Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Heart Fail Clin ; 19(4): 429-444, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37714585

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an umbrella term encompassing a wide variety of overlapping hereditary and nonhereditary disorders that can result in malignant ventricular arrhythmias and sudden cardiac death. Cardiac MRI plays a critical role in accurate diagnosis of various ACM entities and is increasingly showing promise in risk stratification that can further guide management particularly in decisions regarding use of implantable cardioverter defibrillator. Genotyping plays an important role in cascade testing but challenges remain due to incomplete penetrance and wide phenotypic variability of ACM as well as the presence of gene-elusive cases.


Assuntos
Cardiomiopatias , Desfibriladores Implantáveis , Humanos , Coração , Imageamento por Ressonância Magnética , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Cardiomiopatias/diagnóstico por imagem
2.
Prog Pediatr Cardiol ; 64: None, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35300203

RESUMO

Background: The diagnosis of arrhythmogenic cardiomyopathy (ACM) is challenging especially in children at risk of adverse events. Analysis of cardiac myocyte junctional protein distribution may have diagnostic and prognostic implications, but its utility is limited by the need for a myocardial sample. We previously reported that buccal mucosa cells show junctional protein redistribution similar to that seen in cardiac myocytes of adult patients with ACM. Objectives: We aimed to determine when junctional protein distribution abnormalities first occur in children with ACM variants and whether they correlate with progression of clinically apparent disease. Methods: We analyzed buccal mucosa samples of children and adolescents with a family history of ACM (n = 13) and age-matched controls (n = 13). Samples were immunostained for plakoglobin, desmoplakin, plakophilin-1 and connexin43 and analyzed by confocal microscopy. All participants were swabbed at least twice with an average interval of 12-18 months between samplings. Results: Junctional protein re-localization in buccal mucosa cells did not correlate with the presence of ACM-causing variants but instead occurred with clinical onset of disease. No changes in protein distribution were seen unless and until there was clinical evidence of disease. In addition, progressive shifts in the distribution of key proteins correlated with worsening of the disease phenotype. Finally, we observed restoration of junctional signal for Cx43 in patient with a favorable response to anti-arrhythmic therapy. Conclusions: Due to ethical concerns about obtaining heart biopsies in children with no apparent disease, it has not been possible to analyze molecular changes in cardiac myocytes with the onset/progression of clinical disease. Using buccal smears as a surrogate for the myocardium may facilitate future studies of mechanisms and pathophysiological consequences of junctional protein redistribution in ACM. Buccal cells may also be a safe and inexpensive tool for risk stratification and potentially monitoring response to treatment in children bearing ACM variants.

3.
Int J Mol Sci ; 23(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35054841

RESUMO

Arrhythmogenic cardiomyopathy is a heritable heart disease associated with desmosomal mutations, especially premature termination codon (PTC) variants. It is known that PTC triggers the nonsense-mediated decay (NMD) mechanism. It is also accepted that PTC in the last exon escapes NMD; however, the mechanisms involving NMD escaping in 5'-PTC, such as reinitiation of translation, are less known. The main objective of the present study is to evaluate the likelihood that desmosomal genes carrying 5'-PTC will trigger reinitiation. HL1 cell lines were edited by CRISPR/Cas9 to generate isogenic clones carrying 5'-PTC for each of the five desmosomal genes. The genomic context of the ATG in-frame in the 5' region of desmosomal genes was evaluated by in silico predictions. The expression levels of the edited genes were assessed by Western blot and real-time PCR. Our results indicate that the 5'-PTC in PKP2, DSG2 and DSC2 acts as a null allele with no expression, whereas in the DSP and JUP gene, N-truncated protein is expressed. In concordance with this, the genomic context of the 5'-region of DSP and JUP presents an ATG in-frame with an optimal context for the reinitiation of translation. Thus, 5'-PTC triggers NMD in the PKP2, DSG2* and DSC2 genes, whereas it may escape NMD through the reinitiation of the translation in DSP and JUP genes, with no major effects on ACM-related gene expression.


Assuntos
Desmoplaquinas/genética , Desmoplaquinas/metabolismo , gama Catenina/genética , gama Catenina/metabolismo , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Códon sem Sentido , Desmocolinas/genética , Desmogleína 2/genética , Mutação da Fase de Leitura , Camundongos , Degradação do RNAm Mediada por Códon sem Sentido , Placofilinas/genética , Biossíntese de Proteínas
4.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502098

RESUMO

Clinical effects induced by arrhythmogenic cardiomyopathy (ACM) originate from a large spectrum of genetic variations, including the missense mutation of the lamin A/C gene (LMNA), LMNA D192G. The aim of our study was to investigate the biophysical and biomechanical impact of the LMNA D192G mutation on neonatal rat ventricular fibroblasts (NRVF). The main findings in mutated NRVFs were: (i) cytoskeleton disorganization (actin and intermediate filaments); (ii) decreased elasticity of NRVFs; (iii) altered cell-cell adhesion properties, that highlighted a strong effect on cellular communication, in particular on tunneling nanotubes (TNTs). In mutant-expressing fibroblasts, these nanotubes were weakened with altered mechanical properties as shown by atomic force microscopy (AFM) and optical tweezers. These outcomes complement prior investigations on LMNA mutant cardiomyocytes and suggest that the LMNA D192G mutation impacts the biomechanical properties of both cardiomyocytes and cardiac fibroblasts. These observations could explain how this mutation influences cardiac biomechanical pathology and the severity of ACM in LMNA-cardiomyopathy.


Assuntos
Adesão Celular , Lamina Tipo A/metabolismo , Miofibroblastos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Células Cultivadas , Lamina Tipo A/genética , Microscopia de Força Atômica , Mutação de Sentido Incorreto , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Miofibroblastos/fisiologia , Nanotubos/química , Pinças Ópticas , Ratos , Ratos Sprague-Dawley
5.
Int J Cardiol Heart Vasc ; 53: 101455, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39228971

RESUMO

We aimed to assess the diagnostic performance of Cardiac Magnetic Resonance (CMR) strain parameters in ACM patients to evaluate their diagnostic role. We systematically searched MEDLINE, EMBASE, Scopus, and Web of Science. Of the 146 records, 16 were included. All Right Ventricle (RV) global strains were significantly reduced in ACM patients compared to controls (Standardized Mean Difference (SMD)[95 % Confidence Interval (CI)]: Longitudinal 1.31[0.79,1.83]; Circumferential 0.88[0.34,1.42]; Radial -1.14[-1.78,-0.51]). Similarly, all Left Ventricle (LV) global strains were significantly impaired in ACM compared to healthy controls (SDM [95 %CI]: Longitudinal 0.88[0.48,12.28], Circumferential 0.97[0.72,1.22], Radial -1.24[-1.49,-1.00]). Regarding regional RV strains, longitudinal and circumferential strains were significantly reduced in basal and mid-wall regions, while they were comparable to controls in the apical regions. The RV radial strain was reduced only within the basal region in the ACM group compared to controls. ACM patients exhibited significant impairment of regional LV strains in all regions-basal, mid-wall, and apical-compared to control subjects. Ultimately, despite the limitations of CMR-FT in terms of reproducibility, it is superior to qualitative assessment in detecting wall motion abnormalities. Thus, integrating CMR-FT with ACM diagnostic criteria seems to enhance its diagnostic yield.

6.
Stem Cell Res ; 78: 103453, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824800

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is a cardiomyopathy that is predominantly inherited and characterized by cardiac arrhythmias and structural abnormalities. TMEM43 (transmembrane protein 43) is one of the well-known genetic culprits behind ACM. In this study, we successfully generated an induced pluripotent stem cell (iPSC) line, YCMi010-A, derived from a male patient diagnosed with ACM. Although these iPSCs harbored a heterozygous intronic splice variant, TMEM43 c.443-2A > G, they still displayed normal cellular morphology and were confirmed to express pluripotency markers. YCMi010-A iPSC line is a promising model for investigating the pathomechanisms associated with ACM and exploring potential therapeutic strategies.


Assuntos
Displasia Arritmogênica Ventricular Direita , Células-Tronco Pluripotentes Induzidas , Proteínas de Membrana , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/patologia , Displasia Arritmogênica Ventricular Direita/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Linhagem Celular , Adulto , Sítios de Splice de RNA/genética , Diferenciação Celular
7.
Biomedicines ; 11(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36979791

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is a progressive inheritable disease which is characterized by a gradual fibro-(fatty) replacement of the myocardium. Visualization of diffuse and patchy fibrosis patterns is challenging using clinically applied cardiac imaging modalities (e.g., late gadolinium enhancement, LGE). During collagen synthesis and breakdown, carboxy-peptides are released into the bloodstream, specifically procollagen type-I carboxy-terminal propeptides (PICP) and collagen type-I carboxy-terminal telopeptides (ICTP). We collected the serum and EDTA blood samples and clinical data of 45 ACM patients (age 50.11 ± 15.53 years, 44% female), divided into 35 diagnosed ACM patients with a 2010 ARVC Task Force Criteria score (TFC) ≥ 4, and 10 preclinical variant carriers with a TFC < 4. PICP levels were measured using an enzyme-linked immune sorbent assay and ICTP levels with a radio immunoassay. Increased PICP/ICTP ratios suggest a higher collagen deposition. We found significantly higher PICP and PICP/ICTP levels in diagnosed patients compared to preclinical variant carriers (p < 0.036 and p < 0.027). A moderate negative correlation existed between right ventricular ejection fractions (RVEF) and the PICP/ICTP ratio (r = -0.46, p = 0.06). In addition, significant correlations with left ventricular function (LVEF r = -0.53, p = 0.03 and end-systolic volume r = 0.63, p = 0.02) were found. These findings indicate impaired contractile performance due to pro-fibrotic remodeling. Follow-up studies including a larger number of patients should be performed to substantiate our findings and the validity of those levels as potential promising biomarkers in ACM.

8.
Front Cardiovasc Med ; 9: 1044797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386351

RESUMO

Background: Cardiac sympathetic nerve system (SNS) might play an important role in arrhythmogenesis of arrhythmogenic cardiomyopathy (ACM). This study aims to assess the activity of cardiac SNS in ACM patients by heart rate variability (HRV), and to investigate its predictive value for sustained ventricular tachycardia (sVT). Methods: A total of 88 ACM patients and 65 sex- and age- matched healthy participants were enrolled. The time domain measures were used to evaluate the activity of cardiac SNS. An independent cohort with 48 ACM patients was as the validation cohort. Results: ACM patients had lower levels of standard deviation of all NN intervals (SDNN) [118.0 (90.3, 136.8) vs. 152.0 (132.5, 174.5) ms, p < 0.001] compared with healthy participants. Further analysis showed ACM patients with sVT had lower levels of SDNN than those without sVT (105.0 ± 28.1 vs. 131.8 ± 33.1 ms, p < 0.001). Multivariate logistic regression analysis showed SDNN was independently associated with sVT in ACM patients [odds ratio (OR) 0.59, 95% confidence interval (CI) (0.45-0.78), p < 0.001]. Receiver operating characteristics curve demonstrated SDNN had clinical values in predicting sVT in ACM patients [area under the curve (AUC) = 0.73, 95% CI (0.63-0.84), p < 0.001], which was verified in the validation cohort. Conclusion: The present study suggests that HRV is impaired in patients with ACM, and the SDNN level has a moderate value in risk stratification for sVT in ACM patients. In addition, the finding might provide new target for the further management of ACM with integrated traditional Chinese and western medicine.

9.
Front Physiol ; 12: 732573, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630150

RESUMO

Background: Patients with arrhythmogenic cardiomyopathy may suffer from lethal ventricular arrhythmias. Arrhythmogenic cardiomyopathy is predominantly triggered by mutations in plakophilin-2, a key component of cell-to-cell adhesion and calcium cycling regulation in cardiomyocytes. Calcium dysregulation due to plakophilin-2 mutations may lead to arrhythmias but the underlying pro-arrhythmic mechanisms remain unclear. Aim: To unravel the mechanisms by which calcium-handling abnormalities in plakophilin-2 loss-of-function may contribute to proarrhythmic events in arrhythmogenic cardiomyopathy. Methods: We adapted a computer model of mouse ventricular electrophysiology using recent experimental calcium-handling data from plakophilin-2 conditional knock-out (PKP2-cKO) mice. We simulated individual effects of beta-adrenergic stimulation, modifications in connexin43-mediated calcium entry, sodium-calcium exchanger (NCX) activity and ryanodine-receptor 2 (RyR2) calcium affinity on cellular electrophysiology and occurrence of arrhythmogenic events (delayed-afterdepolarizations). A population-of-models approach was used to investigate the generalizability of our findings. Finally, we assessed the potential translation of proposed mechanisms to humans, using a human ventricular cardiomyocyte computational model. Results: The model robustly reproduced the experimental calcium-handling changes in PKP2-cKO cardiomyocytes: an increased calcium transient amplitude (562 vs. 383 nM), increased diastolic calcium (120 vs. 91 nM), reduced L-type calcium current (15.0 vs. 21.4 pA/pF) and an increased free SR calcium (0.69 vs. 0.50 mM). Under beta-adrenergic stimulation, PKP2-cKO models from the population of models (n = 61) showed a higher susceptibility to delayed-afterdepolarizations compared to control (41 vs. 3.3%). Increased connexin43-mediated calcium entry further elevated the number of delayed-afterdepolarizations (78.7%, 2.5-fold increase in background calcium influx). Elevated diastolic cleft calcium appeared responsible for the increased RyR2-mediated calcium leak, promoting delayed-afterdepolarizations occurrence. A reduction in RyR2 calcium affinity prevented delayed-afterdepolarizations in PKP2-cKO models (24.6 vs. 41%). An additional increase in INCX strongly reduced delayed-afterdepolarizations occurrence, by lowering diastolic cleft calcium levels. The human model showed similar outcomes, suggesting a potential translational value of these findings. Conclusion: Beta-adrenergic stimulation and connexin43-mediated calcium entry upon loss of plakophilin-2 function contribute to generation of delayed-afterdepolarizations. RyR2 and NCX dysregulation play a key role in modulating these proarrhythmic events. This work provides insights into potential future antiarrhythmic strategies in arrhythmogenic cardiomyopathy due to plakophilin-2 loss-of-function.

10.
Front Cardiovasc Med ; 8: 748003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869653

RESUMO

Background: Arrhythmogenic cardiomyopathy (AC) is a life-threatening disease which predispose to malignant arrhythmias and sudden cardiac death (SCD) in the early stages of the disease. Risk stratification relies on the electrical, genetic, and imaging data. Our study aimed to investigate how myocardial deformation parameters may identify the subjects at risk of known predictors of major ventricular arrhythmias. Methods: A cohort of 45 subjects with definite or borderline diagnosis of AC was characterized using the advanced transthoracic echocardiography (TTE) and cardiac magnetic resonance (CMR) and divided into the groups according to the potential arrhythmic risk markers, such as non-sustained ventricular tachycardia (NSVT), late gadolinium enhancement (LGE), and genetic status. Layer-specific global longitudinal strain (GLS) by TTE 2D speckle tracking was compared in patients with and without these arrhythmic risk markers. Results: In this study, 23 (51.1%) patients were men with mean age of 43 ± 16 years. Next-generation sequencing identified a potential pathogenic mutation in 39 (86.7%) patients. Thirty-nine patients presented LGE (73.3%), mostly located at the subepicardial-to-mesocardial layers. A layer-specific-GLS analysis showed worse GLS values at the epicardial and mesocardial layers in the subjects with NSVT and LGE. The epicardial GLS values of -15.4 and -16.1% were the best cut-off values for identifying the individuals with NSVT and LGE, respectively, regardless of left ventricular ejection fraction (LVEF). Conclusions: The layer-specific GLS assessment identified the subjects with high-risk arrhythmic features in AC, such as NSVT and LGE. An epicardial GLS may emerge as a potential instrument for detecting the subjects at risk of SCD in AC.

11.
Int J Cardiol ; 257: 366-370, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29506734

RESUMO

Dilated cardiomyopathy is part of the spectrum of heart failure which is a syndrome with certain morphological and functional characteristics. Although significant progress in the management of those patients has been achieved, seems that risk stratification and future treatments will be related to the specific pathological substrate.


Assuntos
Cardiomiopatia Dilatada/diagnóstico por imagem , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Dilatada/terapia , Eletrocardiografia/métodos , Humanos , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/terapia
12.
Ann Transl Med ; 3(7): 90, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26015932

RESUMO

The paper entitled "Identification of a New Modulator of the Intercalated Disc in a Zebrafish Model of Arrhythmogenic Cardiomyopathy", as published in 2014 in Science Translational Medicine, examined the effects of the newly discovered drug SB216763 (SB21) on arrhythmogenic cardiomyopathy (ACM). In this paper, the authors focused on mechanisms underlying ACM and the accompanying molecular and cellular alterations. Most importantly they showed that SB21 was able to rescue and partly reverse the ACM phenotype in three different experimental models: (I) a zebrafish model of Naxos disease induced by the overexpression of the 2057del2 mutation in plakoglobin (PKG); (II) neonatal rat cardiomyocytes overexpressing the same mutation in PKG; (III) cardiomyocytes derived from induced pluripotent stem cells expressing two different forms of mutations in plakophilin-2. This editorial will focus on the potency and possible restrictions concerning SB21 treatment as a potential intervention for ACM and the usefulness of the applied zebrafish models in general.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA