Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.138
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39288764

RESUMO

TGF-ß, essential for development and immunity, is expressed as a latent complex (L-TGF-ß) non-covalently associated with its prodomain and presented on immune cell surfaces by covalent association with GARP. Binding to integrin αvß8 activates L-TGF-ß1/GARP. The dogma is that mature TGF-ß must physically dissociate from L-TGF-ß1 for signaling to occur. Our previous studies discovered that αvß8-mediated TGF-ß autocrine signaling can occur without TGF-ß1 release from its latent form. Here, we show that mice engineered to express TGF-ß1 that cannot release from L-TGF-ß1 survive without early lethal tissue inflammation, unlike those with TGF-ß1 deficiency. Combining cryogenic electron microscopy with cell-based assays, we reveal a dynamic allosteric mechanism of autocrine TGF-ß1 signaling without release where αvß8 binding redistributes the intrinsic flexibility of L-TGF-ß1 to expose TGF-ß1 to its receptors. Dynamic allostery explains the TGF-ß3 latency/activation mechanism and why TGF-ß3 functions distinctly from TGF-ß1, suggesting that it broadly applies to other flexible cell surface receptor/ligand systems.

2.
Immunity ; 54(1): 132-150.e9, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33271119

RESUMO

HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Linfócitos T CD8-Positivos/imunologia , Glioma/imunologia , Glicoesfingolipídeos/metabolismo , Glicosiltransferases/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoterapia/métodos , Apresentação de Antígeno , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/mortalidade , Glicoesfingolipídeos/imunologia , Antígenos HLA/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Ativação Linfocitária , Transdução de Sinais , Análise de Sobrevida , Evasão Tumoral
3.
Genes Dev ; 34(21-22): 1546-1558, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004415

RESUMO

The de novo DNA methyltransferases Dnmt3a and Dnmt3b play crucial roles in developmental and cellular processes. Their enzymatic activities are stimulated by a regulatory protein Dnmt3L (Dnmt3-like) in vitro. However, genetic evidence indicates that Dnmt3L functions predominantly as a regulator of Dnmt3a in germ cells. How Dnmt3a and Dnmt3b activities are regulated during embryonic development and in somatic cells remains largely unknown. Here we show that Dnmt3b3, a catalytically inactive Dnmt3b isoform expressed in differentiated cells, positively regulates de novo methylation by Dnmt3a and Dnmt3b with a preference for Dnmt3b. Dnmt3b3 is equally potent as Dnmt3L in stimulating the activities of Dnmt3a2 and Dnmt3b2 in vitro. Like Dnmt3L, Dnmt3b3 forms a complex with Dnmt3a2 with a stoichiometry of 2:2. However, rescue experiments in Dnmt3a/3b/3l triple-knockout (TKO) mouse embryonic stem cells (mESCs) reveal that Dnmt3b3 prefers Dnmt3b2 over Dnmt3a2 in remethylating genomic sequences. Dnmt3a2, an active isoform that lacks the N-terminal uncharacterized region of Dnmt3a1 including a nuclear localization signal, has very low activity in TKO mESCs, indicating that an accessory protein is absolutely required for its function. Our results suggest that Dnmt3b3 and perhaps similar Dnmt3b isoforms facilitate de novo DNA methylation during embryonic development and in somatic cells.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Isoenzimas/metabolismo , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias , Camundongos , Camundongos Knockout , DNA Metiltransferase 3B
4.
Annu Rev Pharmacol Toxicol ; 63: 637-660, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36206988

RESUMO

The coordinated movement of organic anions (e.g., drugs, metabolites, signaling molecules, nutrients, antioxidants, gut microbiome products) between tissues and body fluids depends, in large part, on organic anion transporters (OATs) [solute carrier 22 (SLC22)], organic anion transporting polypeptides (OATPs) [solute carrier organic (SLCO)], and multidrug resistance proteins (MRPs) [ATP-binding cassette, subfamily C (ABCC)]. Depending on the range of substrates, transporters in these families can be considered multispecific, oligospecific, or (relatively) monospecific. Systems biology analyses of these transporters in the context of expression patterns reveal they are hubs in networks involved in interorgan and interorganismal communication. The remote sensing and signaling theory explains how the coordinated functions of drug transporters, drug-metabolizing enzymes, and regulatory proteins play a role in optimizing systemic and local levels of important endogenous small molecules. We focus on the role of OATs, OATPs, and MRPs in endogenous metabolism and how their substrates (e.g., bile acids, short chain fatty acids, urate, uremic toxins) mediate interorgan and interorganismal communication and help maintain and restore homeostasis in healthy and disease states.


Assuntos
Avena , Transportadores de Ânions Orgânicos , Humanos , Avena/metabolismo , Tecnologia de Sensoriamento Remoto , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Trifosfato de Adenosina
5.
J Biol Chem ; 300(3): 105762, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367665

RESUMO

Long non-coding RNAs (LncRNAs) could regulate chemoresistance through sponging microRNAs (miRNAs) and sequestering RNA binding proteins. However, the mechanism of lncRNAs in rituximab resistance in diffuse large B-cell lymphoma (DLBCL) is largely unknown. Here, we investigated the functions and molecular mechanisms of lncRNA CHROMR in DLBCL tumorigenesis and chemoresistance. LncRNA CHROMR is highly expressed in DLBCL tissues and cells. We examined the oncogenic functions of lncRNA CHROMR in DLBCL by a panel of gain-or-loss-of-function assays and in vitro experiments. LncRNA CHROMR suppression promotes CD20 transcription in DLBCL cells and inhibits rituximab resistance. RNA immunoprecipitation, RNA pull-down, and dual luciferase reporter assay reveal that lncRNA CHROMR sponges with miR-27b-3p to regulate mesenchymal-epithelial transition factor (MET) levels and Akt signaling in DLBCL cells. Targeting the lncRNA CHROMR/miR-27b-3p/MET axis reduces DLBCL tumorigenesis. Altogether, these findings provide a new regulatory model, lncRNA CHROMR/miR-27b-3p/MET, which can serve as a potential therapeutic target for DLBCL.


Assuntos
Antineoplásicos Imunológicos , Carcinogênese , Resistencia a Medicamentos Antineoplásicos , Linfoma Difuso de Grandes Células B , MicroRNAs , Proteínas Proto-Oncogênicas c-met , RNA Longo não Codificante , Rituximab , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Rituximab/farmacologia , Rituximab/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-met/metabolismo
6.
J Virol ; 98(2): e0150423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289119

RESUMO

Coxsackievirus B3 (CVB3) is known to cause acute myocarditis and pancreatitis in humans. We investigated the microRNAs (miRNAs) that can potentially govern the viral life cycle by binding to the untranslated regions (UTRs) of CVB3 RNA. MicroRNA-22-3p was short-listed, as its potential binding site overlapped with the region crucial for recruiting internal ribosome entry site trans-acting factors (ITAFs) and ribosomes. We demonstrate that miR-22-3p binds CVB3 5' UTR, hinders recruitment of key ITAFs on viral mRNA, disrupts the spatial structure required for ribosome recruitment, and ultimately blocks translation. Likewise, cells lacking miR-22-3p exhibited heightened CVB3 infection compared to wild type, confirming its role in controlling infection. Interestingly, miR-22-3p level was found to be increased at 4 hours post-infection, potentially due to the accumulation of viral 2A protease in the early phase of infection. 2Apro enhances the miR-22-3p level to dislodge the ITAFs from the SD-like sequence, rendering the viral RNA accessible for binding of replication factors to switch to replication. Furthermore, one of the cellular targets of miR-22-3p, protocadherin-1 (PCDH1), was significantly downregulated during CVB3 infection. Partial silencing of PCDH1 reduced viral replication, demonstrating its proviral role. Interestingly, upon CVB3 infection in mice, miR-22-3p level was found to be downregulated only in the small intestine, the primary target organ, indicating its possible role in influencing tissue tropism. It appears miR-22-3p plays a dual role during infection by binding viral RNA to aid its life cycle as a viral strategy and by targeting a proviral protein to restrict viral replication as a host response.IMPORTANCECVB3 infection is associated with the development of end-stage heart diseases. Lack of effective anti-viral treatments and vaccines for CVB3 necessitates comprehensive understanding of the molecular players during CVB3 infection. miRNAs have emerged as promising targets for anti-viral strategies. Here, we demonstrate that miR-22-3p binds to 5' UTR and inhibits viral RNA translation at the later stage of infection to promote viral RNA replication. Conversely, as host response, it targets PCDH1, a proviral factor, to discourage viral propagation. miR-22-3p also influences CVB3 tissue tropism. Deciphering the multifaced role of miR-22-3p during CVB3 infection unravels the necessary molecular insights, which can be exploited for novel intervening strategies to curb infection and restrict viral pathogenesis.


Assuntos
Regiões 5' não Traduzidas , Infecções por Coxsackievirus , Enterovirus Humano B , Interações entre Hospedeiro e Microrganismos , MicroRNAs , Biossíntese de Proteínas , RNA Viral , Animais , Humanos , Camundongos , Regiões 5' não Traduzidas/genética , Antivirais/metabolismo , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidade , Enterovirus Humano B/fisiologia , Células HeLa , Intestino Delgado/metabolismo , Intestino Delgado/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Tropismo Viral/genética , Replicação Viral/genética , Cisteína Endopeptidases/metabolismo , Protocaderinas/deficiência , Protocaderinas/genética , Miocardite , Interações entre Hospedeiro e Microrganismos/genética
7.
J Virol ; 98(9): e0080524, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39194244

RESUMO

Coxsackievirus group B3 (CVB3) belongs to the genus Enteroviruses of the family Picornaviridae and is the main pathogen underlying viral myocarditis (VMC). No specific therapeutic is available for this condition. Argininosuccinate synthase 1 (ASS1) is a key enzyme in the urea cycle that converts citrulline and aspartic acid to argininosuccinate. Here, we found that CVB3 and its capsid protein VP2 inhibit the autophagic degradation of ASS1 and that CVB3 consumes citrulline to upregulate ASS1, triggers urea cycle metabolic reprogramming, and then activates macrophages to develop pro-inflammatory polarization, thereby promoting the occurrence and development of VMC. Conversely, citrulline supplementation to prevent depletion can downregulate ASS1, rescue macrophage polarization, and alleviate the pathogenicity of VMC. These findings provide a new perspective on the occurrence and development of VMC, revealing ASS1 as a potential new target for treating this disease. IMPORTANCE: Viral myocarditis (VMC) is a common and potentially life-threatening myocardial inflammatory disease, most commonly caused by CVB3 infection. So far, the pathogenesis of VMC caused by CVB3 is mainly focused on two aspects: one is the direct myocardial injury caused by a large number of viral replication in the early stage of infection, and the other is the local immune cell infiltration and inflammatory damage of the myocardium in the adaptive immune response stage. There are few studies on the early innate immunity of CVB3 infection in myocardial tissue, but the appearance of macrophages in the early stage of CVB3 infection suggests that they can play a regulatory role as early innate immune response cells in myocardial tissue. Here, we discovered a possible new mechanism of VMC caused by CVB3, revealed new drug targets for anti-CVB3, and discovered the therapeutic potential of citrulline for VMC.


Assuntos
Argininossuccinato Sintase , Infecções por Coxsackievirus , Enterovirus Humano B , Macrófagos , Miocardite , Miocardite/virologia , Miocardite/metabolismo , Miocardite/imunologia , Miocardite/patologia , Enterovirus Humano B/fisiologia , Animais , Macrófagos/virologia , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos , Infecções por Coxsackievirus/virologia , Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/metabolismo , Argininossuccinato Sintase/metabolismo , Humanos , Masculino , Inflamação/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/imunologia , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/imunologia , Reprogramação Metabólica
8.
Stem Cells ; 42(5): 460-474, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38381592

RESUMO

Cell therapy based on mesenchymal stem cells (MSCs) alleviate muscle atrophy caused by diabetes and aging; however, the impact of human umbilical cord mesenchymal stem cells on muscle atrophy following nerve injury and the underlying mechanisms remain unclear. In this study, we evaluated the therapeutic efficacy of human umbilical cord MSCs (hucMSCs) and hucMSC-derived exosomes (hucMSC-EXOs) for muscle atrophy following nerve injury and identified the underlying molecular mechanisms. Sciatic nerve crush injury in rats and the induction of myotubes in L6 cells were used to determine the ameliorating effect of hucMSCs and hucMSC-EXOs on muscle atrophy. Q-PCR and Western blot analyses were used to measure the expression of muscle-specific ubiquitin ligases Fbxo32 (Atrogin1, MAFbx) and Trim63 (MuRF-1). Dual-luciferase reporter gene experiments were conducted to validate the direct binding of miRNAs to their target genes. Local injection of hucMSCs and hucMSC-EXOs mitigated atrophy in the rat gastrocnemius muscle following sciatic nerve crush injury. In vitro, hucMSC-EXOs alleviated atrophy in L6 myotubes. Mechanistic analysis indicated the upregulation of miR-23b-3p levels in L6 myotubes following hucMSC-EXOs treatment. MiR-23b-3p significantly inhibited the expression of its target genes, Fbxo32 and Trim63, and suppressed myotube atrophy. Notably, an miR-23b-3p inhibitor reversed the inhibitory effect of miR-23b-3p on myotube atrophy in vitro. These results suggest that hucMSCs and their exosomes alleviate muscle atrophy following nerve injury. MiR-23b-3p in exosomes secreted by hucMSCs contributes to this mechanism by inhibiting the muscle-specific ubiquitination ligases Fbxo32 and Trim63.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Atrofia Muscular , Traumatismos dos Nervos Periféricos , Ubiquitina-Proteína Ligases , Exossomos/metabolismo , Animais , Atrofia Muscular/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/terapia , Atrofia Muscular/genética , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células-Tronco Mesenquimais/metabolismo , Ratos , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/terapia , Ratos Sprague-Dawley , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Cordão Umbilical/citologia , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Masculino , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia
9.
FASEB J ; 38(4): e23469, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38358361

RESUMO

The adenopituitary secretes follicle-stimulating hormone (FSH), which plays a crucial role in regulating the growth, development, and reproductive functions of organisms. Investigating the process of FSH synthesis and secretion can offer valuable insights into potential areas of focus for reproductive research. Epidermal growth factor (EGF) is a significant paracrine/autocrine factor within the body, and studies have demonstrated its ability to stimulate FSH secretion in animals. However, the precise mechanisms that regulate this action are still poorly understood. In this research, in vivo and in vitro experiments showed that the activation of epidermal growth factor receptor (EGFR) by EGF induces the upregulation of miR-27b-3p and that miR-27b-3p targets and inhibits Foxo1 mRNA expression, resulting in increased FSH synthesis and secretion. In summary, this study elucidates the precise molecular mechanism through which EGF governs the synthesis and secretion of FSH via the EGFR/miR-27b-3p/FOXO1 pathway.


Assuntos
Fator de Crescimento Epidérmico , MicroRNAs , Animais , Ratos , Transporte Biológico , Receptores ErbB/genética , Hormônio Foliculoestimulante , MicroRNAs/genética
10.
Mol Cell ; 65(1): 154-167, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28041912

RESUMO

Androgen deprivation therapy is the most effective treatment for advanced prostate cancer, but almost all cancer eventually becomes castration resistant, and the underlying mechanisms are largely unknown. Here, we show that an intrinsic constitutively activated feedforward signaling circuit composed of IκBα/NF-κB(p65), miR-196b-3p, Meis2, and PPP3CC is formed during the emergence of castration-resistant prostate cancer (CRPC). This circuit controls the expression of stem cell transcription factors that drives the high tumorigenicity of CRPC cells. Interrupting the circuit by targeting its individual components significantly impairs the tumorigenicity and CRPC development. Notably, constitutive activation of IκBα/NF-κB(p65) in this circuit is not dependent on the activation of traditional IKKß/NF-κB pathways that are important in normal immune responses. Therefore, our studies present deep insight into the bona fide mechanisms underlying castration resistance and provide the foundation for the development of CRPC therapeutic strategies that would be highly efficient while avoiding indiscriminate IKK/NF-κB inhibition in normal cells.


Assuntos
Calcineurina/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Homeodomínio/metabolismo , Inflamação/metabolismo , MicroRNAs/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Fator de Transcrição RelA/metabolismo , Antagonistas de Androgênios/farmacologia , Animais , Antineoplásicos Hormonais/farmacologia , Calcineurina/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Genes myc , Proteínas de Homeodomínio/genética , Humanos , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos Transgênicos , MicroRNAs/genética , Inibidor de NF-kappaB alfa/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Fator de Transcrição RelA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Carga Tumoral , Células Tumorais Cultivadas
11.
Genomics ; 116(5): 110907, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074670

RESUMO

BACKGROUND: Colon adenocarcinoma (COAD) is a prevalent malignant tumor globally, contributing significantly to cancer-related mortality. COAD guidelines label MSI (Microsatellite instability) and MSS (Microsatellite stability) subtypes as global classification criteria and treatment strategy selection criteria for COAD. Various combination therapies involving PD-L1 inhibitors and adjuvant therapy to enhance anti-tumor efficacy. METHODS: Datasets from single-cell RNA sequencing and bulk RNA sequencing in the TCGA and GEO databases were utilized to identify differentially expressed genes (DEGs). Furthermore, the correlation between ATP8B3 and PD-L1 was validated using siRNA, shRNA, and western blot analysis. Additionally, the association between ATP8B3 and immune checkpoint blockade (ICB) therapy was investigated through immune infiltration analysis and flow cytometry in both in vivo and in vitro assays. RESULTS: In the COAD patient group, ATP8B3 significantly contributed to the establishment of an immunosuppressive microenvironment. Inhibiting ATP8B3 led to a reduction in PD-L1 expression in colon cancer cell lines. Additionally, ATP8B3 expression levels could serve as a potential guide for PD-L1 treatment in MSI-H COAD patients, with higher ATP8B3 expression associated with increased sensitivity to PD-L1 therapy. However, due to the lack of immuno-killer cells in the microenvironment of MSS subtypes, elevated ATP8B3 expression couldn't increase the sensitivity of MSS COAD patients to PD-L1 inhibitors. CONCLUSION: Our research results support that Inhibiting ATP8B3 could enhance TIL (tumor-infiltrating lymphocyte) infiltration by reducing PD-L1 expression in MSI-H COAD, thereby serving as an effective strategy to improve PD-L1 blocker efficacy. The treatment strategy of combining ATP8B3 inhibitors and immunotherapy for MSI/MSS COAD patients will be the best choice.

12.
J Infect Dis ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38547499

RESUMO

Enterovirus D68 (EV-D68) infections are associated with severe respiratory disease and acute flaccid myelitis (AFM). The European Non-Polio Enterovirus Network (ENPEN) aimed to investigate the epidemiological and genetic characteristics of EV-D68 and its clinical impact during the fall-winter season of 2021/22. From 19 European countries, 58 institutes reported 10,481 (6.8%) EV-positive samples of which 1,004 (9.6%) were identified as EV-D68 (852 respiratory samples). Clinical data was reported for 969 cases. 78.9% of infections were reported in children (0-5 years); 37.9% of cases were hospitalised. Acute respiratory distress was commonly noted (93.1%) followed by fever (49.4%). Neurological problems were observed in 6.4% of cases with six reported with AFM. Phylodynamic/Nextstrain and phylogenetic analyses based on 694 sequences showed the emergence of two novel B3-derived lineages, with no regional clustering. In conclusion, we describe a large-scale EV-D68 European upsurge with severe clinical impact and the emergence of B3-derived lineages.

13.
J Cell Mol Med ; 28(17): e70061, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39224045

RESUMO

Long non-coding RNAs (lncRNAs) play an important role in the progression of gastric cancer (GC), but its specific regulatory mechanism remains to be further studied. We previously identified that lncRNA B3GALT5-AS1 was upregulated in GC serum. Here, we investigated the functions and molecular mechanisms of B3GALT5-AS1 in GC tumorigenesis. qRT-PCR was used to detect B3GALT5-AS1 expression in GC. EdU, CCK-8, and colony assays were utilized to assess the proliferation ability of B3GAL5-AS1, and transwell, tube formation assay were used to assess the invasion and metastasis ability. Mechanically, FISH and nuclear plasmolysis PCR identified the subcellular localization of B3GALT5-AS1. RIP and CHIP assays were used to analyse the regulation of B3GALT5-AS1 and B3GALT5. We observed that B3GALT5-AS1 was highly expressed in GC, and silencing B3GALT5-AS1 could inhibit the proliferation, invasion, and migratory capacities of GC. Additionally, B3GALT5-AS1 was bound to WDR5 and modulated the expression of B3GALT5 via regulating the ZEB1/ß-catenin pathway. High-expressed B3AGLT5-AS1 promoted GC tumorigenesis and regulated B3GALT5 expression via recruiting WDR5. Our study is expected to provide a new idea for clinical diagnosis and treatment.


Assuntos
Movimento Celular , Proliferação de Células , Progressão da Doença , Galactosiltransferases , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante , Neoplasias Gástricas , Homeobox 1 de Ligação a E-box em Dedo de Zinco , beta Catenina , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Movimento Celular/genética , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Animais , Camundongos , Camundongos Nus , Transdução de Sinais , Carcinogênese/genética , Carcinogênese/patologia , Masculino
14.
J Cell Mol Med ; 28(13): e18522, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957040

RESUMO

Bone non-union is a common fracture complication that can severely impact patient outcomes, yet its mechanism is not fully understood. This study used differential analysis and weighted co-expression network analysis (WGCNA) to identify susceptibility modules and hub genes associated with fracture healing. Two datasets, GSE125289 and GSE213891, were downloaded from the GEO website, and differentially expressed miRNAs and genes were analysed and used to construct the WGCNA network. Gene ontology (GO) analysis of the differentially expressed genes showed enrichment in cytokine and inflammatory factor secretion, phagocytosis, and trans-Golgi network regulation pathways. Using bioinformatic site prediction and crossover gene search, miR-29b-3p was identified as a regulator of LIN7A expression that may negatively affect fracture healing. Potential miRNA-mRNA interactions in the bone non-union mechanism were explored, and miRNA-29-3p and LIN7A were identified as biomarkers of skeletal non-union. The expression of miRNA-29b-3p and LIN7A was verified in blood samples from patients with fracture non-union using qRT-PCR and ELISA. Overall, this study identified characteristic modules and key genes associated with fracture non-union and provided insight into its molecular mechanisms. Downregulated miRNA-29b-3p was found to downregulate LIN7A protein expression, which may affect the healing process after fracture in patients with bone non-union. These findings may serve as a prognostic biomarker and potential therapeutic target for bone non-union.


Assuntos
Biomarcadores , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/sangue , Biomarcadores/sangue , Redes Reguladoras de Genes , Consolidação da Fratura/genética , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Feminino , Masculino , Ontologia Genética , Regulação da Expressão Gênica , Fraturas não Consolidadas/genética , Pessoa de Meia-Idade
15.
Glycobiology ; 34(10)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39163480

RESUMO

Peritoneal metastasis frequently accompanies metastatic and/or recurrent gastric cancer, leading to a poor prognosis owing to a lack of effective treatment. Hence, there is a pressing need to enhance our understanding of the mechanisms and molecules driving peritoneal metastasis. In a previous study, galectin-4 inhibition impeded peritoneal metastasis in a murine model. This study examined the glycan profiles of cell surface proteins and glycosphingolipids (GSLs) in cells with varying tumorigenic potentials to understand the intricate mechanisms underlying galectin-4-mediated regulation, particularly glycosylation. Detailed mass spectrometry analysis showed that galectin-4 knockout cells exhibit increased expression of lacto-series GSLs with ß1,3-linked galactose while showing no significant alterations in neolacto-series GSLs. We conducted real-time polymerase chain reaction (PCR) analysis to identify candidate glycosyltransferases that synthesize increased levels of GSLs. Subsequently, we introduced the candidate B3GALT5 gene and selected the clones with high expression levels. B3GALT5 gene-expressing clones showed GSL glycan profiles like those of knockout cells and significantly reduced tumorigenic ability in mouse models. These clones exhibited diminished proliferative capacity and showed reduced expression of galectin-4 and activated AKT. Moreover, co-localization of galectin-4 with flotillin-2 (a raft marker) decreased in B3GALT5-expressing cells, implicating GSLs in galectin-4 localization to lipid rafts. D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (a GSL synthase inhibitor) also affected galectin-4 localization in rafts, suggesting the involvement of GSL microdomains. We discovered that B3GALT5 plays a crucial role in regulating peritoneal metastasis of malignant gastric cancer cells by suppressing cell proliferation and modulating lipid rafts and galectin-4 via mechanisms that are yet to be elucidated.


Assuntos
Galactosiltransferases , Galectina 4 , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Animais , Humanos , Camundongos , Galactosiltransferases/metabolismo , Galactosiltransferases/genética , Galectina 4/metabolismo , Galectina 4/genética , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/genética , Proliferação de Células , Diferenciação Celular , Linhagem Celular Tumoral
16.
Breast Cancer Res ; 26(1): 115, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978071

RESUMO

Various histopathological, clinical and imaging parameters have been evaluated to identify a subset of women diagnosed with lesions with uncertain malignant potential (B3 or BIRADS 3/4A lesions) who could safely be observed rather than being treated with surgical excision, with little impact on clinical practice. The primary reason for surgery is to rule out an upgrade to either ductal carcinoma in situ or invasive breast cancer, which occurs in up to 30% of patients. We hypothesised that the stromal immune microenvironment could indicate the presence of carcinoma associated with a ductal B3 lesion and that this could be detected in biopsies by counting lymphocytes as a predictive biomarker for upgrade. A higher number of lymphocytes in the surrounding specialised stroma was observed in upgraded ductal and papillary B3 lesions than non-upgraded (p < 0.01, negative binomial model, n = 307). We developed a model using lymphocytes combined with age and the type of lesion, which was predictive of upgrade with an area under the curve of 0.82 [95% confidence interval 0.77-0.87]. The model can identify some patients at risk of upgrade with high sensitivity, but with limited specificity. Assessing the tumour microenvironment including stromal lymphocytes may contribute to reducing unnecessary surgeries in the clinic, but additional predictive features are needed.


Assuntos
Neoplasias da Mama , Linfócitos , Células Estromais , Microambiente Tumoral , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Microambiente Tumoral/imunologia , Pessoa de Meia-Idade , Idoso , Linfócitos/imunologia , Linfócitos/patologia , Células Estromais/patologia , Adulto , Gradação de Tumores , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Intraductal não Infiltrante/imunologia , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/imunologia , Biomarcadores Tumorais
17.
J Neurochem ; 168(7): 1297-1316, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38413218

RESUMO

Mitochondrial dysfunction is the main cause of gradual deterioration of structure and function of neuronal cells, eventually resulting in neurodegeneration. Studies have revealed a complex interrelationship between neurotoxicant exposure, mitochondrial dysfunction, and neurodegenerative diseases. Alteration in the expression of microRNAs (miRNAs) has also been linked with disruption in mitochondrial homeostasis and bioenergetics. In our recent research (Cellular and Molecular Neurobiology (2023) https://doi.org/10.1007/s10571-023-01362-4), we have identified miR-29b-3p as one of the most significantly up-regulated miRNAs in the blood of Parkinson's patients. The findings of the present study revealed that neurotoxicants of two different natures, that is, arsenic or rotenone, dramatically increased miR-29b-3p expression (18.63-fold and 12.85-fold, respectively) in differentiated dopaminergic SH-SY5Y cells. This dysregulation of miR-29b-3p intricately modulated mitochondrial morphology, induced oxidative stress, and perturbed mitochondrial membrane potential, collectively contributing to the degeneration of dopaminergic cells. Additionally, using assays for mitochondrial bioenergetics in live and differentiated SH-SY5Y cells, a reduction in oxygen consumption rate (OCR), maximal respiration, basal respiration, and non-mitochondrial respiration was observed in cells transfected with mimics of miR-29b-3p. Inhibition of miR-29b-3p by transfecting inhibitor of miR-29b-3p prior to exposure to neurotoxicants significantly restored OCR and other respiration parameters. Furthermore, we observed that induction of miR-29b-3p activates neuronal apoptosis via sirtuin-1(SIRT-1)/YinYang-1(YY-1)/peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α)-regulated Bcl-2 interacting protein 3-like-dependent mechanism. Collectively, our studies have shown the role of miR-29b-3p in dysregulation of mitochondrial bioenergetics during degeneration of dopaminergic neurons via regulating SIRT-1/YY-1/PGC-1α axis.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos , MicroRNAs , Mitocôndrias , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Linhagem Celular Tumoral , Diferenciação Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Rotenona/toxicidade , Rotenona/farmacologia , Sirtuína 1/metabolismo , Sirtuína 1/genética
18.
Neurobiol Dis ; 199: 106587, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38950713

RESUMO

It has been shown that many miRNAs, including miR-193b-3p, are differentially expressed in Parkinson's disease (PD). Dysregulation of miR-193b-3p/PGC-1α axis may alter homeostasis in cells and can induce an inflammatory response commonly accompanied by metabolic disturbances. The aim of the present study is to investigate if dysregulation of the miR-193-3p/PGC-1α axis may contribute to the pathological changes observed in the PD brain. Brain tissue were obtained from middle frontal gyrus of non-demented controls and individuals with a PD diagnosis. RT-qPCR was used to determine the expression of miR-193b-3p and in situ hybridization (ISH) and immunological analysis were employed to establish the cellular distribution of miR-193b-3p. Functional assays were performed using SH-SY5Y cells, including transfection and knock-down of miR-193b-3p. We found significantly lower expression of miR-193b-3p in the early stages of PD (PD4) which increased throughout disease progression. Furthermore, altered expression of PGC-1α suggested a direct inhibitory effect of miR-193b-3p in the brain of individuals with PD. Moreover, we observed changes in expression of insulin after transfection of SH-SY5Y cells with miR-193b-3p, which led to dysregulation in the expression of several pro- or anti - inflammatory genes. Our findings indicate that the miR-193b-3p/PGC-1α axis is involved in the regulation of insulin signaling. This regulation is crucial, since insulin induced inflammatory response may serve as a protective mechanism during acute situations but potentially evolve into a pathological process in chronic conditions. This novel regulatory mechanism may represent an interesting therapeutic target with potential benefits for various neurodegenerative diseases.


Assuntos
Insulina , MicroRNAs , Doença de Parkinson , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Masculino , Idoso , Feminino , Insulina/metabolismo , Pessoa de Meia-Idade , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Inflamação/metabolismo
19.
Apoptosis ; 29(7-8): 1271-1287, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38127284

RESUMO

Viral myocarditis (VMC) is the major reason for sudden cardiac death among both children and young adults. Of these, coxsackievirus B3 (CVB3) is the most common causative agent of myocarditis. Recently, the role of signaling pathways in the pathogenesis of VMC has been evaluated in several studies, which has provided a new perspective on identifying potential therapeutic targets for this hitherto incurable disease. In the present study, in vivo and in vitro experiments showed that CVB3 infection leads to increased Bim expression and triggers apoptosis. In addition, by knocking down Bim using RNAi, we further confirmed the biological function of Bim in apoptosis induced by CVB3 infection. We additionally found that Bim and forkhead box O1 class (FOXO1) inhibition significantly increased the viability of CVB3-infected cells while blocking viral replication and viral release. Moreover, CVB3-induced Bim expression was directly dependent on FOXO1 acetylation, which is catalyzed by the co-regulation of CBP and SirTs. Furthermore, the acetylation of FOXO1 was an important step in Bim activation and apoptosis induced by CVB3 infection. The findings of this study suggest that CVB3 infection induces apoptosis through the FOXO1 acetylation-Bim pathway, thus providing new insights for developing potential therapeutic targets for enteroviral myocarditis.


Assuntos
Apoptose , Proteína 11 Semelhante a Bcl-2 , Infecções por Coxsackievirus , Enterovirus Humano B , Proteína Forkhead Box O1 , Miocardite , Miócitos Cardíacos , Proteína 11 Semelhante a Bcl-2/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Apoptose/genética , Miócitos Cardíacos/virologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Animais , Miocardite/virologia , Miocardite/metabolismo , Miocardite/genética , Miocardite/patologia , Enterovirus Humano B/fisiologia , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/virologia , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/patologia , Acetilação , Humanos , Masculino , Camundongos , Transdução de Sinais , Ratos
20.
J Cell Sci ; 135(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35735031

RESUMO

Laminar shear stress (Lss) is an important anti-atherosclerosis (anti-AS) factor, but its mechanism network is not clear. Therefore, this study aimed to identify how Lss acts against AS formation from a new perspective. In this study, we analyzed high-throughput sequencing data from static and Lss-treated human aortic and human umbilical vein endothelial cells (HAECs and HUVECs, respectively) and found that the expression of CX3CL1, which is a target gene closely related to AS development, was lower in the Lss group. Lss alleviated the inflammatory response in TNF-α (also known as TNF)-activated HAECs by regulating the miR-29b-3p/CX3CL1 axis, and this was achieved by blocking nuclear factor (NF)-κB signaling. In complementary in vivo experiments, a high-fat diet (HFD) induced inflammatory infiltration and plaque formation in the aorta, both of which were significantly reduced after injection of agomir-miRNA-29b-3p via the tail vein into HFD-fed ApoE-/- mice. In conclusion, this study reveals that the Lss-sensitive miR-29b-3p/CX3CL1 axis is an important regulatory target that affects vascular endothelial inflammation and AS development. Our study provides new insights into the prevention and treatment of AS.


Assuntos
Aterosclerose , MicroRNAs , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Camundongos Knockout para ApoE , MicroRNAs/metabolismo , Monócitos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA