RESUMO
Restoring cytonuclear stoichiometry is necessary after whole-genome duplication (WGD) and interspecific/intergeneric hybridization in plants. We investigated this phenomenon in auto- and allopolyploids of the Festuca-Lolium complex providing insights into the mechanisms governing cytonuclear interactions in early polyploid and hybrid generations. Our study examined the main processes potentially involved in restoring the cytonuclear balance after WGD comparing diploids and new and well-established autopolyploids. We uncovered that both the number of chloroplasts and the number of chloroplast genome copies were significantly higher in the newly established autopolyploids and grew further in more established autopolyploids. The increase in the copy number of the chloroplast genome exceeded the rise in the number of chloroplasts and fully compensated for the doubling of the nuclear genome. In addition, changes in nuclear and organelle gene expression were insignificant. Allopolyploid Festuca × Lolium hybrids displayed potential structural conflicts in parental protein variants within the cytonuclear complexes. While biased maternal allele expression has been observed in numerous hybrids, our results suggest that its role in cytonuclear stabilization in the Festuca × Lolium hybrids is limited. This study provides insights into the restoration of the cytonuclear stoichiometry, yet it emphasizes the need for future research to explore post-transcriptional regulation and its impact on cytonuclear gene expression stoichiometry. Our findings may enhance the understanding of polyploid plant evolution, with broader implications for the study of cytonuclear interactions in diverse biological contexts.
Assuntos
Núcleo Celular , Festuca , Lolium , Poliploidia , Festuca/genética , Lolium/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Genoma de Planta/genética , Genoma de Cloroplastos , Cloroplastos/genética , Cloroplastos/metabolismo , Hibridização Genética , Regulação da Expressão Gênica de PlantasRESUMO
Introgression allows polyploid species to acquire new genomic content from diploid progenitors or from other unrelated diploid or polyploid lineages, contributing to genetic diversity and facilitating adaptive allele discovery. In some cases, high levels of introgression elicit the replacement of large numbers of alleles inherited from the polyploid's ancestral species, profoundly reshaping the polyploid's genomic composition. In such complex polyploids, it is often difficult to determine which taxa were the progenitor species and which taxa provided additional introgressive blocks through subsequent hybridization. Here, we use population-level genomic data to reconstruct the phylogenetic history of Betula pubescens (downy birch), a tetraploid species often assumed to be of allopolyploid origin and which is known to hybridize with at least four other birch species. This was achieved by modeling polyploidization and introgression events under the multispecies coalescent and then using an approximate Bayesian computation rejection algorithm to evaluate and compare competing polyploidization models. We provide evidence that B. pubescens is the outcome of an autoploid genome doubling event in the common ancestor of B. pendula and its extant sister species, B. platyphylla, that took place approximately 178,000-188,000 generations ago. Extensive hybridization with B. pendula, B. nana, and B. humilis followed in the aftermath of autopolyploidization, with the relative contribution of each of these species to the B. pubescens genome varying markedly across the species' range. Functional analysis of B. pubescens loci containing alleles introgressed from B. nana identified multiple genes involved in climate adaptation, while loci containing alleles derived from B. humilis revealed several genes involved in the regulation of meiotic stability and pollen viability in plant species.
Assuntos
Alelos , Betula , Genoma de Planta , Filogenia , Poliploidia , Betula/genética , Betula/classificação , Introgressão Genética , Hibridização GenéticaRESUMO
Polyploidy is widely recognized as an important speciation mechanism because it isolates tetraploids from their diploid progenitors. Polyploidy also provides new genetic material that may facilitate adaptive evolution. However, new mutations are more likely to arise after a neopolyploid has already successfully invaded a population. Thus, the role of adaptive forces in establishing a polyploid remains unclear. One solution to this apparent paradox may lie in the capacity of polyploids to suppress recombination among preexisting locally adapted alleles. The local adaptation mechanism requires that spatially heterogeneous selection acts on multiple loci and that gene flow introduces maladapted alleles to the population where the polyploid forms. The mechanism requires neither strong genetic drift nor any intrinsic benefit of genome doubling and can accommodate any mode of gene action. A unique prediction of the mechanism is that adaptive alleles should predate polyploidization, a pattern consistent with observations from a few well-studied polyploids. The mechanism is also consistent with the coexistence of both diploid and tetraploid cytotypes, fitness heterogeneity among independently derived polyploids, and the prevalence of outcrossing among older polyploids. The local adaptation mechanism also makes novel predictions about circumstances favoring polyploid invasions that can be tested using molecular genetic or comparative approaches.
Assuntos
Adaptação Fisiológica , Poliploidia , Recombinação Genética , Recombinação Genética/genética , Adaptação Fisiológica/genética , AlelosRESUMO
Early studies of the textbook mixed-ploidy system Biscutella laevigata highlighted diploids restricted to never-glaciated lowlands and tetraploids at high elevations across the European Alps, promoting the hypothesis that whole-genome duplication (WGD) is advantageous under environmental changes. Here we addressed long-held hypotheses on the role of hybridisation at the origin of the tetraploids, their single vs multiple origins, and whether a shift in climatic niche accompanied WGD. Climatic niche modelling together with spatial genetics and coalescent modelling based on ddRAD-seq genotyping of 17 diploid and 19 tetraploid populations was used to revisit the evolution of this species complex in space and time. Diploids differentiated into four genetic lineages corresponding to allopatric glacial refugia at the onset of the last ice age, whereas tetraploids displaying tetrasomic inheritance formed a uniform group that originated from southern diploids before the last glacial maximum. Derived from diploids occurring at high elevation, autotetraploids likely inherited their adaptation to high elevation rather than having evolved it through or after WGD. They further presented considerable postglacial expansion across the Alps and underwent admixture with diploids. Although the underpinnings of the successful expansion of autotetraploids remain elusive, differentiation in B. laevigata was chiefly driven by the glacial history of the Alps.
Assuntos
Diploide , Ecossistema , Camada de Gelo , Tetraploidia , Brassicaceae/genética , FilogeniaRESUMO
PREMISE: Polyploidy is a major factor in plant adaptation and speciation. Multiple mechanisms contribute to autopolyploid frequency within populations, but uncertainties remain regarding mechanisms that facilitate polyploid establishment and persistence. Here we aimed to document and predict cytotype distributions of Oxalis obliquifolia Steud. ex A. Rich. across Gauteng, South Africa, and test for evidence of possible mechanisms, including morphological, phenological, and reproductive traits, that may potentially facilitate polyploid persistence. METHODS: Over 320 O. obliquifolia plants from 25 sites were cytotyped using flow cytometry, and DNA ploidy was confirmed using meiotic chromosome squashes. Cytotypes were mapped and correlations with abiotic variables assessed using ordinations. To assess morphological and phenological associations with cytotype, we grew multiple cytotypes in a common garden, measured phenotypic traits and compared them using linear models and discriminant analyses. Intercytotype reproductive isolation was assessed using crossing experiments, and AMOVAs based on ITS DNA sequences tested for cytogeographic structure. RESULTS: Six cytotypes were identified, and most sites had multiple cytotypes. Abiotic variables were not predictive of cytotype distribution. A clear gigas effect was present. Differences in flower size and phenology suggested pollinator interactions could play a role in polyploid persistence. Intercytotype crosses produced seed at low frequency. DNA data suggested diploids and polyploids were largely reproductively isolated in situ, and polyploidization events were not frequent enough to explain high cytotype sympatry. CONCLUSIONS: Diploids and polyploids are behaving as separate species, despite little observable niche differentiation and non-zero potential intercytotype seed set. Tests on biotic interactions and intercytotype F1 fitness may provide insights into diploid and polyploid coexistence.
Assuntos
Poliploidia , Simpatria , África do Sul , Isolamento Reprodutivo , Flores/genética , Flores/fisiologia , FenótipoRESUMO
Autopolyploidy is taxonomically defined as the presence of more than two copies of each genome within an organism or species, where the genomes present must all originate within the same species. Alternatively, "genetic" or "cytological" autopolyploidy is defined by polysomic inheritance: random pairing and segregation of the four (or more) homologous chromosomes present, with no preferential pairing partners. In this review, we provide an overview of methods used to categorize species as taxonomic and cytological autopolyploids, including both modern and obsolete cytological methods, marker-segregation-based and genomics methods. Subsequently, we also investigated how frequently polysomic inheritance has been reliably documented in autopolyploids. Pure or predominantly polysomic inheritance was documented in 39 of 43 putative autopolyploid species where inheritance data was available (91%) and in seven of eight synthetic autopolyploids, with several cases of more mixed inheritance within species. We found no clear cases of autopolyploids with disomic inheritance, which was likely a function of our search methodology. Interestingly, we found seven species with purely polysomic inheritance and another five species with partial or predominant polysomic inheritance that appear to be taxonomic allopolyploids. Our results suggest that observations of polysomic inheritance can lead to relabeling of taxonomically allopolyploid species as autopolyploid and highlight the need for further cytogenetic and genomic investigation into polyploid origins and inheritance types.
Assuntos
Poliploidia , Genoma de Planta , Cromossomos de Plantas/genética , Plantas/genética , Plantas/classificação , CitologiaRESUMO
BACKGROUND: Autopolyploidy is a valuable model for studying whole-genome duplication (WGD) without hybridization, yet little is known about the genomic structural and functional changes that occur in autopolyploids after WGD. Cyclocarya paliurus (Juglandaceae) is a natural diploid-autotetraploid species. We generated an allele-aware autotetraploid genome, a chimeric chromosome-level diploid genome, and whole-genome resequencing data for 106 autotetraploid individuals at an average depth of 60 × per individual, along with 12 diploid individuals at an average depth of 90 × per individual. RESULTS: Autotetraploid C. paliurus had 64 chromosomes clustered into 16 homologous groups, and the majority of homologous chromosomes demonstrated similar chromosome length, gene numbers, and expression. The regions of synteny, structural variation and nonalignment to the diploid genome accounted for 81.3%, 8.8% and 9.9% of the autotetraploid genome, respectively. Our analyses identified 20,626 genes (69.18%) with four alleles and 9191 genes (30.82%) with one, two, or three alleles, suggesting post-polyploid allelic loss. Genes with allelic loss were found to occur more often in proximity to or within structural variations and exhibited a marked overlap with transposable elements. Additionally, such genes showed a reduced tendency to interact with other genes. We also found 102 genes with more than four copies in the autotetraploid genome, and their expression levels were significantly higher than their diploid counterparts. These genes were enriched in enzymes involved in stress response and plant defense, potentially contributing to the evolutionary success of autotetraploids. Our population genomic analyses suggested a single origin of autotetraploids and recent divergence (~ 0.57 Mya) from diploids, with minimal interploidy admixture. CONCLUSIONS: Our results indicate the potential for genomic and functional reorganization, which may contribute to evolutionary success in autotetraploid C. paliurus.
Assuntos
Duplicação Gênica , Tetraploidia , Humanos , Alelos , Poliploidia , GenômicaRESUMO
Hybridization and polyploidy are major forces in plant evolution. Homoploid hybridization can generate new species via hybrid speciation, or modify extant evolutionary lineages through introgression. Polyploidy enables instantaneous reproductive isolation from the parental lineage(s) and is often coupled with evolutionary innovations, especially when linked to hybridization. While allopolyploidy is a well-known and common mechanism of plant speciation, the evolutionary role of autopolyploidy might have been underestimated. Here, we studied the saxifrages of Saxifraga subsection Saxifraga in the Pyrenees, which easily hybridise and include polyploid populations of uncertain origin, as a model to unravel evolutionary consequences and origin of hybridization and polyploidy. Additionally, we investigate the phylogenetic relationship between the two subspecies of the endemic S. pubescens to ascertain whether they should rather be treated as different species. For these purposes, we combined ploidy-informed restriction associated DNA analyses, plastid DNA sequences and morphological data on a comprehensive population sample of seven species. Our results unravel multiple homoploid hybridization events at the diploid level between different species pairs, but with limited evolutionary impact. The ploidy-informed analyses reveal that all tetraploid populations detected in the present study belong to the widespread alpine species S. moschata. Although of autopolyploid origin, they are to some extent morphologically differentiated and underwent a different evolutionary pathway than their diploid parent. However, the high plastid DNA diversity and the internal structure within eastern and western population groups suggest multiple origins of the polyploids. Finally, our phylogenetic analyses show that S. pubescens and S. iratiana are clearly not sister lineages, and should consequently be considered as independent species.
Assuntos
Saxifragaceae , Filogenia , Poliploidia , Hibridização Genética , Ploidias , PlantasRESUMO
BACKGROUND AND AIMS: Polyploids are often hypothesized to have increased phenotypic plasticity compared with their diploid progenitors, but recent work suggests that the relationship between whole-genome duplication (WGD) and plasticity is not so straightforward. Impacts of WGD on plasticity are moderated by other evolutionary processes in nature, which has impeded generalizations regarding the effects of WGD alone. We assessed shifts in phenotypic plasticity and mean trait values accompanying WGD, as well as the adaptive consequences of these shifts. METHODS: To isolate WGD effects, we compared two diploid lineages of Arabidopsis thaliana wiht corresponding autotetraploids grown across different salt and nutrient conditions in a growth chamber. KEY RESULTS: For the few cases in which diploids and polyploids differed in plasticity, polyploids were more plastic, consistent with hypotheses that WGD increases plasticity. Under stress, increased plasticity was often adaptive (associated with higher total seed mass), but in other cases plasticity was unrelated to fitness. Mean trait values and plasticity were equally likely to be affected by WGD, but the adaptive consequences of these shifts were often context dependent or lineage specific. For example, polyploids had extended life spans, a shift that was adaptive in one polyploid lineage under amenable conditions but was maladaptive in the other lineage under stress. CONCLUSIONS: Our work shows that increased phenotypic plasticity can result from WGD alone, independent of other evolutionary processes. We find that the effects of WGD can differ depending on the genotype of the progenitor and the environmental context. Though our experiment was limited to two genotypes of a single species, these findings support the idea that WGD can indeed increase plasticity.
Assuntos
Arabidopsis , Diploide , Arabidopsis/genética , Evolução Biológica , Poliploidia , Genótipo , Genoma de PlantaRESUMO
PREMISE: Apomictic plants (reproducing asexually through seed) often have larger ranges and occur at higher latitudes than closely related sexuals, a pattern known as geographical parthenogenesis (GP). Explanations for GP include differences in colonizing ability due to reproductive assurance and direct/indirect effects of polyploidy (most apomicts are polyploid) on ecological tolerances. While life history traits associated with dispersal and establishment also contribute to the potential for range expansion, few studies compare these traits in related apomicts and sexuals. METHODS: We investigated differences in early life history traits between diploid-sexual and polyploid-apomictic Townsendia hookeri (Asteraceae), which displays a classic pattern of GP. Using lab and greenhouse experiments, we measured seed dispersal traits, germination success, and seedling size and survival in sexual and apomictic populations from across the range of the species. RESULTS: While theory predicts that trade-offs between dispersal and establishment traits should be common, this was largely not the case in T. hookeri. Apomictic seeds had both lower terminal velocity (staying aloft longer when dropped) and higher germination success than sexual seeds. While there were no differences in seedling size between reproductive types, apomicts did, however, have slightly lower seedling survival than sexuals. CONCLUSIONS: These differences in early life history traits, combined with reproductive assurance conferred by apomixis, suggest that apomicts achieve a greater range through advantages in their ability to both spread and establish.
Assuntos
Apomixia , Apomixia/genética , Poliploidia , Partenogênese , Plantas , Sementes/genéticaRESUMO
The sequencing depth required to genotype autopolyploid populations is a very controversial topic. Different studies have adopted variable depth values without a clear guide on the optimal sequencing depth value. Many studies suggest high depth thresholds for different ploidies that may not be practical and substantially increase the overall genotyping cost for different projects. However, such conservative thresholds may not be required to achieve the most common research goals. In fact, some recent reports in the field of quantitative genetics found that much lower sequencing depth thresholds could achieve the same accuracy as high depth thresholds. In this manuscript, I discuss when researchers need to use stringent sequencing depth thresholds and when they can use more relaxed ones. I support my argument by calculating the probabilities of sampling different homologues at a given sequencing depth. I also discuss the uses and the uncertainty in calculating a continuous allelic dosage as the proportion of sequencing reads that hold the alternative allele, which is becoming a common method now in quantitative genetics to replace discrete dosage estimation.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Alelos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
The Balkan Peninsula is recognized as one of the hotspots of biodiversity in Europe. This area has shown since the Last Glacial Maximum appropriate conditions for species diversification and hybridization, which has led to the existence of numerous taxonomically unresolved entities. Here, we focus on the Western Balkans and explore the genetic structure and relationships among species belonging to the V. austriaca - V. orbiculata diploid-polyploid complex, including populations showing intermediate morphologies. A combination of nuclear markers (microsatellites), plastid DNA regions (trnH-psbA, ycf6-psbM) and ploidy level estimations using flow cytometry are employed to assess the genetic structure and evolutionary dynamics of this polyploid complex. To reconstruct the evolutionary history, an approximate Bayesian computation approach is combined with projections of the species distribution models onto the climatic scenarios of the Mid-Holocene (6 ka BP) and Last Glacial Maximum (22 ka BP). Four main groups were found: one well-established entity within the diploid level, V. dalmatica, a second diploid-tetraploid group which corresponds to V. orbiculata, a hexaploid cluster harboring V. austriaca subsp. jacquinii individuals, and an enigmatic tetraploid group. According to the molecular data obtained, this latter cluster represents an allopolyploid cryptic lineage −with V. orbiculata and V. dalmatica as putative parents− morphologically similar to V. orbiculata, but genetically more related to V. austriaca subsp. jacquinii. Veronica dalmatica and this "uncertain tetraploid" group are involved in the formation of the hexaploid taxon V. austriaca subsp. jacquinii, with the possibility of recent gene flow among different cytotypes. The present study supports a scenario of diversification from a diploid common ancestor leading to two different but interrelated lineages. The first one would correspond with the diploid V. orbiculata plus tetraploid individuals of this species arising through allo- and autopolyploidization, and the second one would involve all ploidy levels with allopolyploidization being prevalent.
Assuntos
Biodiversidade , Poliploidia , Alelos , Península Balcânica , Teorema de Bayes , DNA de Cloroplastos/genética , Diploide , Análise Discriminante , Variação Genética , Genética Populacional , Geografia , Humanos , Hibridização Genética , Repetições de Microssatélites/genética , Modelos Teóricos , Filogenia , Plastídeos/genética , Análise de Componente Principal , Veronica/genéticaRESUMO
Whole-genome duplication and post-polyploidization genome downsizing play key roles in the evolution of land plants; however, the impact of genomic diploidization on functional traits still remains poorly understood. Using Dianthus broteri as a model, we compared the ecophysiological behaviour of colchicine-induced neotetraploids (4xNeo) to diploids (2x) and naturally occurring tetraploids (4xNat). Leaf gas-exchange and chlorophyll fluorescence analyses were performed in order to asses to what extent post-polyploidization evolutionary processes have affected 4xNat. Genomic diploidization and phenotypic novelty were evident. Distinct patterns of variation revealed that post-polyploidization processes altered the phenotypic shifts directly mediated by genome doubling. The photosynthetic phenotype was affected in several ways but the main effect was phenotypic diploidization (i.e. 2x and 4xNat were closer to each other than to 4xNeo). Overall, our results show the potential benefits of considering experimentally synthetized versus naturally established polyploids when exploring the role of polyploidization in promoting functional divergence.
Assuntos
Dianthus , Dianthus/genética , Diploide , Genoma de Planta/genética , Fenótipo , PoliploidiaRESUMO
PREMISE: Whole-genome duplication (WGD) is ubiquitous in plants. Recent reviews and meta-analyses, aiming to understand how such phenotypic transition could facilitate neopolyploid establishment, demonstrated multifarious immediate effects of WGD on fitness and reproductive traits. Yet, little is known about how short-term modifications evolve through time. Such a comparison among new and established polyploid lineages is crucial to understand which effects of WGD promote or impede polyploid survival. METHODS: We performed a meta-analysis to determine how WGD affects morphological, cellular, and fitness traits in autotetraploid individuals compared to their diploid progenitors. We studied how established tetraploids differed from diploids compared to neotetraploids, to further learn about the fate of WGD-associated phenotypic effects during polyploid establishment. RESULTS: The short-term effects of WGD were an increase in size of morphological traits and cells, accompanied by a decrease in fitness and the number of cells. After establishment, the morphological effect persisted, but cellular and fitness components reverted back to the values observed in the diploid ancestors. CONCLUSIONS: Our results suggest that the larger morphology of autotetraploids is not a constraint to establishment. However, other observable effects of genome doubling disappeared with time, suggesting that solving cellular and fitness constraints are critical aspects for polyploid establishment.
Assuntos
Duplicação Gênica , Genoma de Planta , Diploide , Poliploidia , TetraploidiaRESUMO
PREMISE: Polyploidy may serve to contribute to range size if autopolyploid cytotypes are adapted to differing ecological conditions. This study aims to establish the geographic distribution of cytotypes within the giant goldenrod (Solidago gigantea), and to assess whether cytotypes exhibit differing ecological tolerances and morphology. METHODS: A range-wide set of 629 Solidago gigantea individuals was obtained through field collecting, sampling from herbarium specimens, and incorporating existing chromosome counts. Cytotype of each unknown sample was estimated by observing allele numbers at twelve microsatellite loci, a strategy that was assessed by comparing estimated to known cytotype in 20 chromosome-counted samples. Abiotic ecological differentiation was assessed for two transitions: diploid-tetraploid and tetraploid-hexaploid. Morphological differentiation among cytotypes was assessed. RESULTS: Microsatellite repeat variation accurately estimated cytotype in 85% of samples for which ploidy was known. Applying this approach to samples of unknown ploidy established that the three cytotypes are non-randomly distributed. Although niche modeling and MANOVA approaches identified significant differences in macro-climatic conditions for both cytotype transitions, the tetraploid to hexaploid transition was more substantial. Leaf length and width did not differ among cytotypes. Although leaf vestiture exhibited strong trends, no absolute differences were observed among cytotypes. CONCLUSIONS: With the largest such study to date, we established niche transitions among giant goldenrod cytotypes of differing magnitudes. Collectively, this suggests that whole-genome duplication has contributed to Solidago gigantea's large range.
Assuntos
Solidago , Diploide , Humanos , Ploidias , Poliploidia , Solidago/genética , TetraploidiaRESUMO
The Eurasian steppes occupy a significant portion of the worldwide land surface and their biota have been affected by specific past range dynamics driven by ice ages-related climatic fluctuations. The dynamic alterations in conditions during the Pleistocene often triggered reticulate evolution and whole genome duplication events. Employing genomic, genetic and cytogenetic tools as well as morphometry we investigate the intricate evolution of Astragalus onobrychis, a widespread Eurasian steppe plant with diploid, tetraploid and octoploid cytotypes. To analyse the heteroploid RADseq dataset we employ both genotype-based and genotype-free methods that result in highly consistent results, and complement our inference with information from the plastid ycf1 region. We uncover a complex and reticulate evolutionary history, including at least one auto-tetraploidization event and two allo-octoploidization events; one of them involved also genetic contributions from other species, most likely A. goktschaicus. The present genetic structure points to the existence of four main clades within A. onobrychis, which only partly correspond to different ploidies. Time-calibrated diffusion models suggest that diversification within A. onobrychis was associated with ice age-related climatic fluctuations during the last million years. We finally argue for the usefulness of uniparentally inherited plastid markers, even in the genomic era, especially when investigating heteroploid systems.
Assuntos
Astrágalo/genética , Cromossomos de Plantas , Ásia , Astrágalo/anatomia & histologia , Astrágalo/classificação , DNA de Plantas/química , DNA de Plantas/metabolismo , Europa (Continente) , Filogenia , Plastídeos/genética , Poliploidia , Análise de Componente PrincipalRESUMO
BACKGROUND: Species diversity is likely to undergo a sharp decline in the next century. Perhaps as many as 33 % of all plant species may expire as a result of climate change. All parts of the globe will be impacted, and all groups of organisms will be affected. Hundreds of species throughout the world have already experienced local extinction. PERSPECTIVES: While thousands of species may become extinct in the next century and beyond, species formation will still occur. I consider which modes of plant species formation are likely to prevail in the next 500 years. I argue that speciation primarily will involve mechanisms that produce reproductively isolated lineages within less (often much less) than 100 generations. I will not especially consider the human element in promoting species formation, because it will continue and because the conclusions presented here are unaffected by it. The impact of climate change may be much more severe and widespread. CONCLUSIONS: The most common modes of speciation likely to be operative in the next 500 years ostensibly will be auto- and allopolyploidy. Polyploid species or the antecedents thereof can arise within two generations. Moreover, polyploids often have broader ecological tolerances, and are likely to be more invasive than are their diploid relatives. Polyploid species may themselves spawn additional higher level polyploids either through crosses with diploid species or between pre-existing polyploids. The percentage of polyploid species is likely to exceed 50 % within the next 500 years vs. 35 % today. The stabilized hybrid derivatives (homoploid hybrid speciation) could emerge within a hundred generations after species contact, as could speciation involving chromosomal rearrangements (and perhaps number), but the number of such events is likely to be low. Speciation involving lineage splitting will be infrequent because the formation of substantive pre- and post-zygotic barriers typically takes many thousands of years.
Assuntos
Mudança Climática , Hibridização Genética , Diploide , Especiação Genética , Humanos , Plantas , PoliploidiaRESUMO
BACKGROUND AND AIMS: Cardamine occulta (Brassicaceae) is an octoploid weedy species (2n = 8x = 64) originated in Eastern Asia. It has been introduced to other continents including Europe and considered to be an invasive species. Despite its wide distribution, the polyploid origin of C. occulta remained unexplored. The feasibility of comparative chromosome painting (CCP) in crucifers allowed us to elucidate the origin and genome evolution in Cardamine species. We aimed to investigate the genome structure of C. occulta in comparison with its tetraploid (2n = 4x = 32, C. kokaiensis and C. scutata) and octoploid (2n = 8x = 64, C. dentipetala) relatives. METHODS: Genomic in situ hybridization (GISH) and large-scale CCP were applied to uncover the parental genomes and chromosome composition of the investigated Cardamine species. KEY RESULTS: All investigated species descended from a common ancestral Cardamine genome (n = 8), structurally resembling the Ancestral Crucifer Karyotype (n = 8), but differentiated by a translocation between chromosomes AK6 and AK8. Allotetraploid C. scutata originated by hybridization between two diploid species, C. parviflora and C. amara (2n = 2x = 16). By contrast, C. kokaiensis has an autotetraploid origin from a parental genome related to C. parviflora. Interestingly, octoploid C. occulta probably originated through hybridization between the tetraploids C. scutata and C. kokaiensis. The octoploid genome of C. dentipetala probably originated from C. scutata via autopolyploidization. Except for five species-specific centromere repositionings and one pericentric inversion post-dating the polyploidization events, the parental subgenomes remained stable in the tetra- and octoploids. CONCLUSIONS: Comparative genome structure, origin and evolutionary history was reconstructed in C. occulta and related species. For the first time, whole-genome cytogenomic maps were established for octoploid plants. Post-polyploid evolution in Asian Cardamine polyploids has not been associated with descending dysploidy and intergenomic rearrangements. The combination of different parental (sub)genomes adapted to distinct habitats provides an evolutionary advantage to newly formed polyploids by occupying new ecological niches.
Assuntos
Brassicaceae , Cardamine , Europa (Continente) , Ásia Oriental , Genoma de Planta , Humanos , Espécies Introduzidas , PoliploidiaRESUMO
PREMISE OF THE STUDY: Studies of gene expression and polyploidy are typically restricted to characterizing differences in transcript concentration. Using diploid and autotetraploid Tolmiea, we present an integrated approach for cross-ploidy comparisons that account for differences in transcriptome size and cell density and make multiple comparisons of transcript abundance. METHODS: We use RNA spike-in standards in concert with cell size and density to identify and correct for differences in transcriptome size and compare levels of gene expression across multiple scales: per transcriptome, per cell, and per biomass. KEY RESULTS: In total, ~17% of all loci were identified as differentially expressed (DEGs) between the diploid and autopolyploid species. The per-transcriptome normalization, the method researchers typically use, captured the fewest DEGs (58% of total DEGs) and failed to detect any DEGs not found by the alternative normalizations. When transcript abundance was normalized per biomass and per cell, ~66% and ~82% of the total DEGs were recovered, respectively. The discrepancy between per-transcriptome and per-cell recovery of DEGs occurs because per-transcriptome normalizations are concentration-based and therefore blind to differences in transcriptome size. CONCLUSIONS: While each normalization enables valid comparisons at biologically relevant scales, a holistic comparison of multiple normalizations provides additional explanatory power not available from any single approach. Notably, autotetraploid loci tend to conserve diploid-like transcript abundance per biomass through increased gene expression per cell, and these loci are enriched for photosynthesis-related functions.
Assuntos
Diploide , Expressão Gênica , Saxifragaceae/genética , Tetraploidia , Biomassa , Tamanho Celular , Saxifragaceae/metabolismo , TranscriptomaRESUMO
PREMISE: Although autopolyploidy is common among dominant Great Plains grasses, the distribution of cytotypes within a given species is typically poorly understood. This study aims to establish the geographic distribution of cytotypes within buffalograss (Buchloë dactyloides) and to assess whether individual cytotypes have differing ecological tolerances. METHODS: A range-wide set of 578 B. dactyloides individuals was obtained through field collecting and sampling from herbarium specimens. The cytotype of each sample was estimated by determining allele numbers at 13 simple sequence repeat loci, a strategy that was assessed by comparing estimated to known cytotype in 79 chromosome-counted samples. Ecological differentiation between the dominant tetraploid and hexaploid cytotypes was assessed with analyses of macroclimatic variables. RESULTS: Simple sequence repeat variation accurately estimated cytotype in 89% of samples from which a chromosome count had been obtained. Applying this approach to samples of unknown ploidy established that diploids and pentaploids are rare, with the common tetraploid and hexaploid cytotypes generally occurring in sites to the north/west (tetraploid) or south/east (hexaploid) portions of the species range. Both MANOVA and niche modeling approaches identified significant but subtle differences in macroclimatic conditions at the set of locations occupied by these two dominant cytotypes. CONCLUSIONS: Incorporating chromosome count vouchers and cytotype-estimated herbarium records allowed us to perform the largest study of cytotype niche differentiation to date. Buffalograss cytotypes differ greatly in frequency, the common tetraploid and hexaploid cytotypes are non-randomly distributed, and these two cytotypes are subtly ecologically differentiated.