Elétrica , Fenóis/química , Fenóis/isolamento & purificação , Thymus (Planta)/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Eletricidade , Cromatografia Gasosa-Espectrometria de Massas , Química Verde , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Solubilidade , Espectrometria de Massas em Tandem , Compostos Orgânicos Voláteis/farmacologia
16.
Molecules ; 25(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322621

RESUMO

Flavours and fragrances are volatile compounds of large interest for different applications. Due to their high tendency of evaporation and, in most cases, poor chemical stability, these compounds need to be encapsulated for handling and industrial processing. Encapsulation, indeed, resulted in being effective at overcoming the main concerns related to volatile compound manipulation, and several industrial products contain flavours and fragrances in an encapsulated form for the final usage of customers. Although several organic or inorganic materials have been investigated for the production of coated micro- or nanosystems intended for the encapsulation of fragrances and flavours, polymeric coating, leading to the formation of micro- or nanocapsules with a core-shell architecture, as well as a molecular inclusion complexation with cyclodextrins, are still the most used. The present review aims to summarise the recent literature about the encapsulation of fragrances and flavours into polymeric micro- or nanocapsules or inclusion complexes with cyclodextrins, with a focus on methods for micro/nanoencapsulation and applications in the different technological fields, including the textile, cosmetic, food and paper industries.


Assuntos
Cápsulas/química , Química Farmacêutica/métodos , Ciclodextrinas/química , Polímeros/química , Têxteis , Celulose/química , Portadores de Fármacos/química , Eletroquímica , Microesferas , Nanocápsulas , Nanofibras/química , Nanotecnologia/métodos , Odorantes , Perfumes , Solubilidade
17.
Molecules ; 25(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823941

RESUMO

Rosemary (Rosmarinus officinalis L.) is a Mediterranean medicinal and aromatic plant widely used due to valuable bioactive compounds (BACs) and aromas. The aim of the study was to evaluate the extraction of intracellular compounds from rosemary combining experimental procedure by means of high voltage electrical discharge (HVED), with a theoretical approach using two computational simulation methods: conductor-like screening model for real solvents and Hansen solubility parameters. The optimal HVED parameters were as follows: frequency 100 Hz, pulse width 400 ns, gap between electrodes 15 mm, liquid to solid ratio 50 mL/g, voltage 15 and 20 kV for argon, and 20 and 25 kV for nitrogen gas. Green solvents were used, water and ethanol (25% and 50%). The comparison was done with modified conventional extraction (CE) extracted by magnetic stirring and physicochemical analyses of obtained extracts were done. Results showed that HVED extracts in average 2.13-times higher total phenol content compared to CE. Furthermore, nitrogen, longer treatment time and higher voltage enhanced higher yields in HVED extraction. HVED was confirmed to have a high potential for extraction of BACs from rosemary. The computational stimulation methods were confirmed by experimental study, ethanol had higher potential of solubility of BACs and aromas from rosemary compared to water.


Assuntos
Odorantes/análise , Extratos Vegetais/análise , Extratos Vegetais/isolamento & purificação , Rosmarinus/química , Solventes/química , Fracionamento Químico , Eletricidade , Modelos Teóricos
18.
Crit Rev Food Sci Nutr ; 59(11): 1728-1752, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29451805

RESUMO

Volatile sulfur compounds (VSCs), particularly low molecular weight sulfhydryls like hydrogen sulfide (H2S) and methanethiol (MeSH), are often observed in wines with sulfurous off-aromas. Recent work has shown both H2S and MeSH can increase up to a few µM (> 40 µg/L) during anoxic storage, but the identity of the latent sources of these sulfhydryls is still disputed. This review critically evaluates the latent precursors and pathways likely to be responsible for the loss and formation of these sulfhydryls during wine storage based on the existing enology literature as well as studies from food chemistry, geochemistry, biochemistry, and synthetic chemistry. We propose that three precursor classes have sufficient concentration and metastability to serve as latent sulfhydryl precursors in wine: 1) transition metal-sulfhydryl complexes, particularly those formed following Cu(II) addition, which are released under anoxic conditions through an unknown mechanism; 2) asymmetric disulfides, polysulfanes, and (di)organopolysulfanes formed through transition-metal mediated oxidation (e.g., Cu(II)) of sulfhydryls or pesticide degradation, and released through sulfitolysis, metal-catalyzed thiol-disulfide exchange or related reactions; 3) S-alkylthioacetates, primarily formed during fermentation, and releasable hydrolytically. Some evidence also exists for S-amino acids serving as precursors. Based on these findings, we propose a "decision tree" approach to choosing appropriate strategies for managing wines with sulfurous off-aromas.


Assuntos
Armazenamento de Alimentos , Compostos de Sulfidrila/metabolismo , Compostos de Enxofre/metabolismo , Vinho/análise , Dissulfetos/metabolismo , Fermentação , Sulfeto de Hidrogênio , Metais , Odorantes , Oxirredução , Sulfatos/metabolismo , Dióxido de Enxofre/metabolismo
19.
Molecules ; 24(19)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547628

RESUMO

In citrus color mutants, the levels of carotenoid constituents and other secondary metabolites are different in their corresponding wild types. Terpenoids are closely related to coloration, bitterness, and flavor. In this study, terpenoid profiles and hormones in citrus fruits of two red-flesh mutants-Red Anliu orange and Red-flesh Guanxi pummelo-and their corresponding wild types were investigated using GC/MS, HPLC, and LC-MS/MS. Results showed that Red Anliu orange (high in carotenoids) and Anliu orange (low in carotenoids) accumulated low levels of limonoid aglycones but high levels of monoterpenoids; conversely, Red-flesh Guanxi pummelo (high in carotenoids) and Guanxi pummelo (deficient in carotenoids) accumulated high levels of limonoid aglycones but low levels of monoterpenoids. However, isopentenyl diphosphate was present at similar levels. A correlation analysis indicated that jasmonic and salicylic acids might play important roles in regulating terpenoid biosynthesis. Additionally, the similarities of carotenoid and volatile profiles between each mutant and its corresponding wild type were greater than those between the two mutants or the two wild types. The flux balance of terpenoid metabolism in citrus fruit tends toward stability among various citrus genera that have different terpenoid profiles. Bud mutations could influence metabolite profiles of citrus fruit to a limited extent.


Assuntos
Citrus/química , Frutas/química , Odorantes/análise , Terpenos/química , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Hemiterpenos/química , Monoterpenos/química , Compostos Organofosforados/química , Extratos Vegetais/química , Espectrometria de Massas em Tandem
20.
J Food Sci Technol ; 55(11): 4440-4449, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30333640

RESUMO

Free and glycosidically bound volatiles from two major tomato cultivars (Lycopersicon esculantum L. cv. Alida and Merve) of Turkey were determined. Free volatile compounds were extracted using liquid-liquid microextraction, while bound volatiles were extracted using solid phase extraction. The compounds were analyzed using GC-FID and GC-MS. Alida showed presence of, 39 free and 32 bound aroma compounds again 38 free and 31 bound aroma compounds is Merve. The odor activity values of the volatile compounds suggested that hexanal, (Z)-3-hexenal, (E,Z)-2,4-decadienal, (E,E)-2,4-decadienal and 2-phenylethanol were most significant odorants in both cultivars. Guaiacol and eugenol were flavor contributors for Merve. The norisoprenoids 5,6-epoxy-ß-ionone and 3-hydroxy-ß-ionone were observed in free form in tomato. Norisoprenoids, terpenoids, volatile phenols and higher alcohols were present in the glycosidic extract. Among the glycosidically bound compounds, 2-phenylethanol, guaiacol and eugenol were found to be potential contributors to overall tomato flavor upon hydrolysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA