Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2403457, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853138

RESUMO

A stable stripping/plating process of the zinc anode is extremely critical for the practical application of aqueous zinc metal batteries. However, obstacles, including parasitic reactions and dendrite growth, notoriously deteriorate the stability and reversibility of zinc anode. Herein, Methyl l-α-aspartyl-l-phenylalaninate (Aspartame) is proposed as an effective additive in the ZnSO4 system to realize high stability and reversibility. Aspartame molecule with rich polar functional groups successfully participates in the solvation sheath of Zn2+ to suppress water-induced side reactions. The self-driven adsorption of Aspartame on zinc anode improves uniform deposition with a dose of 10 mm. These synergetic functions endow the zinc anode with a significantly long cycling lifespan of 4500 h. The cell coupled with a vanadium-based cathode also exhibited a high-capacity retention of 71.8% after 1000 cycles, outperforming the additive-free counterparts.

2.
Crit Rev Toxicol ; 54(3): 153-173, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470145

RESUMO

The Ramazzini Institute (RI) has been conducting animal carcinogenicity studies for decades, many of which have been considered by authoritative bodies to determine potential carcinogenicity in humans. Unlike other laboratories, such as the U.S. National Toxicology Program (NTP), the RI does not provide a report or record of historical control data. Transparently documenting historical control data is critical in the interpretation of individual study results within the same laboratory. Historical control data allow an assessment of significant trends, either increasing or decreasing, resulting from changes in laboratory methods or genetic drift. In this investigation: (1) we compiled a dataset of the tumors reported in control groups of Sprague-Dawley rats and Swiss mice based on data included in published RI studies on specific substances, and (2) conducted case studies to compare data from this RI control dataset to the findings from multiple RI studies on sweeteners and corresponding breakdown products. We found considerable variability in the tumor incidence across multiple tumor types when comparing across control groups from RI studies. When compared to the tumor incidence in treated groups from multiple studies, the incidence of some tumors considered to be treatment-related fell within the variability of background incidence from the RI control dataset.


Assuntos
Neoplasias , Ratos , Camundongos , Humanos , Animais , Ratos Sprague-Dawley , Incidência , Testes de Carcinogenicidade , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia
3.
Pharmacol Res ; 204: 107211, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744400

RESUMO

Several non-caloric sweeteners exhibit a delay in sweetness onset and a sweetness linger after sampling. These temporal properties are thought to be the result of non-specific interactions with cell membranes and proteins in the oral cavity. Data and analysis presented in this report also support the potential involvement of receptor affinity and binding kinetics to this phenomenon. In general, affected sweeteners exhibit distinctly higher binding affinity compared to carbohydrate sweeteners, which do not have temporal issues. In addition, binding kinetic simulations illustrate much slower receptor binding association and dissociation kinetics for a set of non-caloric sweeteners presenting temporal issues, in comparison to carbohydrate sweeteners. So, the higher affinity of some non-caloric sweeteners, dictating lower use levels, and affecting binding kinetics, could contribute to their delay and linger in sweetness perception. Simple pharmacology principles could explain, at least in part, some of the temporal issues of sweeteners.


Assuntos
Edulcorantes , Percepção Gustatória , Animais , Humanos , Cinética , Receptores Acoplados a Proteínas G/metabolismo , Edulcorantes/metabolismo , Edulcorantes/farmacologia , Paladar
4.
Nutr Neurosci ; 27(5): 506-519, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37395401

RESUMO

Objective: The purpose of this review was to assess the current evidence regarding the associated physiological and cognitive effects of aspartame (APM) consumption and Parkinson's Disease (PD). METHODS: A total of 32 studies demonstrating effects of APM on monoamine deficiencies, oxidative stress, and cognitive changes were reviewed. RESULTS: Multiple studies demonstrated decreased brain dopamine, decreased brain norepinephrine, increased oxidative stress, increased lipid peroxidation, and decreased memory function in rodents after APM use. In addition, PD animal models have been found to be more sensitive to the effects of APM. DISCUSSION: Overall, studies of APM use over time yielded more consistent results; however, no study has examined long-term effects on APM in human PD patients. Based on the current evidence, long-term human based observational research is needed to further investigate the potential effect of APM on PD.


Assuntos
Aspartame , Doença de Parkinson , Animais , Humanos , Cognição , Estresse Oxidativo , Neurotransmissores
5.
Int J Cancer ; 153(5): 979-993, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37323037

RESUMO

Use of artificial sweeteners (AS) such as aspartame, cyclamate, saccharin and sucralose is widespread. We evaluated the association of use of aspartame and other AS with cancer. In total 1881 colorectal, 1510 breast, 972 prostate and 351 stomach cancer and 109 chronic lymphocytic leukaemia (CLL) cases and 3629 population controls from the Spanish Multicase-Control (MCC-Spain) study were recruited (2008-2013). The consumption of AS, from table-top sweeteners and artificially sweetened beverages, was assessed through a self-administered and validated food frequency questionnaire (FFQ). Sex-specific quartiles among controls were determined to compare moderate consumers (

Assuntos
Diabetes Mellitus , Neoplasias Gástricas , Masculino , Feminino , Humanos , Edulcorantes/efeitos adversos , Aspartame/efeitos adversos , Espanha/epidemiologia , Neoplasias Gástricas/induzido quimicamente , Neoplasias Gástricas/epidemiologia
6.
Reprod Biol Endocrinol ; 21(1): 73, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580716

RESUMO

BACKGROUND: Artificial sweeteners, used as sugar substitutes have found their ways into almost all the food items due to the notion that they are non-caloric. Aspartame is used in numerous food products throughout the world. The primary users of aspartame include diabetics and calorie conscious people who intend to limit their calorie intake. METHODS: Female Swiss albino mice were divided into three groups (12 mice each) for the duration of 30 and 60 days consecutively. The treatment groups received 40 mg/kg b. w. aspartame orally. Hormone assays using ELISA and tissue histopathology have been performed along with the fertility assay to access the treatment outcomeon the fertility of treated mice in comparison to controls. RESULTS: Present study reports that female mice treated with aspartame for 30 and 60 days showed significant reduction in body weight, relative organ weight of (liver and kidney) and gonadosomatic index. These changes were more significantly recorded in 60 days treatment group. Aspartame treated animals for 30 and 60 days showed duration-dependent decrease gonandotropins (follicle stimulating hormone and luteinizing hormone), and steroids (estradiol and progesterone). Moreover, severe histopathological changes, reduction in number of growing follicles, degenerative changes in follicular structure, corona radiata and zonagranulosa were also observed. Besides, histomorphological changes were also observed in the uterine structure including atrophic uterine endometrial glands, contracted endometrial lining, disruption of the endometrial structure and the shapes of blood vessels were also altered. CONCLUSION: Non-nutritive artificial sweeteners including aspartame negatively impact the function of ovaries and feedback mechanism of reproductive hormones by affecting the hypothalamic-pituitary-gonadal axis. In light of present findings the aspartame negatively impacted the reproductive system of female mice. More studies are required to identify the molecular mechanism and the pathways involved.


Assuntos
Aspartame , Edulcorantes , Feminino , Camundongos , Animais , Edulcorantes/farmacologia , Aspartame/farmacologia , Modelos Animais de Doenças , Hormônio Luteinizante , Ovário
7.
Environ Sci Technol ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36628463

RESUMO

Aspartame (APM), a dipeptide of aspartic acid (ASP) and phenylalanine (PHE), is a widely used artificial sweetener in beverages. It is unclear whether residual chlorine in tap water can react with APM to form disinfection byproducts (DBPs). Therefore, we investigated the formation of DBPs from the reaction of APM with residual chlorine in authentic tap water. APM and a commercial sweetener (CS) packet containing APM were studied under authentic and simulated tap water conditions. Eight chlorinated products of APM were detected using solid-phase extraction (SPE) and high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS). These new chloro-products were tentatively identified based on accurate masses, isotopic patterns of 35,37Cl, and MS/MS spectra. Furthermore, we identified APM as a precursor to 2,6-dichloro-1,4-benzoquinone (DCBQ). DCBQ significantly increased to 2.3-12 ng/L with the addition of APM or CS in tap waters collected from different locations compared to 1.4-1.8 ng/L in the same tap water samples without sweetener. DCBQ and two of the chlorinated transformation products were identified in cold prepared tea containing APM. DCBQ formation was eliminated when the residual chlorine in tap water was reduced by ascorbic acid or boiling prior to the addition of APM or CS. This study found that eight new DBPs and DCBQ were produced by the reactions of residual chlorine with APM and CS. These findings show an unintended exposure source of emerging DBPs via APM sweetened beverages.

8.
Int J Exp Pathol ; 103(6): 252-262, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36251541

RESUMO

Aspartame (ASP) is probably the best known artificial sugar substitute that is used widely in food. Many experimental studies have reported the toxicity of long-term administration of ASP in various organ tissues. However, there is little evidence available about the nature and mechanisms of the adverse effects of long-term consumption of ASP on the cardiovascular system. This study was conducted to evaluate the possible effects of ASP on heart tissue. For this study 36 mature male mice were divided into one control group and three groups which received respectively 40 mg/kg, 80 mg/kg and 160 mg/kg ASP orally, for 90 days. ASP at the doses of 80 and 160 mg/kg increased the serum content of malondialdehyde (MDA), but decreased serum nitric oxide (NO), creatine kinase (CK) and CK-MB, as well as blood superoxide dismutase (SOD) levels. Serum level of total anti-oxidant capacity (TAC) in blood was also reduced in serum at the dose of 80 mg/kg. Histochemical staining, including Periodic acid-Schiff, Masson's trichrome and Verhoeff-van Gieson staining, indicated that ASP at doses of 80 and 160 mg/kg reduced glycogen deposition and decreased the number of collagen and elastic fibres in the cardiac tissue. The cardiac expression of pro-apoptotic genes, including P53, Bax, Bcl-2 and Caspase-3, was modulated at the dose of 160 mg/kg. Moreover, transcription of Caspase-3 was up-regulated at the dose of 80 mg/kg. In conclusion, long-term consumption of ASP any higher than the acceptable daily intake (40 mg/kg) appears to act by promoting oxidative stress, has the potential to alter both histopathological and biochemical parameters, and induces P53-dependent apoptosis in cardiac tissue.


Assuntos
Aspartame , Sistema Cardiovascular , Animais , Masculino , Camundongos , Caspase 3/metabolismo , Aspartame/toxicidade , Aspartame/metabolismo , Proteína Supressora de Tumor p53 , Estresse Oxidativo , Apoptose
9.
Br J Nutr ; 128(2): 352-360, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34420538

RESUMO

The ingestion of non-caloric sweeteners (NCS) from food and/or drink was intended to reduce caloric intake without compromising palatability. However, the inconclusive relation between NCS and body weight may partially relate to their form of ingestion (solid or liquid). Thus, two paralleled experiments (aspartame and sucralose) were conducted. In each, Sprague Dawley rats (7-week-old male) were randomly divided into four groups. In Expt 1, aspartame (0·05 %) was added to the diet (AD) or drinking water (AW) or both diet and water (ADW), and a control group (C) was given a non-sweetened diet with plain water. In Expt 2, sucralose (0·016 %) was similarly provided in the diet (SD) or drinking water (SW) or both diet and water (SDW), with a control group (C). All rats had free access to food and water for 7 weeks. Energy intake, body weight and body composition were monitored and blood metabolites were determined. Results showed that aspartame ingestion significantly increased body weight and fat mass mainly due to an increase in energy efficiency. The effect was related to the amount rather than the form of ingestion. Additionally, aspartame ingestion was associated with glucose intolerance. Sucralose ingestion had a similar impact to that of aspartame though to a lesser extent. In conclusion, 7-week ingestion of aspartame and sucralose had adverse effects on body measures that were not related to the form of ingestion.


Assuntos
Aspartame , Água Potável , Masculino , Ratos , Animais , Ratos Sprague-Dawley , Peso Corporal , Edulcorantes , Sacarose , Ingestão de Alimentos
10.
Ultrastruct Pathol ; 46(6): 497-510, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36273246

RESUMO

Aspartame (ASP) is an artificial sweeter. Chronic use of ASP has a harmful effect on cerebellar cortex. Anisum oil and selenium (SE) are antioxidant substances. Therefore, the present study was performed to study the possible protective role of anisum oil versus selenium on aspartame-induced changes in rat cerebellar cortex. Rats were divided into four main groups. Group I (Control group). Group II received 250 mg/kg/day aspartame once daily for 2 months. Group III received 0.5 ml/kg/day anisum 2 h before aspartame administration. Group IV received 0.5 mg/kg/day selenium 2 h before aspartame administration. The administration of Asp for 2 months (group II) resulted in cerebellar histopathological changes in the form of deformed Purkinje and granule cells. Ultrastructurally, Purkinje cells had irregular nuclei, dilated cisternae of rough endoplasmic reticulum, dilated saccules of Golgi apparatus, mitochondria with destroyed cristae. In addition, granule cells appeared shrunken with irregular nuclei. Aspartame and anisum oil treated group (group III) showed partial improvement. Examination of ASP and SE treated group (group IV) showed that cerebellar cortex was nearly similar to control. In conclusion, Anisum oil and selenium could protect against ASP-induced cerebellar damage. The protective effect of selenium is better than anisum oil.


Assuntos
Pimpinella , Selênio , Ratos , Animais , Aspartame/toxicidade , Selênio/farmacologia , Elétrons , Pimpinella/química , Córtex Cerebelar
11.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361530

RESUMO

Frequent consumption of diet drinks was associated with oocyte dysmorphism, decreased embryo quality, and an adverse effect on pregnancy rate. We investigated the harmful effects of aspartame and potential mechanisms through which it increases infertility risk through clinical observations and in vivo and in vitro studies. Methods: We established a cohort of 840 pregnant women and retrospectively determined their time to conceive. We assessed the estrus cycle, the anti-Mullerian hormone level, ovarian oxidative stress, and ovarian mitochondrial function in an animal study. We also evaluated mitochondria function, mitochondrial biogenesis, and progesterone release with in vitro studies. Aspartame consumption was associated with increased infertility risk in the younger women (Odds ratio: 1.79, 95% confidence interval: 1.00, 3.22). The results of the in vivo study revealed that aspartame disrupted the estrus cycle and reduced the anti-Mullerian hormone level. Aspartame treatment also suppressed antioxidative activities and resulted in higher oxidative stress in the ovaries and granulosa cells. This phenomenon is caused by an aspartame-induced decline in mitochondrial function (maximal respiration, spare respiratory capacity, and ATP production capacity) and triggered mitochondrial biogenesis (assessed by examining the energy depletion signaling-related factors sirtuin-1, phosphorylated adenosine monophosphate-activated protein kinase, peroxisome proliferator-activated receptor-gamma coactivator-1α, and nuclear respiratory factor 1 expression levels). Aspartame may alter fertility by reserving fewer follicles in the ovary and disrupting steroidogenesis in granulosa cells. Hence, women preparing for pregnancy are suggested to reduce aspartame consumption and avoid oxidative stressors of the ovaries.


Assuntos
Infertilidade , Doenças Mitocondriais , Animais , Feminino , Humanos , Gravidez , Aspartame , Hormônio Antimülleriano , Estudos Retrospectivos
12.
Int J Environ Health Res ; 32(4): 752-771, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32705899

RESUMO

Thirty-two male Wistar albino rats were chosen to test the possible protective role of antioxidants of the edible seaweed Sargassum vulgare as a functional food additive to alleviate oxidative stress and toxicity associated with consumption of the artificial sweetener 'aspartame (ASP)'. Biochemical and spleen histopathological analyses of the orally ASP-administrated rats, at a dose of 500 mg/kg for one week daily, showed different apoptotic and inflammatory patterns. Rats treated with ASP and then supplemented orally with the S. vulgare-MeOH extract, at a dose of 150 mg/kg for three consecutive weeks daily, showed significant positive reactions in all investigated assays related to ASP consumption. The protective and immune-stimulant efficacy of S. vulgare-MeOH extract, inferred from combating oxidative stress-induced lipid peroxidation, modulating the low levels of the endogenous antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and of the thyroid hormones T3 and T4, attenuating the elevated levels of apoptotic CASP-3 and inflammatory biomarkers TNF-α and IL-6, as well as heat shock proteins (Hsp70), can be most likely ascribed to the synergistic effect of its potent antioxidant phenolics (mainly gallic, ferulic, salicylic, and chlorogenic, and p-coumaric acids) and flavonoids (rutin, kaempferol, and hesperidin). Mechanism of action of these natural antioxidants was discussed.


Assuntos
Ingredientes de Alimentos , Sargassum , Alga Marinha , Animais , Aspartame/farmacologia , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar
13.
Environ Health ; 20(1): 42, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845854

RESUMO

BACKGROUND: Aspartame is one of the world's most widely used artificial sweeteners and is an ingredient in more than 5000 food products globally. A particularly important use is in low-calorie beverages consumed by children and pregnant women. The Ramazzini Institute (RI) reported in 2006 and 2007 that aspartame causes dose-related increases in malignant tumors in multiple organs in rats and mice. Increased cancer risk was seen even at low exposure levels approaching the Acceptable Daily Intake (ADI). Prenatal exposures caused increased malignancies in rodent offspring at lower doses than in adults. These findings generated intense controversy focused on the accuracy of RI's diagnoses of hematopoietic and lymphoid tissue tumors (HLTs). Critics made the claim that pulmonary lesions observed in aspartame-exposed animals were inflammatory lesions caused by Mycoplasma infection rather than malignant neoplasms. METHODS: To address this question, RI subjected all HLTs from aspartame-exposed animals to immunohistochemical analysis using a battery of markers and to morphological reassessment using the most recent Internationally Harmonized Nomenclature and Diagnostic (INHAND) criteria. FINDINGS: This immunohistochemical and morphological re-evaluation confirmed the original diagnoses of malignancy in 92.3% of cases. Six lesions originally diagnosed as lymphoma (8% of all HLTs) were reclassified: 3 to lymphoid hyperplasia, and 3 to chronic inflammation with fibrosis. There was no evidence of Mycoplasma infection. INTERPRETATION: These new findings confirm that aspartame is a chemical carcinogen in rodents. They confirm the very worrisome finding that prenatal exposure to aspartame increases cancer risk in rodent offspring. They validate the conclusions of the original RI studies. These findings are of great importance for public health. In light of them, we encourage all national and international public health agencies to urgently reexamine their assessments of aspartame's health risks - especially the risks of prenatal and early postnatal exposures. We call upon food agencies to reassess Acceptable Daily Intake (ADI) levels for aspartame. We note that an Advisory Group to the International Agency for Research on Cancer has recommended high-priority reevaluation of aspartame's carcinogenicity to humans.


Assuntos
Aspartame/toxicidade , Neoplasias/induzido quimicamente , Edulcorantes/toxicidade , Animais , Feminino , Masculino , Camundongos , Ratos Sprague-Dawley
14.
Biosci Biotechnol Biochem ; 85(2): 464-466, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33604621

RESUMO

Here, we report a novel industrial aspartame production route, involving the enzymatic production of α-l-aspartyl-l-phenylalanine ß-methylester from l-aspartic acid dimethylester and l-phenylalanine by α-amino acid ester acyl transferase. The route also involves the chemical transformation of α-l-aspartyl-l-phenylalanine ß-methylester to α-l-aspartyl-l-phenylalanine methylester hydrochloride (aspartame hydrochloride) in an aqueous solution with methanol and HCl, followed by HCl removal to form aspartame.


Assuntos
Aciltransferases/metabolismo , Aspartame/química , Aspartame/síntese química , Indústrias , Técnicas de Química Sintética , Metanol/química , Água/química
15.
Environ Toxicol ; 36(2): 223-237, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32951320

RESUMO

Aspartame is one of the most common consumed artificial sweeteners utilized in many food products and beverages. It has been indicated that long-term consumption of aspartame leads to reproductive toxicity but its mechanism is not well-clear. In this study we investigated mechanism of aspartame-induced reproductive toxicity in male mice. For this purpose, 36 NMRI mature male mice received three doses of 40, 80, and 160 mg/kg body weight of aspartame, respectively per day by gavage for 90 days and also a control group was considered which received 0.5 mL of normal saline as the same route. The results revealed that long-term administration of aspartame at high doses significantly (P < .05) reduced gonadosomatic index, serum concentration of pituitary-testicular axis hormones (FSH, LH, and testosterone). It also decreased sperm parameters and total antioxidant capacity, antioxidant enzyme activities (superoxide dismutase, catalase, and glutathione peroxidase), while it caused increase in nitric oxide and malondialdehyde levels in testis tissue and sperm samples. Also, it decreased attenuated testicular histomorphometric indices (tubular differentiation index, spermiogenesis index, and repopulation index), and steroidogenic foci, while increased mRNA damages and apoptosis rate, downregulated antiapoptotic (Bcl-2) and upregulated proapoptotic (P53, BAX, and caspase-3) mediators respectively in testis. These findings indicated that consumption of aspartame for a long period results in male reproductive toxicity by decrease in serum concentration of pituitary-testis axis hormones and induction of oxidative stress and apoptosis in testis.


Assuntos
Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Aspartame/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Aspartame/administração & dosagem , Proteínas Relacionadas à Autofagia/metabolismo , Caspases/metabolismo , Relação Dose-Resposta a Droga , Glutationa Peroxidase/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Espermatogênese/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Testículo/metabolismo , Testosterona/sangue
16.
Am J Obstet Gynecol ; 223(2): 211-218, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32275895

RESUMO

In an effort to reduce sugar consumption to prevent diabetes mellitus and cardiovascular diseases, "sugar-free" or "no added sugar" products that substitute sugar with non-nutritive sweeteners (NNSs) (eg, Splenda, Sweet'N Low, and Stevia) have become increasingly popular. The use of these products during pregnancy has also increased, with approximately 30% of pregnant women reporting intentional NNS consumption. In clinical studies with nonpregnant participants and animal models, NNSs were shown to alter gut hormonal secretion, glucose absorption, appetite, kidney function, in vitro insulin secretion, adipogenesis, and microbiome dysbiosis of gut bacteria. In pregnant animal models, NNS consumption has been associated with altered sweet taste preference later in life and metabolic dysregulations in the offspring (eg, elevated body mass index, increased risk of obesity, microbiome dysbiosis, and abnormal liver function tests). Despite the accumulating evidence, no specific guidelines for NNS consumption are available for pregnant women. Furthermore, there are limited clinical studies on the effects of NNS consumption during pregnancy and postpartum and long-term outcomes in the offspring.


Assuntos
Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Efeitos Tardios da Exposição Pré-Natal , Dieta , Feminino , Humanos , Adoçantes não Calóricos/efeitos adversos , Adoçantes não Calóricos/farmacologia , Gravidez
17.
Turk J Med Sci ; 50(2): 448-454, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32222132

RESUMO

Background/aim: Aspartame (APM, L-aspartyl-L-phenylalanine methylester) is a low-calorie, nonsaccharide artificial sweetener widely used in foods and beverages. When metabolized by the body, APM is broken down into aspartic acid, phenylalanine amino acids, and a third substance, methanol. Since the amino acid phenylalanine serves as a neurotransmitter building block affecting the brain, and methanol is converted into toxic formaldehyde, APM has deleterious effects on the body and brain. Thus, its safety and, toxicity have been the subjects of concern ever since it was first discovered. Although many studies have been performed on it, due to the presence of conflicting data in the literature, there are still numerous question marks concerning APM.Therefore, the safety of aspartame was tested using in vitro methods. Materials and methods: We aimed to evaluate the in vitro cytotoxic effects by using 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase release tests, genotoxic damage potential by using chromosome aberration (CA) assay, and antioxidant/oxidant activity by using total antioxidant capacity (TAC) and total oxidative stress (TOS) analysis in primary human whole blood cell cultures. Results: The results of the MTT test showed that APM led to significant decreases in cell viability in a clear concentration-dependent manner. Moreover, an increase in CA frequency was found in the cells treated with APM. However, APM treatments did not cause any significant changes in TAC and TOS levels in whole blood cultures. Conclusion: Overall, the obtained results showed that APM had genotoxicity potential and a concentration-dependent cytotoxic activity in human blood cells.


Assuntos
Aspartame/toxicidade , Células Sanguíneas/efeitos dos fármacos , Noxas/toxicidade , Antioxidantes , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Cariótipo , Testes de Toxicidade
18.
Metab Brain Dis ; 34(2): 651-658, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30547285

RESUMO

The non-caloric sweetener aspartame can be potentially harmful to the developing brain, as some studies suggest an association between aspartame intake and adverse neural effects. This study aimed to evaluate the possible effects of aspartame, with or without associated early nutritional deficiency, on behavioral parameters suggestive of anxiety and electrophysiological features of the excitability-related phenomenon known as cortical spreading depression (CSD). Newborn Wistar rats (n = 80) were suckled under favorable (L9; n = 40) or unfavorable lactation conditions (L15; n = 40), consisting of litters with 9 or 15 pups, respectively. In each lactation condition, animals were divided into 4 groups that received per gavage, from postnatal day 8 to 28, 75 mg/kg/d or 125 mg/kg/d aspartame (groups ASP75 and ASP125), or water (vehicle group), or no treatment (naive group). Behavioral tests (elevated plus-maze [EPM]) were performed at postnatal days 86-95 and CSD was recorded between postnatal days 96-115. Compared to the control groups, aspartame dose-dependently reduced body weight, suggesting a negative impact on animal development; aspartame also caused behavioral changes suggestive of anxiety (shorter stay in the open arms in the EPM) and decelerated CSD (lower propagation speed). Some of these parameters were more affected in L15 animals, suggesting an interaction among aspartame and lactation condition. We concluded that early consumption of aspartame adversely affects development of the organism (weight loss), with actions on behavioral (anxiety-like) and cerebral electrophysiological (CSD) parameters. The data suggest caution in aspartame consumption by lactating mothers and their infants.


Assuntos
Aspartame/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Ansiedade/tratamento farmacológico , Peso Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Lactação/fisiologia , Masculino , Ratos Wistar
19.
Regul Toxicol Pharmacol ; 103: 345-351, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29408486

RESUMO

Two studies were conducted to further assess its mutagenic and genotoxic potential. In a bacterial reverse mutation pre-incubation study, Salmonella typhimurium strains TA100, TA1535, TA98, and TA1537 and Escherichia coli WP2 uvrA were treated with aspartame at concentrations of up to 5000 µg/plate with or without metabolic activation and showed no mutagenic potential. Similarly, in vivo micronucleus testing of aspartame following gavage administration (500-2000 mg/kg body weight) to Crlj:CD1(ICR) strain SPF male mice showed no increase in the proportion of micronucleated polychromatic erythrocytes in bone marrow cells collected and evaluated 24 or 48 h post administration. Overall, aspartame had no potential for mutagenic or genotoxic activity.


Assuntos
Aspartame/toxicidade , Mutagênicos/toxicidade , Edulcorantes/toxicidade , Administração Oral , Animais , Aspartame/administração & dosagem , Humanos , Camundongos , Camundongos Endogâmicos ICR , Testes de Mutagenicidade , Mutagênicos/administração & dosagem , Edulcorantes/administração & dosagem
20.
Regul Toxicol Pharmacol ; 103: 332-344, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29339245

RESUMO

The current review assessed cancer studies of aspartame based on a quality appraisal using the Klimisch grading system. Nine studies having complete histopathology were included: three 2-year studies by Searle; three transgenic mice studies by the NTP; three lifetime studies by the Ramazzini Institute. A tenth study limited to brain tumors was not rated. None were determined as Klimisch Code 1 (reliable without restrictions). The Searle studies predated GLP standards but their methodology was comparable; transgenic mouse models are not validated, but are accepted as supporting data. These studies were rated Klimisch Code 2 (reliable with restrictions). The Ramazzini Institute used a lifetime model of their own design that has been questioned due to high rates of spontaneous tumors, issues with tumor type diagnosis and concerns about the impact of chronic infections. As many of these problems could be attributed to using animals that died or were terminated near end of life, along with the other problems noted, these studies were rated Klimisch Code 3 (not reliable). As the Klimisch Code 2 studies demonstrated a lack of carcinogenic potential, and as aspartame is hydrolyzed to common components and lacks genotoxic activity, a conclusion that aspartame is not carcinogenic is supported.


Assuntos
Aspartame/análise , Edulcorantes/análise , Animais , Aspartame/administração & dosagem , Testes de Carcinogenicidade , Camundongos , Camundongos Transgênicos , Edulcorantes/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA