RESUMO
TGF-ß, essential for development and immunity, is expressed as a latent complex (L-TGF-ß) non-covalently associated with its prodomain and presented on immune cell surfaces by covalent association with GARP. Binding to integrin αvß8 activates L-TGF-ß1/GARP. The dogma is that mature TGF-ß must physically dissociate from L-TGF-ß1 for signaling to occur. Our previous studies discovered that αvß8-mediated TGF-ß autocrine signaling can occur without TGF-ß1 release from its latent form. Here, we show that mice engineered to express TGF-ß1 that cannot release from L-TGF-ß1 survive without early lethal tissue inflammation, unlike those with TGF-ß1 deficiency. Combining cryogenic electron microscopy with cell-based assays, we reveal a dynamic allosteric mechanism of autocrine TGF-ß1 signaling without release where αvß8 binding redistributes the intrinsic flexibility of L-TGF-ß1 to expose TGF-ß1 to its receptors. Dynamic allostery explains the TGF-ß3 latency/activation mechanism and why TGF-ß3 functions distinctly from TGF-ß1, suggesting that it broadly applies to other flexible cell surface receptor/ligand systems.
Assuntos
Comunicação Autócrina , Integrinas , Comunicação Parácrina , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Regulação Alostérica , Fator de Crescimento Transformador beta1/metabolismo , Integrinas/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta3/metabolismo , Microscopia CrioeletrônicaRESUMO
Beige fat plays key roles in the regulation of systemic energy homeostasis; however, detailed mechanisms and safe strategy for its activation remain elusive. In this study, we discovered that local hyperthermia therapy (LHT) targeting beige fat promoted its activation in humans and mice. LHT achieved using a hydrogel-based photothermal therapy activated beige fat, preventing and treating obesity in mice without adverse effects. HSF1 is required for the effects since HSF1 deficiency blunted the metabolic benefits of LHT. HSF1 regulates Hnrnpa2b1 (A2b1) transcription, leading to increased mRNA stability of key metabolic genes. Importantly, analysis of human association studies followed by functional analysis revealed that the HSF1 gain-of-function variant p.P365T is associated with improved metabolic performance in humans and increased A2b1 transcription in mice and cells. Overall, we demonstrate that LHT offers a promising strategy against obesity by inducing beige fat activation via HSF1-A2B1 transcriptional axis.
Assuntos
Tecido Adiposo Bege , Tecido Adiposo Branco , Hipertermia Induzida , Obesidade/terapia , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismoRESUMO
Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.
Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/virologia , Cricetinae , Células Epiteliais , Humanos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genéticaRESUMO
Virus-like particle (VLP) and live virus assays were used to investigate neutralizing immunity against Delta and Omicron SARS-CoV-2 variants in 259 samples from 128 vaccinated individuals. Following Delta breakthrough infection, titers against WT rose 57-fold and 3.1-fold compared with uninfected boosted and unboosted individuals, respectively, versus only a 5.8-fold increase and 3.1-fold decrease for Omicron breakthrough infection. Among immunocompetent, unboosted patients, Delta breakthrough infections induced 10.8-fold higher titers against WT compared with Omicron (p = 0.037). Decreased antibody responses in Omicron breakthrough infections relative to Delta were potentially related to a higher proportion of asymptomatic or mild breakthrough infections (55.0% versus 28.6%, respectively), which exhibited 12.3-fold lower titers against WT compared with moderate to severe infections (p = 0.020). Following either Delta or Omicron breakthrough infection, limited variant-specific cross-neutralizing immunity was observed. These results suggest that Omicron breakthrough infections are less immunogenic than Delta, thus providing reduced protection against reinfection or infection from future variants.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , HumanosRESUMO
We present evidence for multiple independent origins of recombinant SARS-CoV-2 viruses sampled from late 2020 and early 2021 in the United Kingdom. Their genomes carry single-nucleotide polymorphisms and deletions that are characteristic of the B.1.1.7 variant of concern but lack the full complement of lineage-defining mutations. Instead, the remainder of their genomes share contiguous genetic variation with non-B.1.1.7 viruses circulating in the same geographic area at the same time as the recombinants. In four instances, there was evidence for onward transmission of a recombinant-origin virus, including one transmission cluster of 45 sequenced cases over the course of 2 months. The inferred genomic locations of recombination breakpoints suggest that every community-transmitted recombinant virus inherited its spike region from a B.1.1.7 parental virus, consistent with a transmission advantage for B.1.1.7's set of mutations.
Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Pandemias , Recombinação Genética , SARS-CoV-2/genética , Sequência de Bases/genética , COVID-19/virologia , Biologia Computacional/métodos , Frequência do Gene , Genoma Viral , Genótipo , Humanos , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único , Reino Unido/epidemiologia , Sequenciamento Completo do Genoma/métodosRESUMO
The global spread of SARS-CoV-2/COVID-19 is devastating health systems and economies worldwide. Recombinant or vaccine-induced neutralizing antibodies are used to combat the COVID-19 pandemic. However, the recently emerged SARS-CoV-2 variants B.1.1.7 (UK), B.1.351 (South Africa), and P.1 (Brazil) harbor mutations in the viral spike (S) protein that may alter virus-host cell interactions and confer resistance to inhibitors and antibodies. Here, using pseudoparticles, we show that entry of all variants into human cells is susceptible to blockade by the entry inhibitors soluble ACE2, Camostat, EK-1, and EK-1-C4. In contrast, entry of the B.1.351 and P.1 variant was partially (Casirivimab) or fully (Bamlanivimab) resistant to antibodies used for COVID-19 treatment. Moreover, entry of these variants was less efficiently inhibited by plasma from convalescent COVID-19 patients and sera from BNT162b2-vaccinated individuals. These results suggest that SARS-CoV-2 may escape neutralizing antibody responses, which has important implications for efforts to contain the pandemic.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , Animais , COVID-19/imunologia , COVID-19/terapia , COVID-19/virologia , Linhagem Celular , Farmacorresistência Viral , Humanos , Imunização Passiva , Cinética , Fusão de Membrana , Modelos Moleculares , Testes de Neutralização , Serina Endopeptidases/metabolismo , Solubilidade , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Internalização do Vírus , Soroterapia para COVID-19RESUMO
SARS-CoV-2 has caused over 2 million deaths in little over a year. Vaccines are being deployed at scale, aiming to generate responses against the virus spike. The scale of the pandemic and error-prone virus replication is leading to the appearance of mutant viruses and potentially escape from antibody responses. Variant B.1.1.7, now dominant in the UK, with increased transmission, harbors 9 amino acid changes in the spike, including N501Y in the ACE2 interacting surface. We examine the ability of B.1.1.7 to evade antibody responses elicited by natural SARS-CoV-2 infection or vaccination. We map the impact of N501Y by structure/function analysis of a large panel of well-characterized monoclonal antibodies. B.1.1.7 is harder to neutralize than parental virus, compromising neutralization by some members of a major class of public antibodies through light-chain contacts with residue 501. However, widespread escape from monoclonal antibodies or antibody responses generated by natural infection or vaccination was not observed.
Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Células CHO , COVID-19/epidemiologia , Chlorocebus aethiops , Cricetulus , Células HEK293 , Humanos , Pandemias , Ligação Proteica , Relação Estrutura-Atividade , Células VeroRESUMO
The race to produce vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began when the first sequence was published, and this forms the basis for vaccines currently deployed globally. Independent lineages of SARS-CoV-2 have recently been reported: UK, B.1.1.7; South Africa, B.1.351; and Brazil, P.1. These variants have multiple changes in the immunodominant spike protein that facilitates viral cell entry via the angiotensin-converting enzyme-2 (ACE2) receptor. Mutations in the receptor recognition site on the spike are of great concern for their potential for immune escape. Here, we describe a structure-function analysis of B.1.351 using a large cohort of convalescent and vaccinee serum samples. The receptor-binding domain mutations provide tighter ACE2 binding and widespread escape from monoclonal antibody neutralization largely driven by E484K, although K417N and N501Y act together against some important antibody classes. In a number of cases, it would appear that convalescent and some vaccine serum offers limited protection against this variant.
Assuntos
Vacinas contra COVID-19/sangue , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , COVID-19/imunologia , COVID-19/terapia , COVID-19/virologia , Chlorocebus aethiops , Ensaios Clínicos como Assunto , Células HEK293 , Humanos , Imunização Passiva , Modelos Moleculares , Mutação/genética , Testes de Neutralização , Ligação Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Células Vero , Soroterapia para COVID-19RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has undergone progressive change, with variants conferring advantage rapidly becoming dominant lineages, e.g., B.1.617. With apparent increased transmissibility, variant B.1.617.2 has contributed to the current wave of infection ravaging the Indian subcontinent and has been designated a variant of concern in the United Kingdom. Here we study the ability of monoclonal antibodies and convalescent and vaccine sera to neutralize B.1.617.1 and B.1.617.2, complement this with structural analyses of Fab/receptor binding domain (RBD) complexes, and map the antigenic space of current variants. Neutralization of both viruses is reduced compared with ancestral Wuhan-related strains, but there is no evidence of widespread antibody escape as seen with B.1.351. However, B.1.351 and P.1 sera showed markedly more reduction in neutralization of B.1.617.2, suggesting that individuals infected previously by these variants may be more susceptible to reinfection by B.1.617.2. This observation provides important new insights for immunization policy with future variant vaccines in non-immune populations.
Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Complexo Antígeno-Anticorpo/química , COVID-19/patologia , COVID-19/terapia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Chlorocebus aethiops , Cristalografia por Raios X , Humanos , Imunização Passiva , Testes de Neutralização , Domínios Proteicos/imunologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Soroterapia para COVID-19RESUMO
The emergence and spread of SARS-CoV-2 lineage B.1.1.7, first detected in the United Kingdom, has become a global public health concern because of its increased transmissibility. Over 2,500 COVID-19 cases associated with this variant have been detected in the United States (US) since December 2020, but the extent of establishment is relatively unknown. Using travel, genomic, and diagnostic data, we highlight that the primary ports of entry for B.1.1.7 in the US were in New York, California, and Florida. Furthermore, we found evidence for many independent B.1.1.7 establishments starting in early December 2020, followed by interstate spread by the end of the month. Finally, we project that B.1.1.7 will be the dominant lineage in many states by mid- to late March. Thus, genomic surveillance for B.1.1.7 and other variants urgently needs to be enhanced to better inform the public health response.
Assuntos
Teste para COVID-19 , COVID-19 , Modelos Biológicos , SARS-CoV-2 , COVID-19/genética , COVID-19/mortalidade , COVID-19/transmissão , Feminino , Humanos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Estados Unidos/epidemiologiaRESUMO
We identified an emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California, a state in the western United States. Named B.1.427/B.1.429 to denote its two lineages, the variant emerged in May 2020 and increased from 0% to >50% of sequenced cases from September 2020 to January 2021, showing 18.6%-24% increased transmissibility relative to wild-type circulating strains. The variant carries three mutations in the spike protein, including an L452R substitution. We found 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids, albeit decreased relative to pseudoviruses carrying the N501Y mutation common to variants B.1.1.7, B.1.351, and P.1. Antibody neutralization assays revealed 4.0- to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively. The increased prevalence of a more transmissible variant in California exhibiting decreased antibody neutralization warrants further investigation.
Assuntos
Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/transmissão , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Humanos , Mutação/genética , Sequenciamento Completo do Genoma/métodosRESUMO
The highly transmissible B.1.1.7 variant of SARS-CoV-2, first identified in the United Kingdom, has gained a foothold across the world. Using S gene target failure (SGTF) and SARS-CoV-2 genomic sequencing, we investigated the prevalence and dynamics of this variant in the United States (US), tracking it back to its early emergence. We found that, while the fraction of B.1.1.7 varied by state, the variant increased at a logistic rate with a roughly weekly doubling rate and an increased transmission of 40%-50%. We revealed several independent introductions of B.1.1.7 into the US as early as late November 2020, with community transmission spreading it to most states within months. We show that the US is on a similar trajectory as other countries where B.1.1.7 became dominant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality.
Assuntos
COVID-19 , Modelos Biológicos , SARS-CoV-2 , COVID-19/genética , COVID-19/mortalidade , COVID-19/transmissão , Feminino , Humanos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Estados Unidos/epidemiologiaRESUMO
Anosmia, the loss of smell, is a common and often the sole symptom of COVID-19. The onset of the sequence of pathobiological events leading to olfactory dysfunction remains obscure. Here, we have developed a postmortem bedside surgical procedure to harvest endoscopically samples of respiratory and olfactory mucosae and whole olfactory bulbs. Our cohort of 85 cases included COVID-19 patients who died a few days after infection with SARS-CoV-2, enabling us to catch the virus while it was still replicating. We found that sustentacular cells are the major target cell type in the olfactory mucosa. We failed to find evidence for infection of olfactory sensory neurons, and the parenchyma of the olfactory bulb is spared as well. Thus, SARS-CoV-2 does not appear to be a neurotropic virus. We postulate that transient insufficient support from sustentacular cells triggers transient olfactory dysfunction in COVID-19. Olfactory sensory neurons would become affected without getting infected.
Assuntos
Autopsia/métodos , COVID-19/mortalidade , COVID-19/virologia , Bulbo Olfatório/virologia , Mucosa Olfatória/virologia , Mucosa Respiratória/virologia , Idoso , Anosmia , COVID-19/fisiopatologia , Endoscopia/métodos , Feminino , Glucuronosiltransferase/biossíntese , Humanos , Imuno-Histoquímica , Hibridização In Situ , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Transtornos do Olfato , Neurônios Receptores Olfatórios/metabolismo , Sistema Respiratório , SARS-CoV-2 , OlfatoRESUMO
Adipose tissue group 2 innate lymphoid cells (ILC2s) help maintain metabolic homeostasis by sustaining type 2 immunity and promoting adipose beiging. Although impairment of the ILC2 compartment contributes to obesity-associated insulin resistance, the underlying mechanisms have not been elucidated. Here, we found that ILC2s in obese mice and humans exhibited impaired liver kinase B1 (LKB1) activation. Genetic ablation of LKB1 disrupted ILC2 mitochondrial metabolism and suppressed ILC2 responses, resulting in exacerbated insulin resistance. Mechanistically, LKB1 deficiency induced aberrant PD-1 expression through activation of NFAT, which in turn enhanced mitophagy by suppressing Bcl-xL expression. Blockade of PD-1 restored the normal functions of ILC2s and reversed obesity-induced insulin resistance in mice. Collectively, these data present the LKB1-PD-1 axis as a promising therapeutic target for the treatment of metabolic disease.
Assuntos
Tecido Adiposo , Homeostase , Resistência à Insulina , Linfócitos , Mitocôndrias , Obesidade , Receptor de Morte Celular Programada 1 , Proteínas Serina-Treonina Quinases , Animais , Resistência à Insulina/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Mitocôndrias/metabolismo , Humanos , Tecido Adiposo/metabolismo , Tecido Adiposo/imunologia , Obesidade/imunologia , Obesidade/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Imunidade Inata , Masculino , Mitofagia/imunologia , Quinases Proteína-Quinases Ativadas por AMPRESUMO
The transcription factor NRF2 is a master regulator of the cellular antioxidant response, and it is often genetically activated in non-small-cell lung cancers (NSCLCs) by, for instance, mutations in the negative regulator KEAP1. While direct pharmacological inhibition of NRF2 has proven challenging, its aberrant activation rewires biochemical networks in cancer cells that may create special vulnerabilities. Here, we use chemical proteomics to map druggable proteins that are selectively expressed in KEAP1-mutant NSCLC cells. Principal among these is NR0B1, an atypical orphan nuclear receptor that we show engages in a multimeric protein complex to regulate the transcriptional output of KEAP1-mutant NSCLC cells. We further identify small molecules that covalently target a conserved cysteine within the NR0B1 protein interaction domain, and we demonstrate that these compounds disrupt NR0B1 complexes and impair the anchorage-independent growth of KEAP1-mutant cancer cells. Our findings designate NR0B1 as a druggable transcriptional regulator that supports NRF2-dependent lung cancers.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/química , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Proteoma/análise , Transcriptoma , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Cisteína/metabolismo , Receptor Nuclear Órfão DAX-1/metabolismo , Redes Reguladoras de Genes , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ligantes , Neoplasias Pulmonares/metabolismoRESUMO
Mutations in the RNA splicing factor gene SF3B1 are common across hematologic and solid cancers and result in widespread alterations in splicing, yet there is currently no therapeutic means to correct this mis-splicing. Here, we utilize synthetic introns uniquely responsive to mutant SF3B1 to identify trans factors required for aberrant mutant SF3B1 splicing activity. This revealed the G-patch domain-containing protein GPATCH8 as required for mutant SF3B1-induced splicing alterations and impaired hematopoiesis. GPATCH8 is involved in quality control of branchpoint selection, interacts with the RNA helicase DHX15, and functionally opposes SURP and G-patch domain containing 1 (SUGP1), a G-patch protein recently implicated in SF3B1-mutant diseases. Silencing of GPATCH8 corrected one-third of mutant SF3B1-dependent splicing defects and was sufficient to improve dysfunctional hematopoiesis in SF3B1-mutant mice and primary human progenitors. These data identify GPATCH8 as a novel splicing factor required for mis-splicing by mutant SF3B1 and highlight the therapeutic impact of correcting aberrant splicing in SF3B1-mutant cancers.
Assuntos
Neoplasias Hematológicas , Proteínas Musculares , Mutação , Fosfoproteínas , Fatores de Processamento de RNA , Animais , Humanos , Camundongos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/metabolismo , Hematopoese/genética , Íntrons , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismoRESUMO
Somatic mutations in genes encoding components of the RNA splicing machinery occur frequently in multiple forms of cancer. The most frequently mutated RNA splicing factors in cancer impact intronic branch site and 3' splice site recognition. These include mutations in the core RNA splicing factor SF3B1 as well as mutations in the U2AF1/2 heterodimeric complex, which recruits the SF3b complex to the 3' splice site. Additionally, mutations in splicing regulatory proteins SRSF2 and RBM10 are frequent in cancer, and there has been a recent suggestion that variant forms of small nuclear RNAs (snRNAs) may contribute to splicing dysregulation in cancer. Here, we describe molecular mechanisms by which mutations in these factors alter splice site recognition and how studies of this process have yielded new insights into cancer pathogenesis and the molecular regulation of splicing. We also discuss data linking mutant RNA splicing factors to RNA metabolism beyond splicing.
Assuntos
Mutação , Neoplasias , Fatores de Processamento de RNA , Splicing de RNA , Proteínas de Ligação a RNA , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Animais , Sítios de Splice de RNA , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismoRESUMO
Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human diseases remains unexplored. Using isogenic cell lines, patient samples, and a mutant mouse model, we investigated how cancer-associated mutations in SF3B1 alter transcription. We found that these mutations reduce the elongation rate of RNA polymerase II (RNAPII) along gene bodies and its density at promoters. The elongation defect results from disrupted pre-spliceosome assembly due to impaired protein-protein interactions of mutant SF3B1. The decreased promoter-proximal RNAPII density reduces both chromatin accessibility and H3K4me3 marks at promoters. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC/H3K4me pathway, which, when modulated, reverse both transcription and chromatin changes. Our findings reveal how splicing factor mutant states behave functionally as epigenetic disorders through impaired transcription-related changes to the chromatin landscape. We also present a rationale for targeting the Sin3/HDAC complex as a therapeutic strategy.
Assuntos
Cromatina , Neoplasias , Animais , Humanos , Camundongos , Cromatina/genética , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismoRESUMO
The adult immune system consists of cells that emerged at various times during ontogeny. We aimed to define the relationship between developmental origin and composition of the adult B cell pool during unperturbed hematopoiesis. Lineage tracing stratified murine adult B cells based on the timing of output, revealing that a substantial portion originated within a restricted neonatal window. In addition to B-1a cells, early-life time-stamped B cells included clonally interrelated IgA plasma cells in the gut and bone marrow. These were actively maintained by B cell memory within gut chronic germinal centers and contained commensal microbiota reactivity. Neonatal rotavirus infection recruited recurrent IgA clones that were distinct from those arising by infection with the same antigen in adults. Finally, gut IgA plasma cells arose from the same hematopoietic progenitors as B-1a cells during ontogeny. Thus, a complex layer of neonatally imprinted B cells confer unique antibody responses later in life.
Assuntos
Imunoglobulina A , Microbiota , Animais , Linfócitos B , Centro Germinativo , Camundongos , PlasmócitosRESUMO
4.5SH RNA is a highly abundant, small rodent-specific noncoding RNA that localizes to nuclear speckles enriched in pre-mRNA-splicing regulators. To investigate the physiological functions of 4.5SH RNA, we have created mutant mice that lack the expression of 4.5SH RNA. The mutant mice exhibited embryonic lethality, suggesting that 4.5SH RNA is an essential species-specific noncoding RNA in mice. RNA-sequencing analyses revealed that 4.5SH RNA protects the transcriptome from abnormal exonizations of the antisense insertions of the retrotransposon SINE B1 (asB1), which would otherwise introduce deleterious premature stop codons or frameshift mutations. Mechanistically, 4.5SH RNA base pairs with complementary asB1-containing exons via the target recognition region and recruits effector proteins including Hnrnpm via its 5' stem loop region. The modular organization of 4.5SH RNA allows us to engineer a programmable splicing regulator to induce the skipping of target exons of interest. Our results also suggest the general existence of splicing regulatory noncoding RNAs.