Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 17(12): 7652-7658, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29166035

RESUMO

Ceria is one of the world's most prominent material for applications in heterogeneous catalysis, as catalyst support or catalyst itself. Despite an exhaustive literature on the structure of reactive facets of CeO2 in line with its catalytic mechanisms, the temporal evolution of the atomic surface structure exposed to realistic redox conditions remains elusive. Here, we provide a direct visualization of the atomic mobility of cerium atoms on {100} surfaces of CeO2 nanocubes at room temperature in high vacuum, O2, and CO2 atmospheres in an environmental transmission electron microscope. Through quantification of the cationic mobility, we demonstrate the control of the surface dynamics under exposure to O2 and CO2 atmospheres, providing opportunities for a better understanding of the intimate catalytic mechanisms.

2.
Materials (Basel) ; 17(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38673284

RESUMO

In this research, the diffusion behaviors within the Ti-Fe-Cr ternary system were examined at the temperatures of 1273 K and 1373 K through the diffusion couple technique. This study led to the determination of both ternary inter-diffusion and impurity diffusion coefficients in the body-centered cubic (bcc) phase for the Ti-Fe-Cr alloy, utilizing the Whittle-Green and Hall methods. The statistics show that the average diffusion coefficients D˜FeFeTi and D˜CrCrTi measured at 1273 K were 1.34 × 10-12 and 3.66 × 10-13, respectively. At 1373 K, the average values of D˜FeFeTi and D˜CrCrTi were 4.89 × 10-12 and 1.43 × 10-12. By adopting the CALPHAD method, a self-consistent database for atomic mobility in the bcc phase of the Ti-Fe-Cr system was established. This database underwent refinement by comparing the newly acquired diffusion coefficients with data from the existing literature. Diffusion simulations for the diffusion couples were performed, drawing on the established database. The error between the simulated diffusion coefficient and the experimental measurement data is within 15%, and the simulated data of the component distance distribution and diffusion path are in good agreement with the experimental data. The simulations generated results that aligned well with the observed experimental diffusion characteristics, thereby affirming the reliability and accuracy of the database.

3.
Hum Immunol ; 84(9): 429-438, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37407356

RESUMO

The question of which protein antigens, such as HLA class I or class II molecules, will bind, and how well, to a given antibody is often assumed to depend exclusively on the details of protein surface structure. These structures are usually based on static models resulting from X-ray crystallography. While these notions are useful, the ultimate causal factors determining how well a given antigen binds a given antibody are based in thermodynamics and can include atomic mobility and the time-varying conformations of proteins. In this article, fundamental biophysical principles of antibody-antigen interaction are discussed, concepts critical for a deeper understanding of the pertinent molecular phenomena are highlighted, and common misunderstandings are identified and debunked.


Assuntos
Anticorpos , Antígenos , Humanos , Epitopos , Sítios de Ligação de Anticorpos
4.
Materials (Basel) ; 15(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35009429

RESUMO

In this paper, a general and effective strategy was first developed to maintain the CALPHAD atomic mobility database of multicomponent systems, based on the pragmatic numerical method and freely accessible HitDIC software, and then applied to update the atomic mobility descriptions of the hcp Mg-Al-Zn, Mg-Al-Sn, and Mg-Al-Zn-Sn systems. A set of the self-consistent atomic mobility database of the hcp Mg-Al-Zn-Sn system was established following the new strategy presented. A comprehensive comparison between the model-predicted composition-distance profiles/inter-diffusivities in the hcp Mg-Al-Zn, Mg-Al-Sn, and Mg-Al-Zn-Sn systems from the presently updated atomic mobilities and those from the previous ones that used the traditional method indicated that significant improvement can be achieved utilizing the new strategy, especially in the cases with sufficient experimental composition-distance profiles and/or in higher-order systems. Furthermore, it is anticipated that the proposed strategy can serve as a standard for maintaining the CALPHAD atomic mobility database in different multicomponent systems.

5.
Materials (Basel) ; 11(10)2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297670

RESUMO

ß-type (with bcc structure) titanium alloys have been widely used as artificial implants in the medical field due to their favorable properties. Among them, Ti-Mo alloy attracted numerous interests as metallic biomaterials. Understanding of kinetic characteristics of Ti alloys is critical to understand and manipulate the phase transformation and microstructure evolution during homogenization and precipitation. In this work, diffusion couple technique was employed to investigate the diffusion behaviors in bcc Ti-Mo-Zr alloys. The diffusion couples were prepared and annealed at 1373 K for 72 h and 1473 K for 48 h, respectively. The composition-distance profiles were obtained via electron probe micro-analysis (EPMA). The chemical diffusion coefficients and impurity diffusion coefficients were extracted via the Whittle-Green method and Hall method. The obtained diffusion coefficients were assessed to develop a self-consistent atomic mobility database of bcc phase in Ti-Mo-Zr system. The calculated diffusion coefficients were compared with the experimental results. They showed good agreement. Simulations were implemented by Dictra Module in Thermo-Calc software. The predicted composition-distance profiles, inter-diffusion flux, and diffusion paths are consistent with experimental data, confirming the accuracy of the database.

6.
Protein Sci ; 27(2): 411-420, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29027293

RESUMO

Three basic electronic properties of molecules, electron density (ED), charge density (CD), and electrostatic potentials (ESP), are dependent on both atomic mobility and occupancy of components in the molecules. Small protein subunits may bind large macromolecular complexes with a reduced occupancy or an increased atomic mobility or both due to affinity-based functional regulation, and so may substrates, products, cofactors, ions or solvent molecule to the active sites of enzymes. A quantitative theory is presented in this study that describes the dependence of atomic functions on atomic B-factor in Fourier transforms of the corresponding maps. An application of this theory is described to an experimental ED map at 1.73-Å resolution, and to an experimental CD map at 2.2-Å resolution. All the three density functions are linearly proportional to occupancy when the structure factor F(000) term of Fourier transforms of experimental density maps is included. Upon application of this theory to both experimental CD and ESP maps recently reported for photosystem II-light harvesting complex II supercomplex at 3.2-Å resolution, the occupancy of two extrinsic protein subunits PsbQ and PsbP is determined to be 20.4 ± 0.2%, and the negative mean ESP value of vitreous ice displaced by the supercomplex on electron scattering path is estimated to be 3% of the mean ESP value of protein α-helices.


Assuntos
Complexo de Proteína do Fotossistema II/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Análise de Fourier , Substâncias Macromoleculares/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA