Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36869843

RESUMO

Recently, lysine lactylation (Kla), a novel post-translational modification (PTM), which can be stimulated by lactate, has been found to regulate gene expression and life activities. Therefore, it is imperative to accurately identify Kla sites. Currently, mass spectrometry is the fundamental method for identifying PTM sites. However, it is expensive and time-consuming to achieve this through experiments alone. Herein, we proposed a novel computational model, Auto-Kla, to quickly and accurately predict Kla sites in gastric cancer cells based on automated machine learning (AutoML). With stable and reliable performance, our model outperforms the recently published model in the 10-fold cross-validation. To investigate the generalizability and transferability of our approach, we evaluated the performance of our models trained on two other widely studied types of PTM, including phosphorylation sites in host cells infected with SARS-CoV-2 and lysine crotonylation sites in HeLa cells. The results show that our models achieve comparable or better performance than current outstanding models. We believe that this method will become a useful analytical tool for PTM prediction and provide a reference for the future development of related models. The web server and source code are available at http://tubic.org/Kla and https://github.com/tubic/Auto-Kla, respectively.


Assuntos
COVID-19 , Lisina , Humanos , Lisina/metabolismo , Células HeLa , SARS-CoV-2/metabolismo , Aprendizado de Máquina
2.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642107

RESUMO

Glioma is a systemic disease that can induce micro and macro alternations of whole brain. Isocitrate dehydrogenase and vascular endothelial growth factor are proven prognostic markers and antiangiogenic therapy targets in glioma. The aim of this study was to determine the ability of whole brain morphologic features and radiomics to predict isocitrate dehydrogenase status and vascular endothelial growth factor expression levels. This study recruited 80 glioma patients with isocitrate dehydrogenase wildtype and high vascular endothelial growth factor expression levels, and 102 patients with isocitrate dehydrogenase mutation and low vascular endothelial growth factor expression levels. Virtual brain grafting, combined with Freesurfer, was used to compute morphologic features including cortical thickness, LGI, and subcortical volume in glioma patient. Radiomics features were extracted from multiregional tumor. Pycaret was used to construct the machine learning pipeline. Among the radiomics models, the whole tumor model achieved the best performance (accuracy 0.80, Area Under the Curve 0.86), while, after incorporating whole brain morphologic features, the model had a superior predictive performance (accuracy 0.82, Area Under the Curve 0.88). The features contributed most in predicting model including the right caudate volume, left middle temporal cortical thickness, first-order statistics, shape, and gray-level cooccurrence matrix. Pycaret, based on morphologic features, combined with radiomics, yielded highest accuracy in predicting isocitrate dehydrogenase mutation and vascular endothelial growth factor levels, indicating that morphologic abnormalities induced by glioma were associated with tumor biology.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Isocitrato Desidrogenase/genética , Imageamento por Ressonância Magnética , Glioma/diagnóstico por imagem , Glioma/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mutação , Estudos Retrospectivos
3.
Graefes Arch Clin Exp Ophthalmol ; 262(9): 2785-2798, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38446200

RESUMO

AIM: Code-free deep learning (CFDL) allows clinicians without coding expertise to build high-quality artificial intelligence (AI) models without writing code. In this review, we comprehensively review the advantages that CFDL offers over bespoke expert-designed deep learning (DL). As exemplars, we use the following tasks: (1) diabetic retinopathy screening, (2) retinal multi-disease classification, (3) surgical video classification, (4) oculomics and (5) resource management. METHODS: We performed a search for studies reporting CFDL applications in ophthalmology in MEDLINE (through PubMed) from inception to June 25, 2023, using the keywords 'autoML' AND 'ophthalmology'. After identifying 5 CFDL studies looking at our target tasks, we performed a subsequent search to find corresponding bespoke DL studies focused on the same tasks. Only English-written articles with full text available were included. Reviews, editorials, protocols and case reports or case series were excluded. We identified ten relevant studies for this review. RESULTS: Overall, studies were optimistic towards CFDL's advantages over bespoke DL in the five ophthalmological tasks. However, much of such discussions were identified to be mono-dimensional and had wide applicability gaps. High-quality assessment of better CFDL applicability over bespoke DL warrants a context-specific, weighted assessment of clinician intent, patient acceptance and cost-effectiveness. We conclude that CFDL and bespoke DL are unique in their own assets and are irreplaceable with each other. Their benefits are differentially valued on a case-to-case basis. Future studies are warranted to perform a multidimensional analysis of both techniques and to improve limitations of suboptimal dataset quality, poor applicability implications and non-regulated study designs. CONCLUSION: For clinicians without DL expertise and easy access to AI experts, CFDL allows the prototyping of novel clinical AI systems. CFDL models concert with bespoke models, depending on the task at hand. A multidimensional, weighted evaluation of the factors involved in the implementation of those models for a designated task is warranted.


Assuntos
Aprendizado Profundo , Oftalmologia , Humanos
4.
BMC Med Imaging ; 24(1): 50, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413923

RESUMO

BACKGROUND: Asymptomatic COVID-19 carriers with normal chest computed tomography (CT) scans have perpetuated the ongoing pandemic of this disease. This retrospective study aimed to use automated machine learning (AutoML) to develop a prediction model based on CT characteristics for the identification of asymptomatic carriers. METHODS: Asymptomatic carriers were from Yangzhou Third People's Hospital from August 1st, 2020, to March 31st, 2021, and the control group included a healthy population from a nonepizootic area with two negative RT‒PCR results within 48 h. All CT images were preprocessed using MATLAB. Model development and validation were conducted in R with the H2O package. The models were built based on six algorithms, e.g., random forest and deep neural network (DNN), and a training set (n = 691). The models were improved by automatically adjusting hyperparameters for an internal validation set (n = 306). The performance of the obtained models was evaluated based on a dataset from Suzhou (n = 178) using the area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and F1 score. RESULTS: A total of 1,175 images were preprocessed with high stability. Six models were developed, and the performance of the DNN model ranked first, with an AUC value of 0.898 for the test set. The sensitivity, specificity, PPV, NPV, F1 score and accuracy of the DNN model were 0.820, 0.854, 0.849, 0.826, 0.834 and 0.837, respectively. A plot of a local interpretable model-agnostic explanation demonstrated how different variables worked in identifying asymptomatic carriers. CONCLUSIONS: Our study demonstrates that AutoML models based on CT images can be used to identify asymptomatic carriers. The most promising model for clinical implementation is the DNN-algorithm-based model.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , COVID-19/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Aprendizado de Máquina
5.
Vascular ; : 17085381241236571, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38404043

RESUMO

AIM: The aim of this study was to investigate the potential of novel automated machine learning (AutoML) in vascular medicine by developing a discriminative artificial intelligence (AI) model for the classification of anatomical patterns of peripheral artery disease (PAD). MATERIAL AND METHODS: Random open-source angiograms of lower limbs were collected using a web-indexed search. An experienced researcher in vascular medicine labelled the angiograms according to the most applicable grade of femoropopliteal disease in the Global Limb Anatomic Staging System (GLASS). An AutoML model was trained using the Vertex AI (Google Cloud) platform to classify the angiograms according to the GLASS grade with a multi-label algorithm. Following deployment, we conducted a test using 25 random angiograms (five from each GLASS grade). Model tuning through incremental training by introducing new angiograms was executed to the limit of the allocated quota following the initial evaluation to determine its effect on the software's performance. RESULTS: We collected 323 angiograms to create the AutoML model. Among these, 80 angiograms were labelled as grade 0 of femoropopliteal disease in GLASS, 114 as grade 1, 34 as grade 2, 25 as grade 3 and 70 as grade 4. After 4.5 h of training, the AI model was deployed. The AI self-assessed average precision was 0.77 (0 is minimal and 1 is maximal). During the testing phase, the AI model successfully determined the GLASS grade in 100% of the cases. The agreement with the researcher was almost perfect with the number of observed agreements being 22 (88%), Kappa = 0.85 (95% CI 0.69-1.0). The best results were achieved in predicting GLASS grade 0 and grade 4 (initial precision: 0.76 and 0.84). However, the AI model exhibited poorer results in classifying GLASS grade 3 (initial precision: 0.2) compared to other grades. Disagreements between the AI and the researcher were associated with the low resolution of the test images. Incremental training expanded the initial dataset by 23% to a total of 417 images, which improved the model's average precision by 11% to 0.86. CONCLUSION: After a brief training period with a limited dataset, AutoML has demonstrated its potential in identifying and classifying the anatomical patterns of PAD, operating unhindered by the factors that can affect human analysts, such as fatigue or lack of experience. This technology bears the potential to revolutionize outcome prediction and standardize evidence-based revascularization strategies for patients with PAD, leveraging its adaptability and ability to continuously improve with additional data. The pursuit of further research in AutoML within the field of vascular medicine is both promising and warranted. However, it necessitates additional financial support to realize its full potential.

6.
BMC Med Inform Decis Mak ; 24(1): 16, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212745

RESUMO

BACKGROUND: Acute kidney injury (AKI) represents a frequent and grave complication associated with acute pancreatitis (AP), substantially elevating both mortality rates and the financial burden of hospitalization. The aim of our study is to construct a predictive model utilizing automated machine learning (AutoML) algorithms for the early prediction of AKI in patients with AP. METHODS: We retrospectively analyzed patients who were diagnosed with AP in our hospital from January 2017 to December 2021. These patients were randomly allocated into a training set and a validation set at a ratio of 7:3. To develop predictive models for each set, we employed the least absolute shrinkage and selection operator (LASSO) algorithm along with AutoML. A nomogram was developed based on multivariate logistic regression analysis outcomes. The model's efficacy was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Additionally, the performance of the model constructed via AutoML was evaluated using decision curve analysis (DCA), feature importance, SHapley Additive exPlanations (SHAP) plots, and locally interpretable model-agnostic explanations (LIME). RESULTS: This study incorporated a total of 437 patients who met the inclusion criteria. Out of these, 313 were assigned to the training cohort and 124 to the validation cohort. In the training and validation cohorts, AKI occurred in 68 (21.7%) and 29(23.4%) patients, respectively. Comparative analysis revealed that the AutoML models exhibited enhanced performance over traditional logistic regression (LR). Furthermore, the deep learning (DL) model demonstrated superior predictive accuracy, evidenced by an area under the ROC curve of 0.963 in the training set and 0.830 in the validation set, surpassing other comparative models. The key variables identified as significant in the DL model within the training dataset included creatinine (Cr), urea (Urea), international normalized ratio (INR), etiology, smoking, alanine aminotransferase (ALT), hypertension, prothrombin time (PT), lactate dehydrogenase (LDH), and diabetes. CONCLUSION: The AutoML model, utilizing DL algorithm, offers considerable clinical significance in the early detection of AKI among patients with AP.


Assuntos
Injúria Renal Aguda , Pancreatite , Humanos , Doença Aguda , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Aprendizado de Máquina , Pancreatite/complicações , Pancreatite/diagnóstico , Estudos Retrospectivos , Ureia
7.
Eur Arch Otorhinolaryngol ; 281(4): 2153-2158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38197934

RESUMO

PURPOSE: Artificial intelligence (AI) in the form of automated machine learning (AutoML) offers a new potential breakthrough to overcome the barrier of entry for non-technically trained physicians. A Clinical Decision Support System (CDSS) for screening purposes using AutoML could be beneficial to ease the clinical burden in the radiological workflow for paranasal sinus diseases. METHODS: The main target of this work was the usage of automated evaluation of model performance and the feasibility of the Vertex AI image classification model on the Google Cloud AutoML platform to be trained to automatically classify the presence or absence of sinonasal disease. The dataset is a consensus labelled Open Access Series of Imaging Studies (OASIS-3) MRI head dataset by three specialised head and neck consultant radiologists. A total of 1313 unique non-TSE T2w MRI head sessions were used from the OASIS-3 repository. RESULTS: The best-performing image classification model achieved a precision of 0.928. Demonstrating the feasibility and high performance of the Vertex AI image classification model to automatically detect the presence or absence of sinonasal disease on MRI. CONCLUSION: AutoML allows for potential deployment to optimise diagnostic radiology workflows and lay the foundation for further AI research in radiology and otolaryngology. The usage of AutoML could serve as a formal requirement for a feasibility study.


Assuntos
Inteligência Artificial , Doenças dos Seios Paranasais , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Cabeça , Doenças dos Seios Paranasais/diagnóstico por imagem
8.
Sensors (Basel) ; 24(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38931713

RESUMO

The rapid advancements in Artificial Intelligence of Things (AIoT) are pivotal for the healthcare sector, especially as the world approaches an aging society which will be reached by 2050. This paper presents an innovative AIoT-enabled data fusion system implemented at the CMUH Respiratory Intensive Care Unit (RICU) to address the high incidence of medical errors in ICUs, which are among the top three causes of mortality in healthcare facilities. ICU patients are particularly vulnerable to medical errors due to the complexity of their conditions and the critical nature of their care. We introduce a four-layer AIoT architecture designed to manage and deliver both real-time and non-real-time medical data within the CMUH-RICU. Our system demonstrates the capability to handle 22 TB of medical data annually with an average delay of 1.72 ms and a bandwidth of 65.66 Mbps. Additionally, we ensure the uninterrupted operation of the CMUH-RICU with a three-node streaming cluster (called Kafka), provided a failed node is repaired within 9 h, assuming a one-year node lifespan. A case study is presented where the AI application of acute respiratory distress syndrome (ARDS), leveraging our AIoT data fusion approach, significantly improved the medical diagnosis rate from 52.2% to 93.3% and reduced mortality from 56.5% to 39.5%. The results underscore the potential of AIoT in enhancing patient outcomes and operational efficiency in the ICU setting.


Assuntos
Inteligência Artificial , Unidades de Terapia Intensiva , Humanos , Síndrome do Desconforto Respiratório/terapia
9.
J Environ Manage ; 354: 120335, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368804

RESUMO

Biochar is a carbon-neutral tool for combating climate change. Artificial intelligence applications to estimate the biochar mitigation effect on greenhouse gases (GHGs) can assist scientists in making more informed solutions. However, there is also evidence indicating that biochar promotes, rather than reduces, N2O emissions. Thus, the effect of biochar on N2O remains uncertain in constructed wetlands (CWs), and there is not a characterization metric for this effect, which increases the difficulty and inaccuracy of biochar-driven alleviation effect projections. Here, we provide new insight by utilizing machine learning-based, tree-structured Parzen Estimator (TPE) optimization assisted by a meta-analysis to estimate the potency of biochar-driven N2O mitigation. We first synthesized datasets that contained 80 studies on global biochar-amended CWs. The mitigation effect size was then calculated and further introduced as a new metric. TPE optimization was then applied to automatically tune the hyperparameters of the built extreme gradient boosting (XGBoost) and random forest (RF), and the optimum TPE-XGBoost obtained adequately achieved a satisfactory prediction accuracy for N2O flux (R2 = 91.90%, RPD = 3.57) and the effect size (R2 = 92.61%, RPD = 3.59). Results indicated that a high influent chemical oxygen demand/total nitrogen (COD/TN) ratio and the COD removal efficiency interpreted by the Shapley value significantly enhanced the effect size contribution. COD/TN ratio made the most and the second greatest positive contributions among 22 input variables to N2O flux and to the effect size that were up to 18% and 14%, respectively. By combining with a structural equation model analysis, NH4+-N removal rate had significant negative direct effects on the N2O flux. This study implied that the application of granulated biochar derived from C-rich feedstocks would maximize the net climate benefit of N2O mitigation driven by biochar for future biochar-based CWs.


Assuntos
Inteligência Artificial , Áreas Alagadas , Óxido Nitroso/análise , Carvão Vegetal , Nitrogênio/análise , Aprendizado de Máquina , Solo/química
10.
J Surg Res ; 292: 275-288, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37666090

RESUMO

INTRODUCTION: In patients with disseminated appendiceal cancer (dAC) who underwent cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC), characterizing and predicting those who will develop early recurrence could provide a framework for personalizing follow-up. This study aims to: (1) characterize patients with dAC that are at risk for recurrence within 2 y following of CRS ± HIPEC (early recurrence; ER), (2) utilize automated machine learning (AutoML) to predict at-risk patients, and (3) identifying factors that are influential for prediction. METHODS: A 12-institution cohort of patients with dAC treated with CRS ± HIPEC between 2000 and 2017 was used to train predictive models using H2O.ai's AutoML. Patients with early recurrence (ER) were compared to those who did not have recurrence or presented with recurrence after 2 y (control; C). However, 75% of the data was used for training and 25% for validation, and models were 5-fold cross-validated. RESULTS: A total of 949 patients were included, with 337 ER patients (35.5%). Patients with ER had higher markers of inflammation, worse disease burden with poor response, and received greater intraoperative fluids/blood products. The highest performing AutoML model was a Stacked Ensemble (area under the curve = 0.78, area under the curve precision recall = 0.66, positive predictive value = 85%, and negative predictive value = 63%). Prediction was influenced by blood markers, operative course, and factors associated with worse disease burden. CONCLUSIONS: In this multi-institutional cohort of dAC patients that underwent CRS ± HIPEC, AutoML performed well in predicting patients with ER. Variables suggestive of poor tumor biology were the most influential for prediction. Our work provides a framework for identifying patients with ER that might benefit from shorter interval surveillance early after surgery.

11.
Dig Dis Sci ; 68(7): 2866-2877, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37160541

RESUMO

BACKGROUND: Recurrence of common bile duct stones (CBDs) commonly happens after endoscopic retrograde cholangiopancreatography (ERCP). The clinical prediction models for the recurrence of CBDs after ERCP are lacking. AIMS: We aim to develop high-performance prediction models for the recurrence of CBDS after ERCP treatment using automated machine learning (AutoML) and to assess the AutoML models versus the traditional regression models. METHODS: 473 patients with CBDs undergoing ERCP were recruited in the single-center retrospective cohort study. Samples were divided into Training Set (65%) and Validation Set (35%) randomly. Three modeling approaches, including fully automated machine learning (Fully automated), semi-automated machine learning (Semi-automated), and traditional regression were applied to fit prediction models. Models' discrimination, calibration, and clinical benefits were examined. The Shapley additive explanations (SHAP), partial dependence plot (PDP), and SHAP local explanation (SHAPLE) were proposed for the interpretation of the best model. RESULTS: The area under roc curve (AUROC) of semi-automated gradient boost machine (GBM) model was 0.749 in Validation Set, better than the other fully/semi-automated models and the traditional regression models (highest AUROC = 0.736). The calibration and clinical application of AutoML models were adequate. Through the SHAP-PDP-SHAPLE pipeline, the roles of key variables of the semi-automated GBM model were visualized. Lastly, the best model was deployed online for clinical practitioners. CONCLUSION: The GBM model based on semi-AutoML is an optimal model to predict the recurrence of CBDs after ERCP treatment. In comparison with traditional regressions, AutoML algorithms present significant strengths in modeling, which show promise in future clinical practices.


Assuntos
Colangiopancreatografia Retrógrada Endoscópica , Cálculos Biliares , Humanos , Estudos Retrospectivos , Cálculos Biliares/diagnóstico por imagem , Cálculos Biliares/cirurgia , Esfinterotomia Endoscópica , Ducto Colédoco
12.
J Med Internet Res ; 25: e49949, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824185

RESUMO

Deep learning-based clinical imaging analysis underlies diagnostic artificial intelligence (AI) models, which can match or even exceed the performance of clinical experts, having the potential to revolutionize clinical practice. A wide variety of automated machine learning (autoML) platforms lower the technical barrier to entry to deep learning, extending AI capabilities to clinicians with limited technical expertise, and even autonomous foundation models such as multimodal large language models. Here, we provide a technical overview of autoML with descriptions of how autoML may be applied in education, research, and clinical practice. Each stage of the process of conducting an autoML project is outlined, with an emphasis on ethical and technical best practices. Specifically, data acquisition, data partitioning, model training, model validation, analysis, and model deployment are considered. The strengths and limitations of available code-free, code-minimal, and code-intensive autoML platforms are considered. AutoML has great potential to democratize AI in medicine, improving AI literacy by enabling "hands-on" education. AutoML may serve as a useful adjunct in research by facilitating rapid testing and benchmarking before significant computational resources are committed. AutoML may also be applied in clinical contexts, provided regulatory requirements are met. The abstraction by autoML of arduous aspects of AI engineering promotes prioritization of data set curation, supporting the transition from conventional model-driven approaches to data-centric development. To fulfill its potential, clinicians must be educated on how to apply these technologies ethically, rigorously, and effectively; this tutorial represents a comprehensive summary of relevant considerations.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Humanos , Processamento de Imagem Assistida por Computador , Escolaridade , Benchmarking
13.
J Med Internet Res ; 25: e50886, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015608

RESUMO

BACKGROUND: Rapid digitalization in health care has led to the adoption of digital technologies; however, limited trust in internet-based health decisions and the need for technical personnel hinder the use of smartphones and machine learning applications. To address this, automated machine learning (AutoML) is a promising tool that can empower health care professionals to enhance the effectiveness of mobile health apps. OBJECTIVE: We used AutoML to analyze data from clinical studies involving patients with chronic hand and/or foot eczema or psoriasis vulgaris who used a smartphone monitoring app. The analysis focused on itching, pain, Dermatology Life Quality Index (DLQI) development, and app use. METHODS: After extensive data set preparation, which consisted of combining 3 primary data sets by extracting common features and by computing new features, a new pseudonymized secondary data set with a total of 368 patients was created. Next, multiple machine learning classification models were built during AutoML processing, with the most accurate models ultimately selected for further data set analysis. RESULTS: Itching development for 6 months was accurately modeled using the light gradient boosted trees classifier model (log loss: 0.9302 for validation, 1.0193 for cross-validation, and 0.9167 for holdout). Pain development for 6 months was assessed using the random forest classifier model (log loss: 1.1799 for validation, 1.1561 for cross-validation, and 1.0976 for holdout). Then, the random forest classifier model (log loss: 1.3670 for validation, 1.4354 for cross-validation, and 1.3974 for holdout) was used again to estimate the DLQI development for 6 months. Finally, app use was analyzed using an elastic net blender model (area under the curve: 0.6567 for validation, 0.6207 for cross-validation, and 0.7232 for holdout). Influential feature correlations were identified, including BMI, age, disease activity, DLQI, and Hospital Anxiety and Depression Scale-Anxiety scores at follow-up. App use increased with BMI >35, was less common in patients aged >47 years and those aged 23 to 31 years, and was more common in those with higher disease activity. A Hospital Anxiety and Depression Scale-Anxiety score >8 had a slightly positive effect on app use. CONCLUSIONS: This study provides valuable insights into the relationship between data characteristics and targeted outcomes in patients with chronic eczema or psoriasis, highlighting the potential of smartphone and AutoML techniques in improving chronic disease management and patient care.


Assuntos
Eczema , Aplicativos Móveis , Psoríase , Dermatopatias , Humanos , Estudos Retrospectivos , Prurido , Doença Crônica , Aprendizado de Máquina , Dor
14.
Sensors (Basel) ; 23(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896512

RESUMO

Crack propagation is a critical phenomenon in materials science and engineering, significantly impacting structural integrity, reliability, and safety across various applications. The accurate prediction of crack propagation behavior is paramount for ensuring the performance and durability of engineering components, as extensively explored in prior research. Nevertheless, there is a pressing demand for automated models capable of efficiently and precisely forecasting crack propagation. In this study, we address this need by developing a machine learning-based automated model using the powerful H2O library. This model aims to accurately predict crack propagation behavior in various materials by analyzing intricate crack patterns and delivering reliable predictions. To achieve this, we employed a comprehensive dataset derived from measured instances of crack propagation in Acrylonitrile Butadiene Styrene (ABS) specimens. Rigorous evaluation metrics, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-squared (R2) values, were applied to assess the model's predictive accuracy. Cross-validation techniques were utilized to ensure its robustness and generalizability across diverse datasets. Our results underscore the automated model's remarkable accuracy and reliability in predicting crack propagation. This study not only highlights the immense potential of the H2O library as a valuable tool for structural health monitoring but also advocates for the broader adoption of Automated Machine Learning (AutoML) solutions in engineering applications. In addition to presenting these findings, we define H2O as a powerful machine learning library and AutoML as Automated Machine Learning to ensure clarity and understanding for readers unfamiliar with these terms. This research not only demonstrates the significance of AutoML in future-proofing our approach to structural integrity and safety but also emphasizes the need for comprehensive reporting and understanding in scientific discourse.

15.
Sensors (Basel) ; 23(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896615

RESUMO

The increasing demand for customized products is a core driver of novel automation concepts in Industry 4.0. For the case of machining complex free-form workpieces, e.g., in die making and mold making, individualized manufacturing is already the industrial practice. The varying process conditions and demanding machining processes lead to a high relevance of machining domain experts and a low degree of manufacturing flow automation. In order to increase the degree of automation, online process monitoring and the prediction of the quality-related remaining cutting tool life is indispensable. However, the varying process conditions complicate this as the correlation between the sensor signals and tool condition is not directly apparent. Furthermore, machine learning (ML) knowledge is limited on the shop floor, preventing a manual adaption of the models to changing conditions. Therefore, this paper introduces a new method for remaining tool life prediction in individualized production using automated machine learning (AutoML). The method enables the incorporation of machining expert knowledge via the model inputs and outputs. It automatically creates end-to-end ML pipelines based on optimized ensembles of regression and forecasting models. An explainability algorithm visualizes the relevance of the model inputs for the decision making. The method is analyzed and compared to a manual state-of-the-art approach for series production in a comprehensive evaluation using a new milling dataset. The dataset represents gradual tool wear under changing workpieces and process parameters. Our AutoML method outperforms the state-of-the-art approach and the evaluation indicates that a transfer of methods designed for series production to variable process conditions is not easily possible. Overall, the new method optimizes individualized production economically and in terms of resources. Machining experts with limited ML knowledge can leverage their domain knowledge to develop, validate and adapt tool life models.

16.
Sensors (Basel) ; 23(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36772202

RESUMO

Due to the high occupational pressure suffered by intensive care units (ICUs), a correct estimation of the patients' length of stay (LoS) in the ICU is of great interest to predict possible situations of collapse, to help healthcare personnel to select appropriate treatment options and to predict patients' conditions. There has been a high amount of data collected by biomedical sensors during the continuous monitoring process of patients in the ICU, so the use of artificial intelligence techniques in automatic LoS estimation would improve patients' care and facilitate the work of healthcare personnel. In this work, a novel methodology to estimate the LoS using data of the first 24 h in the ICU is presented. To achieve this, XGBoost, one of the most popular and efficient state-of-the-art algorithms, is used as an estimator model, and its performance is optimized both from computational and precision viewpoints using Bayesian techniques. For this optimization, a novel two-step approach is presented. The methodology was carefully designed to execute codes on a high-performance computing system based on graphics processing units, which considerably reduces the execution time. The algorithm scalability is analyzed. With the proposed methodology, the best set of XGBoost hyperparameters are identified, estimating LoS with a MAE of 2.529 days, improving the results reported in the current state of the art and probing the validity and utility of the proposed approach.


Assuntos
Inteligência Artificial , Unidades de Terapia Intensiva , Humanos , Teorema de Bayes , Algoritmos , Metodologias Computacionais
17.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772749

RESUMO

In recent years, deep learning (DL) has been widely studied using various methods across the globe, especially with respect to training methods and network structures, proving highly effective in a wide range of tasks and applications, including image, speech, and text recognition. One important aspect of this advancement is involved in the effort of designing and upgrading neural architectures, which has been consistently attempted thus far. However, designing such architectures requires the combined knowledge and know-how of experts from each relevant discipline and a series of trial-and-error steps. In this light, automated neural architecture search (NAS) methods are increasingly at the center of attention; this paper aimed at summarizing the basic concepts of NAS while providing an overview of recent studies on the applications of NAS. It is worth noting that most previous survey studies on NAS have been focused on perspectives of hardware or search strategies. To the best knowledge of the present authors, this study is the first to look at NAS from a computer vision perspective. In the present study, computer vision areas were categorized by task, and recent trends found in each study on NAS were analyzed in detail.

18.
J Digit Imaging ; 36(1): 326-338, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36279027

RESUMO

Esophageal variceal (EV) bleeding is a severe medical emergency related to cirrhosis. Early identification of cirrhotic patients with at a high risk of EV bleeding is key to improving outcomes and optimizing medical resources. This study aimed to evaluate the feasibility of automated multimodal machine learning (MMML) for predicting EV bleeding by integrating endoscopic images and clinical structured data. This study mainly includes three steps: step 1, developing deep learning (DL) models using EV images by 12-month bleeding on TensorFlow (backbones include ResNet, Xception, EfficientNet, ViT and ConvMixer); step 2, training and internally validating MMML models integrating clinical structured data and DL model outputs to predict 12-month EV bleeding on an H2O-automated machine learning platform (algorithms include DL, XGBoost, GLM, GBM, RF, and stacking); and step 3, externally testing MMML models. Furthermore, existing clinical indices, e.g., the MELD score, Child‒Pugh score, APRI, and FIB-4, were also examined. Five DL models were transfer learning to the binary classification of EV endoscopic images at admission based on the occurrence or absence of bleeding events during the 12-month follow-up. An EfficientNet model achieved the highest accuracy of 0.868 in the validation set. Then, a series of MMML models, integrating clinical structured data and the output of the EfficientNet model, were automatedly trained to predict 12-month EV bleeding. A stacking model showed the highest accuracy (0.932), sensitivity (0.952), and F1-score (0.879) in the test dataset, which was also better than the existing indices. This study is the first to evaluate the feasibility of automated MMML in predicting 12-month EV bleeding based on endoscopic images and clinical variables.


Assuntos
Varizes Esofágicas e Gástricas , Humanos , Hemorragia Gastrointestinal , Endoscopia , Cirrose Hepática , Aprendizado de Máquina
19.
J Neuroradiol ; 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37722591

RESUMO

The Brain Age Gap (BAG), which refers to the difference between chronological age and predicted neuroimaging age, is proposed as a potential biomarker for age-related brain degeneration. However, existing brain age prediction models usually rely on a single marker and can not discover meaningful hidden information in radiographic images. This study focuses on the application of radiomics, an advanced imaging analysis technique, combined with automated machine learning to predict BAG. Our methods achieve a promising result with a mean absolute error of 1.509 using the Alzheimer's Disease Neuroimaging Initiative dataset. Furthermore, we find that the hippocampus and parahippocampal gyrus play a significant role in predicting age with interpretable method called SHapley Additive exPlanations. Additionally, our investigation of age prediction discrepancies between patients with Alzheimer's disease (AD) and those with mild cognitive impairment (MCI) reveals a notable correlation with clinical cognitive assessment scale scores. This suggests that BAG has the potential to serve as a biomarker to support the diagnosis of AD and MCI. Overall, this study presents valuable insights into the application of neuroimaging models in the diagnosis of neurodegenerative diseases.

20.
Yi Chuan ; 45(10): 922-932, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37872114

RESUMO

This study aimed to assess and compare the performance of different machine learning models in predicting selected pig growth traits and genomic estimated breeding values (GEBV) using automated machine learning, with the goal of optimizing whole-genome evaluation methods in pig breeding. The research employed genomic information, pedigree matrices, fixed effects, and phenotype data from 9968 pigs across multiple companies to derive four optimal machine learning models: deep learning (DL), random forest (RF), gradient boosting machine (GBM), and extreme gradient boosting (XGB). Through 10-fold cross-validation, predictions were made for GEBV and phenotypes of pigs reaching weight milestones (100 kg and 115 kg) with adjustments for backfat and days to weight. The findings indicated that machine learning models exhibited higher accuracy in predicting GEBV compared to phenotypic traits. Notably, GBM demonstrated superior GEBV prediction accuracy, with values of 0.683, 0.710, 0.866, and 0.871 for B100, B115, D100, and D115, respectively, slightly outperforming other methods. In phenotype prediction, GBM emerged as the best-performing model for pigs with B100, B115, D100, and D115 traits, achieving prediction accuracies of 0.547, followed by DL at 0.547, and then XGB with accuracies of 0.672 and 0.670. In terms of model training time, RF required the most time, while GBM and DL fell in between, and XGB demonstrated the shortest training time. In summary, machine learning models obtained through automated techniques exhibited higher GEBV prediction accuracy compared to phenotypic traits. GBM emerged as the overall top performer in terms of prediction accuracy and training time efficiency, while XGB demonstrated the ability to train accurate prediction models within a short timeframe. RF, on the other hand, had longer training times and insufficient accuracy, rendering it unsuitable for predicting pig growth traits and GEBV.


Assuntos
Genoma , Modelos Genéticos , Suínos/genética , Animais , Fenótipo , Genômica/métodos , Genótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA