Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(6): 1337-1354.e8, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33545068

RESUMO

Autophagy deficiency in fed conditions leads to the formation of protein inclusions highlighting the contribution of this lysosomal delivery route to cellular proteostasis. Selective autophagy pathways exist that clear accumulated and aggregated ubiquitinated proteins. Receptors for this type of autophagy (aggrephagy) include p62, NBR1, TOLLIP, and OPTN, which possess LC3-interacting regions and ubiquitin-binding domains (UBDs), thus working as a bridge between LC3/GABARAP proteins and ubiquitinated substrates. However, the identity of aggrephagy substrates and the redundancy of aggrephagy and related UBD-containing receptors remains elusive. Here, we combined proximity labeling and organelle enrichment with quantitative proteomics to systematically map the autophagic degradome targeted by UBD-containing receptors under basal and proteostasis-challenging conditions in human cell lines. We identified various autophagy substrates, some of which were differentially engulfed by autophagosomal and endosomal membranes via p62 and TOLLIP, respectively. Overall, this resource will allow dissection of the proteostasis contribution of autophagy to numerous individual proteins.


Assuntos
Autofagossomos , Autofagia , Mapas de Interação de Proteínas , Proteólise , Proteostase , Ubiquitinação , Autofagossomos/genética , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteômica
2.
Trends Biochem Sci ; 48(3): 216-228, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36280494

RESUMO

Aggrephagy describes the selective lysosomal transport and turnover of cytoplasmic protein aggregates by macro-autophagy. In this process, protein aggregates and conglomerates are polyubiquitinated and then sequestered by autophagosomes. Soluble selective autophagy receptors (SARs) are central to aggrephagy and physically bind to both ubiquitin and the autophagy machinery, thus linking the cargo to the forming autophagosomal membrane. Because the accumulation of protein aggregates is associated with cytotoxicity in several diseases, a better molecular understanding of aggrephagy might provide a conceptual framework to develop therapeutic strategies aimed at delaying the onset of these pathologies by preventing the buildup of potentially toxic aggregates. We review recent advances in our knowledge about the mechanism of aggrephagy.


Assuntos
Autofagia , Agregados Proteicos , Proteína Sequestossoma-1/metabolismo , Autofagossomos , Lisossomos/metabolismo
3.
J Virol ; : e0081424, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212450

RESUMO

Selective autophagy is a protein clearance mechanism mediated by evolutionarily conserved selective autophagy receptors (SARs), which specifically degrades misfolded, misassembled, or metabolically regulated proteins. SARs help the host to suppress viral infections by degrading viral proteins. However, viruses have evolved sophisticated mechanisms to counteract, evade, or co-opt autophagic processes, thereby facilitating viral replication. Therefore, this review aims to summarize the complex mechanisms of SARs involved in viral infections, specifically focusing on how viruses exploit strategies to regulate selective autophagy. We present an updated understanding of the various critical roles of SARs in viral pathogenesis. Furthermore, newly discovered evasion strategies employed by viruses are discussed and the ubiquitination-autophagy-innate immune regulatory axis is proposed to be a crucial pathway to control viral infections. This review highlights the remarkable flexibility and plasticity of SARs in viral infections.

4.
Bioessays ; 45(11): e2300076, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37603398

RESUMO

Ageing is associated with a decline in autophagy and elevated reactive oxygen species (ROS), which can breach the capacity of antioxidant systems. Resulting oxidative stress can cause further cellular damage, including DNA breaks and protein misfolding. This poses a challenge for longevous organisms, including humans. In this review, we hypothesise that in the course of human evolution selective autophagy receptors (SARs) acquired the ability to sense and respond to localised oxidative stress. We posit that in the vicinity of protein aggregates and dysfunctional mitochondria oxidation of key cysteine residues in SARs induces their oligomerisation which initiates autophagy. The degradation of damaged cellular components thus could reduce ROS production and restore redox homeostasis. This evolutionarily acquired function of SARs may represent one of the biological adaptations that contributed to longer lifespan. Inversely, loss of this mechanism can lead to age-related diseases associated with impaired autophagy and oxidative stress.

5.
Cancer Sci ; 112(10): 3972-3978, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34407274

RESUMO

While starvation-induced autophagy is thought to randomly degrade cellular components, under certain circumstances autophagy selectively recognizes, sequesters, and degrades specific targets via autophagosomes. This process is called selective autophagy, and it contributes to cellular homeostasis by degrading specific soluble proteins, supramolecular complexes, liquid-liquid phase-separated droplets, abnormal or excess organelles, and pathogenic invasive bacteria. This means that autophagy, like the ubiquitin-proteasome system, strictly regulates diverse cellular functions through its selectivity. In this short review, we focus on the mechanism of "selective" autophagy, which is rapidly being elucidated.


Assuntos
Autofagossomos/fisiologia , Autofagia/fisiologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Fenômenos Fisiológicos Celulares , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Homeostase/fisiologia , Humanos , Organelas , Fagocitose/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
6.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498336

RESUMO

Autophagy is a major quality control system for degradation of unwanted or damaged cytoplasmic components to promote cellular homeostasis. Although non-selective bulk degradation of cytoplasm by autophagy plays a role during cellular response to nutrient deprivation, the broad roles of autophagy are primarily mediated by selective clearance of specifically targeted components. Selective autophagy relies on cargo receptors that recognize targeted components and recruit them to autophagosomes through interaction with lapidated autophagy-related protein 8 (ATG8) family proteins anchored in the membrane of the forming autophagosomes. In mammals and yeast, a large collection of selective autophagy receptors have been identified that mediate the selective autophagic degradation of organelles, aggregation-prone misfolded proteins and other unwanted or nonnative proteins. A substantial number of selective autophagy receptors have also been identified and functionally characterized in plants. Some of the autophagy receptors in plants are evolutionarily conserved with homologs in other types of organisms, while a majority of them are plant-specific or plant species-specific. Plant selective autophagy receptors mediate autophagic degradation of not only misfolded, nonactive and otherwise unwanted cellular components but also regulatory and signaling factors and play critical roles in plant responses to a broad spectrum of biotic and abiotic stresses. In this review, we summarize the research on selective autophagy in plants, with an emphasis on the cargo recognition and the biological functions of plant selective autophagy receptors.


Assuntos
Autofagia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Proteínas Relacionadas à Autofagia/metabolismo , Receptores de Superfície Celular/metabolismo
8.
Adv Exp Med Biol ; 1206: 237-259, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31776989

RESUMO

Protein modification refers to the chemical modification of proteins after their biosynthesis, which is also called posttranslational modification (PTM). PTM causes changes in protein properties and functions. PTM includes an attachment of addition of functional groups, such as methylation, acetylation, glycosylation and phosphorylation; a covalent coupling of small peptides or proteins, such as ubiquitination and SUMOylation; or chemical changes in amino acids, such as citrullination (conversion of arginine to citrulline). Protein modification plays an important role in cellular processes. Since a protein can be modified in different ways, such as acetylation, methylation and phosphorylation, the functions of proteins are different under different modification states. Moreover, the same modification at different sites may have completely different effects on protein function. For example, phosphorylation at some sites in a protein may lead to a functional activation, while phosphorylation at other sites may cause an inhibition of the functions. Thus, different modifications, combinations and sites changes lead to different functional regulations of a protein, resulting in different effects in the cells. In autophagy, PTMs are widely involved in the regulation of autophagy, including ubiquitination, phosphorylation and acetylation. Ubiquitination is the covalent conjugation of ubiquitin to the substrates through a series of enzymes. Phosphorylation refers to an attachment of a phosphoryl group into a protein, primarily on serine, threonine and tyrosine, which is catalyzed by the kinases. Phosphorylation, a common modification, regulates protein function and localization. Phosphorylation in autophagy regulates the activity of autophagy-associated proteins and the initiation and progression of autophagy by regulating signaling pathways. Acetylation means the addition of acetyl groups onto lysine or N-terminal segment of target proteins through acetyltransferases. Acetylation and deacetylation are both involved in the regulation of autophagy initiation and selective autophagy by controlling the acetylation level of important proteins in the autophagy process. In this chapter, we will focus on the regulation of ubiquitination and phosphorylation in autophagy.


Assuntos
Autofagia , Processamento de Proteína Pós-Traducional , Acetilação , Fosforilação , Sumoilação , Ubiquitinação
9.
Adv Exp Med Biol ; 1184: 57-68, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32096028

RESUMO

Efficient quality control mechanisms are essential for a healthy, functional neuron. Recognition and degradation of misfolded, damaged, or potentially toxic proteins, is a crucial aspect of protein quality control. Tau is a protein that is highly expressed in neurons, and plays an important role in modulating a number of physiological processes. Maintaining appropriate levels of tau is key for neuronal health; hence perturbations in tau clearance mechanisms are likely significant contributors to neurodegenerative diseases such as Alzheimer's disease and frontotemporal lobar degeneration. In this chapter we will first briefly review the two primary degradative mechanisms that mediate tau clearance: the proteasome system and the autophagy-lysosome pathway. This will be followed by a discussion about what is known about the contribution of each of these pathways to tau clearance. We will also present recent findings on tau degradation through the endolysosomal system. Further, how deficits in these degradative systems may contribute to the accumulation of dysfunctional or toxic forms of tau in neurodegenerative conditions is considered.


Assuntos
Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Autofagia , Humanos , Lisossomos/metabolismo , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
10.
J Mol Biol ; 436(15): 168493, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360089

RESUMO

Protein homeostasis or proteostasis is an equilibrium of biosynthetic production, folding and transport of proteins, and their timely and efficient degradation. Proteostasis is guaranteed by a network of protein quality control systems aimed at maintaining the proteome function and avoiding accumulation of potentially cytotoxic proteins. Terminal unfolded and dysfunctional proteins can be directly turned over by the ubiquitin-proteasome system (UPS) or first amassed into aggregates prior to degradation. Aggregates can also be disposed into lysosomes by a selective type of autophagy known as aggrephagy, which relies on a set of so-called selective autophagy receptors (SARs) and adaptor proteins. Failure in eliminating aggregates, also due to defects in aggrephagy, can have devastating effects as underscored by several neurodegenerative diseases or proteinopathies, which are characterized by the accumulation of aggregates mostly formed by a specific disease-associated, aggregate-prone protein depending on the clinical pathology. Despite its medical relevance, however, the process of aggrephagy is far from being understood. Here we review the findings that have helped in assigning a possible function to specific SARs and adaptor proteins in aggrephagy in the context of proteinopathies, and also highlight the interplay between aggrephagy and the pathogenesis of proteinopathies.


Assuntos
Autofagia , Doenças Neurodegenerativas , Proteostase , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Humanos , Animais , Agregados Proteicos , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
11.
J Mol Med (Berl) ; 102(3): 287-311, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38183492

RESUMO

Lysosomes function as critical signaling hubs that govern essential enzyme complexes. LGALS proteins (LGALS3, LGALS8, and LGALS9) are integral to the endomembrane damage response. If ESCRT fails to rectify damage, LGALS-mediated ubiquitination occurs, recruiting autophagy receptors (CALCOCO2, TRIM16, and SQSTM1) and VCP/p97 complex containing UBXN6, PLAA, and YOD1, initiating selective autophagy. Lysosome replenishment through biogenesis is regulated by TFEB. LGALS3 interacts with TFRC and TRIM16, aiding ESCRT-mediated repair and autophagy-mediated removal of damaged lysosomes. LGALS8 inhibits MTOR and activates TFEB for ATG and lysosomal gene transcription. LGALS9 inhibits USP9X, activates PRKAA2, MAP3K7, ubiquitination, and autophagy. Conjugation of ATG8 to single membranes (CASM) initiates damage repair mediated by ATP6V1A, ATG16L1, ATG12, ATG5, ATG3, and TECPR1. ATG8ylation or CASM activates the MERIT system (ESCRT-mediated repair, autophagy-mediated clearance, MCOLN1 activation, Ca2+ release, RRAG-GTPase regulation, MTOR modulation, TFEB activation, and activation of GTPase IRGM). Annexins ANAX1 and ANAX2 aid damage repair. Stress granules stabilize damaged membranes, recruiting FLCN-FNIP1/2, G3BP1, and NUFIP1 to inhibit MTOR and activate TFEB. Lysosomes coordinate the synergistic response to endomembrane damage and are vital for innate and adaptive immunity. Future research should unveil the collaborative actions of ATG proteins, LGALSs, TRIMs, autophagy receptors, and lysosomal proteins in lysosomal damage response.


Assuntos
DNA Helicases , Galectina 3 , Galectina 3/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Autofagia/genética , Serina-Treonina Quinases TOR/metabolismo , Lisossomos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
12.
Autophagy ; : 1-16, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39245437

RESUMO

Macroautophagy/autophagy is a constitutively active catabolic lysosomal degradation pathway, often found dysregulated in human diseases. It is often considered to act in a cytoprotective manner and is commonly upregulated in cells undergoing stress. Its initiation is regulated at the protein level and does not require de novo protein synthesis. Historically, autophagy has been regarded as nonselective; however, it is now clear that different stimuli can lead to the selective degradation of cellular components via selective autophagy receptors (SARs). Due to its selective nature and the existence of multiple degradation pathways potentially acting in concert, monitoring of autophagy flux, i.e. selective autophagy-dependent protein degradation, should address this complexity. Here, we introduce a targeted proteomics approach monitoring abundance changes of 37 autophagy-related proteins covering process-relevant proteins such as the initiation complex and the Atg8-family protein lipidation machinery, as well as most known SARs. We show that proteins involved in autophagosome biogenesis are upregulated and spared from degradation under autophagy-inducing conditions in contrast to SARs, in a cell-line dependent manner. Classical bulk stimuli such as nutrient starvation mainly induce degradation of ubiquitin-dependent soluble SARs and not of ubiquitin-independent, membrane-bound SARs. In contrast, treatment with the iron chelator deferiprone leads to the degradation of ubiquitin-dependent and -independent SARs linked to mitophagy and reticulophagy/ER-phagy. Our approach is automatable and supports large-scale screening assays paving the way to (pre)clinical applications and monitoring of specific autophagy flux.Abbreviation: AMBRA1: autophagy and beclin 1 regulator 1; ATG: autophagy related; BafA1: bafilomycin A1; BNIP1: BCL2 interacting protein 1; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3-like; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCPG1: cell cycle progression 1; CV: coefficients of variations; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DFP: deferiprone; ER: endoplasmic reticulum; FKBP8: FKBP prolyl isomerase 8; GABARAPL: GABA type A receptor associated protein like; LC: liquid chromatography; LOD: limit of detection; LOQ: limit of quantification; MAP1LC3: microtubule associated protein 1 light chain 3; MS: mass spectrometry; NCOA4: nuclear receptor coactivator 4; NBR1: NBR1 autophagy cargo receptor; NUFIP1: nuclear FMR1 interacting protein 1; OPTN: optineurin; PHB2: prohibitin 2; PNPLA2/ATGL: patatin like phospholipase domain containing 2; POI: protein of interest; PTM: posttranslational modification; PRM: parallel reaction monitoring; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RETREG1/FAM134B: reticulophagy regulator 1; RPS6KB1: ribosomal protein S6 kinase B1; RTN3: reticulon 3; SARs: selective autophagy receptors; SQSTM1/p62: sequestosome 1; STBD1: starch binding domain 1; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TNIP1: TNFAIP3 interacting protein 1; TOLLIP: toll interacting protein; ULK1: unc-51 like autophagy activating kinase 1; WBP2: WW domain binding protein 2; WDFY3/Alfy: WD repeat and FYVE domain containing 3; WIPI2: WD repeat domain, phosphoinositide interacting 2.

13.
Eur J Med Chem ; 267: 116117, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38295689

RESUMO

Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.


Assuntos
Descoberta de Drogas , Neoplasias , Humanos , Autofagia , Neoplasias/metabolismo , Desenho de Fármacos , Transdução de Sinais
14.
Front Cell Neurosci ; 17: 1140916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909283

RESUMO

Mitochondrial dysfunction is associated with ototoxicity, which is caused by external factors. Mitophagy plays a key role in maintaining mitochondrial homeostasis and function and is regulated by a series of key mitophagy regulatory proteins and signaling pathways. The results of ototoxicity models indicate the importance of this process in the etiology of ototoxicity. A number of recent investigations of the control of cell fate by mitophagy have enhanced our understanding of the mechanisms by which mitophagy regulates ototoxicity and other hearing-related diseases, providing opportunities for targeting mitochondria to treat ototoxicity.

15.
Autophagy ; 18(1): 24-39, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33570005

RESUMO

Mitochondria are dynamic, multifunctional cellular organelles that play a fundamental role in maintaining cellular homeostasis. Keeping the quality of mitochondria in check is of essential importance for functioning and survival of the cells. Selective autophagic clearance of flawed mitochondria, a process termed mitophagy, is one of the most prominent mechanisms through which cells maintain a healthy mitochondrial pool. The best-studied pathway through which mitophagy is exerted is the PINK1-PRKN pathway. However, an increasing number of studies have shown an existence of alternative pathways, where different proteins and lipids are able to recruit autophagic machinery independently of PINK1 and PRKN. The significance of PRKN-independent mitophagy pathways is reflected in various physiological and pathophysiological processes, but many questions regarding the regulation and the interplay between these pathways remain open. Here we review the current knowledge and recent progress made in the field of PRKN-independent mitophagy. Particularly we focus on the regulation of various receptors that participate in targeting impaired mitochondria to autophagosomes independently of PRKN.Abbreviations: AMPK: AMP-activated protein kinase; ATP: adenosine triphosphate; BCL2: BCL2 apoptosis regulator; BH: BCL2 homology; CCCP: Carbonyl cyanide m-chlorophenylhydrazone; CL: cardiolipin; ER: endoplasmic reticulum; FCCP: carbonyl cyanide p-trifluoromethoxyphenylhydrazone; IMM: inner mitochondrial membrane; IMS: mitochondrial intermembrane space; LIR: LC3-interacting region; MDVs: mitochondrial-derived vesicles; MTORC1: mechanistic target of rapamycin kinase complex 1; OMM: outer mitochondrial membrane; OXPHOS: oxidative phosphorylation; PD: Parkinson disease; PtdIns3K: phosphatidylinositol 3-kinase; RGC: retinal ganglion cell; RING: really interesting new gene; ROS: reactive oxygen species; SUMO: small ubiquitin like modifier; TBI: traumatic brain injury; TM: transmembrane.


Assuntos
Autofagia , Mitofagia , Autofagia/fisiologia , Membranas Mitocondriais/metabolismo , Mitofagia/genética , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
16.
Trends Microbiol ; 29(9): 798-810, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33678557

RESUMO

Autophagy ensures the degradation of cytosolic substrates by the lysosomal pathway. Cargoes destined to be eliminated are confined within double-membrane vesicles called autophagosomes, prior to fusion with endolysosomal vacuoles. Autophagy receptors selectively interact with cargoes and route them to elongating autophagic membranes, a process referred to as selective autophagy. Besides contributing to cell homeostasis, selective autophagy constitutes an important cell-autonomous defense mechanism against viruses. We review observations related to selective autophagy receptor engagement during host cell responses to virus infection. We examine the distinct roles of autophagy receptors in antiviral autophagy, consider the strategies viruses have evolved to escape or oppose such restrictions, and delineate the contributions of selective autophagy to the tailoring of antiviral innate responses. Finally, we mention some open and emerging questions in the field.


Assuntos
Autofagia , Receptores Virais/imunologia , Viroses/fisiopatologia , Animais , Humanos , Receptores Virais/genética , Viroses/imunologia , Viroses/virologia , Fenômenos Fisiológicos Virais , Replicação Viral , Vírus/genética , Vírus/imunologia
17.
Autophagy ; 17(5): 1281-1283, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33779494

RESUMO

Selective autophagy receptors have been implicated in the degradation of cellular constituents of various size and rigidity. However, the identity of protein cargo have largely remained elusive. In our recent study, we combined limited proteolysis-enhanced proximity biotinylation and organelle enrichment with quantitative proteomics to map the inventory of autophagosomes in a manner dependent on six different selective autophagy receptors, namely SQSTM1/p62, NBR1, CALCOCO2/NDP52, OPTN, TAX1BP1 and TOLLIP. Conducting this approach under basal and proteostasis-challenged conditions in mammalian cells led to the identification of various new autophagy substrates of which some were degraded through endosomal microautophagy rather than canonical autophagy dependent on the receptors TOLLIP and SQSTM1, respectively.


Assuntos
Autofagossomos , Autofagia , Animais , Autofagossomos/metabolismo , Proteínas de Transporte , Células HeLa , Humanos , Proteína Sequestossoma-1/metabolismo
18.
Front Oncol ; 10: 619727, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33634029

RESUMO

Cancer progression involves a variety of pro-tumorigenic biological processes including cell proliferation, migration, invasion, and survival. A cellular pathway implicated in these pro-tumorigenic processes is autophagy, a catabolic route used for recycling of cytoplasmic components to generate macromolecular building blocks and energy, under stress conditions, to remove damaged cellular constituents to adapt to changing nutrient conditions and to maintain cellular homeostasis. During autophagy, cells form a double-membrane sequestering a compartment termed the phagophore, which matures into an autophagosome. Following fusion with the lysosome, the cargo is degraded inside the autolysosomes and the resulting macromolecules released back into the cytosol for reuse. Cancer cells use this recycling system during cancer progression, however the key autophagy players involved in this disease is unclear. Accumulative evidences show that autophagy receptors, crucial players for selective autophagy, are overexpressed during cancer progression, yet the mechanisms whereby pro-tumorigenic biological processes are modulated by these receptors remains unknown. In this review, we summarized the most important findings related with the pro-tumorigenic role of autophagy receptors p62/SQSTM1, NBR1, NDP52, and OPTN in cancer progression. In addition, we showed the most relevant cargos degraded by these receptors that have been shown to function as critical regulators of pro-tumorigenic processes. Finally, we discussed the role of autophagy receptors in the context of the cellular pathways implicated in this disease, such as growth factors signaling, oxidative stress response and apoptosis. In summary, we highlight that autophagy receptors should be considered important players of cancer progression, which could offer a niche for the development of novel diagnosis and cancer treatment strategies.

19.
Int Rev Cell Mol Biol ; 354: 63-105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32475477

RESUMO

Autophagy is a highly conserved catabolic process in which cytoplasmic material is recycled under various conditions of cellular stress, preventing cell damage and promoting survival in the event of energy or nutrient shortage, or in response to various cytotoxic insults. Autophagy is also responsible for the removal of aggregated proteins and damaged organelles, playing a vital role in the quality control of proteins and organelles. Impairment of autophagy has been linked to various diseases, including cancer and neurodegenerative disorders, making it a very interesting process for further research. Recent research highlighted that autophagy is not random and can be selective, making it even more important to understand the molecular mechanisms of selectivity at the organismal level. Drosophila has been demonstrated to be an excellent animal model for studying selective autophagy, as the autophagic machinery is highly conserved, although much is still left to be explored. In this review, an overview of autophagy and its selectivity in Drosophila will be presented.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Drosophila/citologia , Drosophila/metabolismo , Animais
20.
Methods Mol Biol ; 1880: 691-701, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30610732

RESUMO

Selective autophagy enables degradation of specific cargo such as protein aggregates or organelles and thus plays an essential role in the regulation of cellular homeostasis. Cargo specificity is achieved on the level of autophagy receptors that concurrently bind the cargo and the autophagosomal membrane. Recent studies have demonstrated that selective autophagy is tightly regulated by posttranslational modifications of autophagy receptors, in particular protein phosphorylation. Phosphorylation of autophagy receptors by different kinases, including Tank-binding kinase (TBK1), can increase their affinity toward the cargo or autophagosomes and thereby regulate the specificity and activity of selective autophagy depending on the cellular condition.Here, we report an approach for quantitative analysis of phosphorylation sites on autophagy receptors using mass spectrometry-based proteomics. In this protocol, GFP-tagged autophagy receptors are purified based on the high-affinity binding between GFP and GFP-Trap agarose. Interaction partners and background binders are subsequently removed by washes under denaturing conditions to obtain a pure fraction of the bait protein, thereby reducing the complexity of the analyzed sample. The bait protein is then digested on-bead, and peptides are analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The described approach permits systematic identification and quantification of phosphorylation sites on autophagy receptors and other autophagic components. In addition to phosphorylation, this protocol is suitable for investigating other posttranslational modifications, including protein ubiquitylation.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/análise , Autofagia/fisiologia , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/metabolismo , Isótopos de Carbono/química , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Células HEK293 , Humanos , Isótopos de Nitrogênio/química , Peptídeos/análise , Peptídeos/química , Peptídeos/metabolismo , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Proteômica/instrumentação , Espectrometria de Massas em Tandem/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA