Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Annu Rev Pharmacol Toxicol ; 64: 527-550, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37738505

RESUMO

Drug discovery is adapting to novel technologies such as data science, informatics, and artificial intelligence (AI) to accelerate effective treatment development while reducing costs and animal experiments. AI is transforming drug discovery, as indicated by increasing interest from investors, industrial and academic scientists, and legislators. Successful drug discovery requires optimizing properties related to pharmacodynamics, pharmacokinetics, and clinical outcomes. This review discusses the use of AI in the three pillars of drug discovery: diseases, targets, and therapeutic modalities, with a focus on small-molecule drugs. AI technologies, such as generative chemistry, machine learning, and multiproperty optimization, have enabled several compounds to enter clinical trials. The scientific community must carefully vet known information to address the reproducibility crisis. The full potential of AI in drug discovery can only be realized with sufficient ground truth and appropriate human intervention at later pipeline stages.


Assuntos
Inteligência Artificial , Médicos , Animais , Humanos , Reprodutibilidade dos Testes , Descoberta de Drogas , Tecnologia
2.
Proc Natl Acad Sci U S A ; 121(31): e2404676121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042681

RESUMO

This work establishes a different paradigm on digital molecular spaces and their efficient navigation by exploiting sigma profiles. To do so, the remarkable capability of Gaussian processes (GPs), a type of stochastic machine learning model, to correlate and predict physicochemical properties from sigma profiles is demonstrated, outperforming state-of-the-art neural networks previously published. The amount of chemical information encoded in sigma profiles eases the learning burden of machine learning models, permitting the training of GPs on small datasets which, due to their negligible computational cost and ease of implementation, are ideal models to be combined with optimization tools such as gradient search or Bayesian optimization (BO). Gradient search is used to efficiently navigate the sigma profile digital space, quickly converging to local extrema of target physicochemical properties. While this requires the availability of pretrained GP models on existing datasets, such limitations are eliminated with the implementation of BO, which can find global extrema with a limited number of iterations. A remarkable example of this is that of BO toward boiling temperature optimization. Holding no knowledge of chemistry except for the sigma profile and boiling temperature of carbon monoxide (the worst possible initial guess), BO finds the global maximum of the available boiling temperature dataset (over 1,000 molecules encompassing more than 40 families of organic and inorganic compounds) in just 15 iterations (i.e., 15 property measurements), cementing sigma profiles as a powerful digital chemical space for molecular optimization and discovery, particularly when little to no experimental data is initially available.

3.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38538142

RESUMO

Many initial movements require subsequent corrective movements, but how the motor cortex transitions to make corrections and how similar the encoding is to initial movements is unclear. In our study, we explored how the brain's motor cortex signals both initial and corrective movements during a precision reaching task. We recorded a large population of neurons from two male rhesus macaques across multiple sessions to examine the neural firing rates during not only initial movements but also subsequent corrective movements. AutoLFADS, an autoencoder-based deep-learning model, was applied to provide a clearer picture of neurons' activity on individual corrective movements across sessions. Decoding of reach velocity generalized poorly from initial to corrective submovements. Unlike initial movements, it was challenging to predict the velocity of corrective movements using traditional linear methods in a single, global neural space. We identified several locations in the neural space where corrective submovements originated after the initial reaches, signifying firing rates different than the baseline before initial movements. To improve corrective movement decoding, we demonstrate that a state-dependent decoder incorporating the population firing rates at the initiation of correction improved performance, highlighting the diverse neural features of corrective movements. In summary, we show neural differences between initial and corrective submovements and how the neural activity encodes specific combinations of velocity and position. These findings are inconsistent with assumptions that neural correlations with kinematic features are global and independent, emphasizing that traditional methods often fall short in describing these diverse neural processes for online corrective movements.


Assuntos
Macaca mulatta , Córtex Motor , Neurônios , Desempenho Psicomotor , Animais , Masculino , Desempenho Psicomotor/fisiologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Movimento/fisiologia , Aprendizado Profundo , Potenciais de Ação/fisiologia
4.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38033290

RESUMO

Within drug discovery, the goal of AI scientists and cheminformaticians is to help identify molecular starting points that will develop into safe and efficacious drugs while reducing costs, time and failure rates. To achieve this goal, it is crucial to represent molecules in a digital format that makes them machine-readable and facilitates the accurate prediction of properties that drive decision-making. Over the years, molecular representations have evolved from intuitive and human-readable formats to bespoke numerical descriptors and fingerprints, and now to learned representations that capture patterns and salient features across vast chemical spaces. Among these, sequence-based and graph-based representations of small molecules have become highly popular. However, each approach has strengths and weaknesses across dimensions such as generality, computational cost, inversibility for generative applications and interpretability, which can be critical in informing practitioners' decisions. As the drug discovery landscape evolves, opportunities for innovation continue to emerge. These include the creation of molecular representations for high-value, low-data regimes, the distillation of broader biological and chemical knowledge into novel learned representations and the modeling of up-and-coming therapeutic modalities.


Assuntos
Descoberta de Drogas , Intuição , Humanos , Aprendizagem
5.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36617209

RESUMO

Recent studies have shown that the expression of circRNAs would affect drug sensitivity of cells and thus significantly influence the efficacy of drugs. Traditional biomedical experiments to validate such relationships are time-consuming and costly. Therefore, developing effective computational methods to predict potential associations between circRNAs and drug sensitivity is an important and urgent task. In this study, we propose a novel method, called MNGACDA, to predict possible circRNA-drug sensitivity associations for further biomedical screening. First, MNGACDA uses multiple sources of information from circRNAs and drugs to construct multimodal networks. It then employs node-level attention graph auto-encoders to obtain low-dimensional embeddings for circRNAs and drugs from the multimodal networks. Finally, an inner product decoder is applied to predict the association scores between circRNAs and drug sensitivity based on the embedding representations of circRNAs and drugs. Extensive experimental results based on cross-validations show that MNGACDA outperforms six other state-of-the-art methods. Furthermore, excellent performance in case studies demonstrates that MNGACDA is an effective tool for predicting circRNA-drug sensitivity associations in real situations. These results confirm the reliable prediction ability of MNGACDA in revealing circRNA-drug sensitivity associations.


Assuntos
RNA Circular , RNA Circular/genética
6.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36460622

RESUMO

Drug response prediction in cancer cell lines is of great significance in personalized medicine. In this study, we propose GADRP, a cancer drug response prediction model based on graph convolutional networks (GCNs) and autoencoders (AEs). We first use a stacked deep AE to extract low-dimensional representations from cell line features, and then construct a sparse drug cell line pair (DCP) network incorporating drug, cell line, and DCP similarity information. Later, initial residual and layer attention-based GCN (ILGCN) that can alleviate over-smoothing problem is utilized to learn DCP features. And finally, fully connected network is employed to make prediction. Benchmarking results demonstrate that GADRP can significantly improve prediction performance on all metrics compared with baselines on five datasets. Particularly, experiments of predictions of unknown DCP responses, drug-cancer tissue associations, and drug-pathway associations illustrate the predictive power of GADRP. All results highlight the effectiveness of GADRP in predicting drug responses, and its potential value in guiding anti-cancer drug selection.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benchmarking , Linhagem Celular , Aprendizagem
7.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37587790

RESUMO

Precision medicine relies on the identification of robust disease and risk factor signatures from omics data. However, current knowledge-driven approaches may overlook novel or unexpected phenomena due to the inherent biases in biological knowledge. In this study, we present a data-driven signature discovery workflow for DNA methylation analysis utilizing network-coherent autoencoders (NCAEs) with biologically relevant latent embeddings. First, we explored the architecture space of autoencoders trained on a large-scale pan-tissue compendium (n = 75 272) of human epigenome-wide association studies. We observed the emergence of co-localized patterns in the deep autoencoder latent space representations that corresponded to biological network modules. We determined the NCAE configuration with the strongest co-localization and centrality signals in the human protein interactome. Leveraging the NCAE embeddings, we then trained interpretable deep neural networks for risk factor (aging, smoking) and disease (systemic lupus erythematosus) prediction and classification tasks. Remarkably, our NCAE embedding-based models outperformed existing predictors, revealing novel DNA methylation signatures enriched in gene sets and pathways associated with the studied condition in each case. Our data-driven biomarker discovery workflow provides a generally applicable pipeline to capture relevant risk factor and disease information. By surpassing the limitations of knowledge-driven methods, our approach enhances the understanding of complex epigenetic processes, facilitating the development of more effective diagnostic and therapeutic strategies.


Assuntos
Algoritmos , Metilação de DNA , Humanos , Redes Neurais de Computação , Epigênese Genética , Fatores de Risco
8.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36513375

RESUMO

Type 1 diabetes (T1D) outcome prediction plays a vital role in identifying novel risk factors, ensuring early patient care and designing cohort studies. TEDDY is a longitudinal cohort study that collects a vast amount of multi-omics and clinical data from its participants to explore the progression and markers of T1D. However, missing data in the omics profiles make the outcome prediction a difficult task. TEDDY collected time series gene expression for less than 6% of enrolled participants. Additionally, for the participants whose gene expressions are collected, 79% time steps are missing. This study introduces an advanced bioinformatics framework for gene expression imputation and islet autoimmunity (IA) prediction. The imputation model generates synthetic data for participants with partially or entirely missing gene expression. The prediction model integrates the synthetic gene expression with other risk factors to achieve better predictive performance. Comprehensive experiments on TEDDY datasets show that: (1) Our pipeline can effectively integrate synthetic gene expression with family history, HLA genotype and SNPs to better predict IA status at 2 years (sensitivity 0.622, AUC 0.715) compared with the individual datasets and state-of-the-art results in the literature (AUC 0.682). (2) The synthetic gene expression contains predictive signals as strong as the true gene expression, reducing reliance on expensive and long-term longitudinal data collection. (3) Time series gene expression is crucial to the proposed improvement and shows significantly better predictive ability than cross-sectional gene expression. (4) Our pipeline is robust to limited data availability. Availability: Code is available at https://github.com/compbiolabucf/TEDDY.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/genética , Autoimunidade/genética , Estudos Longitudinais , Fatores de Tempo , Estudos Transversais , Predisposição Genética para Doença , Expressão Gênica
9.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37864295

RESUMO

The widespread adoption of high-throughput omics technologies has exponentially increased the amount of protein sequence data involved in many salient disease pathways and their respective therapeutics and diagnostics. Despite the availability of large-scale sequence data, the lack of experimental fitness annotations underpins the need for self-supervised and unsupervised machine learning (ML) methods. These techniques leverage the meaningful features encoded in abundant unlabeled sequences to accomplish complex protein engineering tasks. Proficiency in the rapidly evolving fields of protein engineering and generative AI is required to realize the full potential of ML models as a tool for protein fitness landscape navigation. Here, we support this work by (i) providing an overview of the architecture and mathematical details of the most successful ML models applicable to sequence data (e.g. variational autoencoders, autoregressive models, generative adversarial neural networks, and diffusion models), (ii) guiding how to effectively implement these models on protein sequence data to predict fitness or generate high-fitness sequences and (iii) highlighting several successful studies that implement these techniques in protein engineering (from paratope regions and subcellular localization prediction to high-fitness sequences and protein design rules generation). By providing a comprehensive survey of model details, novel architecture developments, comparisons of model applications, and current challenges, this study intends to provide structured guidance and robust framework for delivering a prospective outlook in the ML-driven protein engineering field.


Assuntos
Redes Neurais de Computação , Aprendizado de Máquina não Supervisionado , Sequência de Aminoácidos , Exercício Físico , Proteínas/genética
10.
Proc Natl Acad Sci U S A ; 119(45): e2202024119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322732

RESUMO

Humans and other animals have a remarkable capacity to translate their position from one spatial frame of reference to another. The ability to seamlessly move between top-down and first-person views is important for navigation, memory formation, and other cognitive tasks. Evidence suggests that the medial temporal lobe and other cortical regions contribute to this function. To understand how a neural system might carry out these computations, we used variational autoencoders (VAEs) to reconstruct the first-person view from the top-down view of a robot simulation, and vice versa. Many latent variables in the VAEs had similar responses to those seen in neuron recordings, including location-specific activity, head direction tuning, and encoding of distance to local objects. Place-specific responses were prominent when reconstructing a first-person view from a top-down view, but head direction-specific responses were prominent when reconstructing a top-down view from a first-person view. In both cases, the model could recover from perturbations without retraining, but rather through remapping. These results could advance our understanding of how brain regions support viewpoint linkages and transformations.


Assuntos
Encéfalo , Lobo Temporal , Animais , Humanos , Encéfalo/fisiologia , Lobo Temporal/fisiologia , Neurônios/fisiologia , Cabeça
11.
BMC Bioinformatics ; 25(1): 257, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107690

RESUMO

The recent advances in high-throughput single-cell sequencing have created an urgent demand for computational models which can address the high complexity of single-cell multiomics data. Meticulous single-cell multiomics integration models are required to avoid biases towards a specific modality and overcome sparsity. Batch effects obfuscating biological signals must also be taken into account. Here, we introduce a new single-cell multiomics integration model, Single-cell Multiomics Autoencoder Integration (scMaui) based on variational product-of-experts autoencoders and adversarial learning. scMaui calculates a joint representation of multiple marginal distributions based on a product-of-experts approach which is especially effective for missing values in the modalities. Furthermore, it overcomes limitations seen in previous VAE-based integration methods with regard to batch effect correction and restricted applicable assays. It handles multiple batch effects independently accepting both discrete and continuous values, as well as provides varied reconstruction loss functions to cover all possible assays and preprocessing pipelines. We demonstrate that scMaui achieves superior performance in many tasks compared to other methods. Further downstream analyses also demonstrate its potential in identifying relations between assays and discovering hidden subpopulations.


Assuntos
Aprendizado Profundo , Análise de Célula Única , Humanos , Multiômica/métodos , Análise de Célula Única/métodos
12.
Am J Transplant ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901561

RESUMO

Generative artificial intelligence (AI), a subset of machine learning that creates new content based on training data, has witnessed tremendous advances in recent years. Practical applications have been identified in health care in general, and there is significant opportunity in transplant medicine for generative AI to simplify tasks in research, medical education, and clinical practice. In addition, patients stand to benefit from patient education that is more readily provided by generative AI applications. This review aims to catalyze the development and adoption of generative AI in transplantation by introducing basic AI and generative AI concepts to the transplant clinician and summarizing its current and potential applications within the field. We provide an overview of applications to the clinician, researcher, educator, and patient. We also highlight the challenges involved in bringing these applications to the bedside and need for ongoing refinement of generative AI applications to sustainably augment the transplantation field.

13.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35108355

RESUMO

MOTIVATION: Predicting disease-related long non-coding RNAs (lncRNAs) can be used as the biomarkers for disease diagnosis and treatment. The development of effective computational prediction approaches to predict lncRNA-disease associations (LDAs) can provide insights into the pathogenesis of complex human diseases and reduce experimental costs. However, few of the existing methods use microRNA (miRNA) information and consider the complex relationship between inter-graph and intra-graph in complex-graph for assisting prediction. RESULTS: In this paper, the relationships between the same types of nodes and different types of nodes in complex-graph are introduced. We propose a multi-channel graph attention autoencoder model to predict LDAs, called MGATE. First, an lncRNA-miRNA-disease complex-graph is established based on the similarity and correlation among lncRNA, miRNA and diseases to integrate the complex association among them. Secondly, in order to fully extract the comprehensive information of the nodes, we use graph autoencoder networks to learn multiple representations from complex-graph, inter-graph and intra-graph. Thirdly, a graph-level attention mechanism integration module is adopted to adaptively merge the three representations, and a combined training strategy is performed to optimize the whole model to ensure the complementary and consistency among the multi-graph embedding representations. Finally, multiple classifiers are explored, and Random Forest is used to predict the association score between lncRNA and disease. Experimental results on the public dataset show that the area under receiver operating characteristic curve and area under precision-recall curve of MGATE are 0.964 and 0.413, respectively. MGATE performance significantly outperformed seven state-of-the-art methods. Furthermore, the case studies of three cancers further demonstrate the ability of MGATE to identify potential disease-correlated candidate lncRNAs. The source code and supplementary data are available at https://github.com/sheng-n/MGATE. CONTACT: huanglan@jlu.edu.cn, wy6868@jlu.edu.cn.


Assuntos
MicroRNAs , RNA Longo não Codificante , Algoritmos , Biologia Computacional/métodos , Humanos , MicroRNAs/genética , Redes Neurais de Computação , RNA Longo não Codificante/genética
14.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36305456

RESUMO

Long non-coding RNAs (lncRNAs) can disrupt the biological functions of protein-coding genes (PCGs) to cause cancer. However, the relationship between lncRNAs and PCGs remains unclear and difficult to predict. Machine learning has achieved a satisfactory performance in association prediction, but to our knowledge, it is currently less used in lncRNA-PCG association prediction. Therefore, we introduce GAE-LGA, a powerful deep learning model with graph autoencoders as components, to recognize potential lncRNA-PCG associations. GAE-LGA jointly explored lncRNA-PCG learning and cross-omics correlation learning for effective lncRNA-PCG association identification. The functional similarity and multi-omics similarity of lncRNAs and PCGs were accumulated and encoded by graph autoencoders to extract feature representations of lncRNAs and PCGs, which were subsequently used for decoding to obtain candidate lncRNA-PCG pairs. Comprehensive evaluation demonstrated that GAE-LGA can successfully capture lncRNA-PCG associations with strong robustness and outperformed other machine learning-based identification methods. Furthermore, multi-omics features were shown to improve the performance of lncRNA-PCG association identification. In conclusion, GAE-LGA can act as an efficient application for lncRNA-PCG association prediction with the following advantages: It fuses multi-omics information into the similarity network, making the feature representation more accurate; it can predict lncRNA-PCG associations for new lncRNAs and identify potential lncRNA-PCG associations with high accuracy.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , Biologia Computacional/métodos , Aprendizado de Máquina , Neoplasias/genética , RNA Longo não Codificante/genética , Proteínas/genética
15.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34718408

RESUMO

MOTIVATION: Identifying proteins that interact with drugs plays an important role in the initial period of developing drugs, which helps to reduce the development cost and time. Recent methods for predicting drug-protein interactions mainly focus on exploiting various data about drugs and proteins. These methods failed to completely learn and integrate the attribute information of a pair of drug and protein nodes and their attribute distribution. RESULTS: We present a new prediction method, GVDTI, to encode multiple pairwise representations, including attention-enhanced topological representation, attribute representation and attribute distribution. First, a framework based on graph convolutional autoencoder is constructed to learn attention-enhanced topological embedding that integrates the topology structure of a drug-protein network for each drug and protein nodes. The topological embeddings of each drug and each protein are then combined and fused by multi-layer convolution neural networks to obtain the pairwise topological representation, which reveals the hidden topological relationships between drug and protein nodes. The proposed attribute-wise attention mechanism learns and adjusts the importance of individual attribute in each topological embedding of drug and protein nodes. Secondly, a tri-layer heterogeneous network composed of drug, protein and disease nodes is created to associate the similarities, interactions and associations across the heterogeneous nodes. The attribute distribution of the drug-protein node pair is encoded by a variational autoencoder. The pairwise attribute representation is learned via a multi-layer convolutional neural network to deeply integrate the attributes of drug and protein nodes. Finally, the three pairwise representations are fused by convolutional and fully connected neural networks for drug-protein interaction prediction. The experimental results show that GVDTI outperformed other seven state-of-the-art methods in comparison. The improved recall rates indicate that GVDTI retrieved more actual drug-protein interactions in the top ranked candidates than conventional methods. Case studies on five drugs further confirm GVDTI's ability in discovering the potential candidate drug-related proteins. CONTACT: zhang@hlju.edu.cn Supplementary information: Supplementary data are available at Briefings in Bioinformatics online.


Assuntos
Redes Neurais de Computação , Proteínas , Interações Medicamentosas
16.
Methods ; 211: 48-60, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36804214

RESUMO

Single-cell RNA sequencing (scRNA-seq) data scale surges with high-throughput sequencing technology development. However, although single-cell data analysis is a powerful tool, various issues have been reported, such as sequencing sparsity and complex differential patterns in gene expression. Statistical or traditional machine learning methods are inefficient, and the accuracy needs to be improved. The methods based on deep learning can not directly process non-Euclidean spatial data, such as cell diagrams. In this study, we have developed graph autoencoders and graph attention network for scRNA-seq analysis based on a directed graph neural network named scDGAE. Directed graph neural networks cannot only retain the connection properties of the directed graph but also expand the receptive field of the convolution operation. Cosine similarity, median L1 distance, and root-mean-squared error are used to measure the gene imputation performance of different methods with scDGAE. Furthermore, adjusted mutual information, normalized mutual information, completeness score, and Silhouette coefficient score are used to measure the cell clustering performance of different methods with scDGAE. Experiment results show that the scDGAE model achieves promising performance in gene imputation and cell clustering prediction on four scRNA-seq data sets with gold-standard cell labels. Furthermore, it is a robust framework that can be applied to general scRNA-Seq analyses.


Assuntos
Redes Neurais de Computação , Análise da Expressão Gênica de Célula Única , Análise de Sequência de RNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Célula Única/métodos , Análise de Dados , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos
17.
J Biomed Inform ; 151: 104602, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38346530

RESUMO

OBJECTIVE: An applied problem facing all areas of data science is harmonizing data sources. Joining data from multiple origins with unmapped and only partially overlapping features is a prerequisite to developing and testing robust, generalizable algorithms, especially in healthcare. This integrating is usually resolved using meta-data such as feature names, which may be unavailable or ambiguous. Our goal is to design methods that create a mapping between structured tabular datasets derived from electronic health records independent of meta-data. METHODS: We evaluate methods in the challenging case of numeric features without reliable and distinctive univariate summaries, such as nearly Gaussian and binary features. We assume that a small set of features are a priori mapped between two datasets, which share unknown identical features and possibly many unrelated features. Inter-feature relationships are the main source of identification which we expect. We compare the performance of contrastive learning methods for feature representations, novel partial auto-encoders, mutual-information graph optimizers, and simple statistical baselines on simulated data, public datasets, the MIMIC-III medical-record changeover, and perioperative records from before and after a medical-record system change. Performance was evaluated using both mapping of identical features and reconstruction accuracy of examples in the format of the other dataset. RESULTS: Contrastive learning-based methods overall performed the best, often substantially beating the literature baseline in matching and reconstruction, especially in the more challenging real data experiments. Partial auto-encoder methods showed on-par matching with contrastive methods in all synthetic and some real datasets, along with good reconstruction. However, the statistical method we created performed reasonably well in many cases, with much less dependence on hyperparameter tuning. When validating feature match output in the EHR dataset we found that some mistakes were actually a surrogate or related feature as reviewed by two subject matter experts. CONCLUSION: In simulation studies and real-world examples, we find that inter-feature relationships are effective at identifying matching or closely related features across tabular datasets when meta-data is not available. Decoder architectures are also reasonably effective at imputing features without an exact match.


Assuntos
Algoritmos , Registros Eletrônicos de Saúde , Simulação por Computador , Ciência de Dados , Motivação
18.
Cereb Cortex ; 33(17): 9877-9895, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37420330

RESUMO

It is increasingly clear that memories are distributed across multiple brain areas. Such "engram complexes" are important features of memory formation and consolidation. Here, we test the hypothesis that engram complexes are formed in part by bioelectric fields that sculpt and guide the neural activity and tie together the areas that participate in engram complexes. Like the conductor of an orchestra, the fields influence each musician or neuron and orchestrate the output, the symphony. Our results use the theory of synergetics, machine learning, and data from a spatial delayed saccade task and provide evidence for in vivo ephaptic coupling in memory representations.


Assuntos
Consolidação da Memória , Neurônios , Neurônios/fisiologia , Encéfalo/fisiologia
19.
BMC Med Imaging ; 24(1): 100, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684964

RESUMO

PURPOSE: To detect the Marchiafava Bignami Disease (MBD) using a distinct deep learning technique. BACKGROUND: Advanced deep learning methods are becoming more crucial in contemporary medical diagnostics, particularly for detecting intricate and uncommon neurological illnesses such as MBD. This rare neurodegenerative disorder, sometimes associated with persistent alcoholism, is characterized by the loss of myelin or tissue death in the corpus callosum. It poses significant diagnostic difficulties owing to its infrequency and the subtle signs it exhibits in its first stages, both clinically and on radiological scans. METHODS: The novel method of Variational Autoencoders (VAEs) in conjunction with attention mechanisms is used to identify MBD peculiar diseases accurately. VAEs are well-known for their proficiency in unsupervised learning and anomaly detection. They excel at analyzing extensive brain imaging datasets to uncover subtle patterns and abnormalities that traditional diagnostic approaches may overlook, especially those related to specific diseases. The use of attention mechanisms enhances this technique, enabling the model to concentrate on the most crucial elements of the imaging data, similar to the discerning observation of a skilled radiologist. Thus, we utilized the VAE with attention mechanisms in this study to detect MBD. Such a combination enables the prompt identification of MBD and assists in formulating more customized and efficient treatment strategies. RESULTS: A significant breakthrough in this field is the creation of a VAE equipped with attention mechanisms, which has shown outstanding performance by achieving accuracy rates of over 90% in accurately differentiating MBD from other neurodegenerative disorders. CONCLUSION: This model, which underwent training using a diverse range of MRI images, has shown a notable level of sensitivity and specificity, significantly minimizing the frequency of false positive results and strengthening the confidence and dependability of these sophisticated automated diagnostic tools.


Assuntos
Aprendizado Profundo , Imageamento por Ressonância Magnética , Doença de Marchiafava-Bignami , Humanos , Doença de Marchiafava-Bignami/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Interpretação de Imagem Assistida por Computador/métodos , Sensibilidade e Especificidade
20.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916282

RESUMO

The observation of place cells has suggested that the hippocampus plays a special role in encoding spatial information. However, place cell responses are modulated by several nonspatial variables and reported to be rather unstable. Here, we propose a memory model of the hippocampus that provides an interpretation of place cells consistent with these observations. We hypothesize that the hippocampus is a memory device that takes advantage of the correlations between sensory experiences to generate compressed representations of the episodes that are stored in memory. A simple neural network model that can efficiently compress information naturally produces place cells that are similar to those observed in experiments. It predicts that the activity of these cells is variable and that the fluctuations of the place fields encode information about the recent history of sensory experiences. Place cells may simply be a consequence of a memory compression process implemented in the hippocampus.


Assuntos
Hipocampo/fisiologia , Modelos Neurológicos , Memória Espacial/fisiologia , Animais , Hipocampo/citologia , Rede Nervosa , Navegação Espacial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA