Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.056
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 40: 45-74, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35471840

RESUMO

The transformative success of antibodies targeting the PD-1 (programmed death 1)/B7-H1 (B7 homolog 1) pathway (anti-PD therapy) has revolutionized cancer treatment. However, only a fraction of patients with solid tumors and some hematopoietic malignancies respond to anti-PD therapy, and the reason for failure in other patients is less known. By dissecting the mechanisms underlying this resistance, current studies reveal that the tumor microenvironment is a major location for resistance to occur. Furthermore, the resistance mechanisms appear to be highly heterogeneous. Here, we discuss recent human cancer data identifying mechanisms of resistance to anti-PD therapy. We review evidence for immune-based resistance mechanisms such as loss of neoantigens, defects in antigen presentation and interferon signaling, immune inhibitory molecules, and exclusion of T cells. We also review the clinical evidence for emerging mechanisms of resistance to anti-PD therapy, such as alterations in metabolism, microbiota, and epigenetics. Finally, we discuss strategies to overcome anti-PD therapy resistance and emphasize the need to develop additional immunotherapies based on the concept of normalization cancer immunotherapy.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Animais , Antígeno B7-H1 , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Linfócitos T , Microambiente Tumoral
2.
Cell ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38968937

RESUMO

Immune tolerance mechanisms are shared in cancer and pregnancy. Through cross-analyzing single-cell RNA-sequencing data from multiple human cancer types and the maternal-fetal interface, we found B7-H4 (VTCN1) is an onco-fetal immune tolerance checkpoint. We showed that genetic deficiency of B7-H4 resulted in immune activation and fetal resorption in allogeneic pregnancy models. Analogously, B7-H4 contributed to MPA/DMBA-induced breast cancer progression, accompanied by CD8+ T cell exhaustion. Female hormone screening revealed that progesterone stimulated B7-H4 expression in placental and breast cancer cells. Mechanistically, progesterone receptor (PR) bound to a newly identified -58 kb enhancer, thereby mediating B7-H4 transcription via the PR-P300-BRD4 axis. PR antagonist or BRD4 degrader potentiated immunotherapy in a murine B7-H4+ breast cancer model. Thus, our work unravels a mechanistic and biological connection of a female sex hormone (progesterone) to onco-fetal immune tolerance via B7-H4 and suggests that the PR-P300-BRD4 axis is targetable for treating B7-H4+ cancer.

3.
Cell ; 175(2): 313-326, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290139

RESUMO

Harnessing an antitumor immune response has been a fundamental strategy in cancer immunotherapy. For over a century, efforts have primarily focused on amplifying immune activation mechanisms that are employed by humans to eliminate invaders such as viruses and bacteria. This "immune enhancement" strategy often results in rare objective responses and frequent immune-related adverse events (irAEs). However, in the last decade, cancer immunotherapies targeting the B7-H1/PD-1 pathway (anti-PD therapy), have achieved higher objective response rates in patients with much fewer irAEs. This more beneficial tumor response-to-toxicity profile stems from distinct mechanisms of action that restore tumor-induced immune deficiency selectively in the tumor microenvironment, here termed "immune normalization," which has led to its FDA approval in more than 10 cancer indications and facilitated its combination with different therapies. In this article, we wish to highlight the principles of immune normalization and learn from it, with the ultimate goal to guide better designs for future cancer immunotherapies.


Assuntos
Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Antígeno B7-H1/efeitos dos fármacos , Antígeno B7-H1/imunologia , Antígeno CTLA-4/imunologia , Terapia Combinada/métodos , Humanos , Imunoterapia/tendências , Receptor de Morte Celular Programada 1/efeitos dos fármacos , Receptor de Morte Celular Programada 1/imunologia , Microambiente Tumoral/efeitos dos fármacos
4.
Immunity ; 56(6): 1187-1203.e12, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37160118

RESUMO

B7 ligands (CD80 and CD86), expressed by professional antigen-presenting cells (APCs), activate the main co-stimulatory receptor CD28 on T cells in trans. However, in peripheral tissues, APCs expressing B7 ligands are relatively scarce. This raises the questions of whether and how CD28 co-stimulation occurs in peripheral tissues. Here, we report that CD8+ T cells displayed B7 ligands that interacted with CD28 in cis at membrane invaginations of the immunological synapse as a result of membrane remodeling driven by phosphoinositide-3-kinase (PI3K) and sorting-nexin-9 (SNX9). cis-B7:CD28 interactions triggered CD28 signaling through protein kinase C theta (PKCθ) and promoted CD8+ T cell survival, migration, and cytokine production. In mouse tumor models, loss of T cell-intrinsic cis-B7:CD28 interactions decreased intratumoral T cells and accelerated tumor growth. Thus, B7 ligands on CD8+ T cells can evoke cell-autonomous CD28 co-stimulation in cis in peripheral tissues, suggesting cis-signaling as a general mechanism for boosting T cell functionality.


Assuntos
Antígenos CD28 , Linfócitos T CD8-Positivos , Camundongos , Animais , Antígenos CD28/metabolismo , Antígenos CD/metabolismo , Ligantes , Membranas Sinápticas/metabolismo , Antígeno B7-2 , Glicoproteínas de Membrana/metabolismo , Antígeno B7-1/metabolismo , Moléculas de Adesão Celular , Ativação Linfocitária
5.
Immunity ; 55(4): 701-717.e7, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35364006

RESUMO

Bacterial sensing by intestinal tumor cells contributes to tumor growth through cell-intrinsic activation of the calcineurin-NFAT axis, but the role of this pathway in other intestinal cells remains unclear. Here, we found that myeloid-specific deletion of calcineurin in mice activated protective CD8+ T cell responses and inhibited colorectal cancer (CRC) growth. Microbial sensing by myeloid cells promoted calcineurin- and NFAT-dependent interleukin 6 (IL-6) release, expression of the co-inhibitory molecules B7H3 and B7H4 by tumor cells, and inhibition of CD8+ T cell-dependent anti-tumor immunity. Accordingly, targeting members of this pathway activated protective CD8+ T cell responses and inhibited primary and metastatic CRC growth. B7H3 and B7H4 were expressed by the majority of human primary CRCs and metastases, which was associated with low numbers of tumor-infiltrating CD8+ T cells and poor survival. Therefore, a microbiota-, calcineurin-, and B7H3/B7H4-dependent pathway controls anti-tumor immunity, revealing additional targets for immune checkpoint inhibition in microsatellite-stable CRC.


Assuntos
Neoplasias Colorretais , Microbiota , Animais , Antígenos B7 , Linfócitos T CD8-Positivos , Calcineurina/metabolismo , Neoplasias Colorretais/metabolismo , Camundongos , Fatores de Transcrição NFATC/metabolismo , Inibidor 1 da Ativação de Células T com Domínio V-Set
6.
Immunity ; 48(4): 773-786.e5, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29625896

RESUMO

The molecular mechanisms whereby CD8+ T cells become "exhausted" in the tumor microenvironment remain unclear. Programmed death ligand-1 (PD-L1) is upregulated on tumor cells and PD-1-PD-L1 blockade has significant efficacy in human tumors; however, most patients do not respond, suggesting additional mechanisms underlying T cell exhaustion. B7 superfamily member 1 (B7S1), also called B7-H4, B7x, or VTCN1, negatively regulates T cell activation. Here we show increased B7S1 expression on myeloid cells from human hepatocellular carcinoma correlated with CD8+ T cell dysfunction. B7S1 inhibition suppressed development of murine tumors. Putative B7S1 receptor was co-expressed with PD-1 but not T cell immunoglobulin and mucin-domain containing-3 (Tim-3) at an activated state of early tumor-infiltrating CD8+ T cells, and B7S1 promoted T cell exhaustion, possibly through Eomes overexpression. Combinatorial blockade of B7S1 and PD-1 synergistically enhanced anti-tumor immune responses. Collectively, B7S1 initiates dysfunction of tumor-infiltrating CD8+ T cells and may be targeted for cancer immunotherapy.


Assuntos
Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células Mieloides/imunologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/patologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas com Domínio T/metabolismo , Inibidor 1 da Ativação de Células T com Domínio V-Set/genética
7.
Mol Cell ; 74(6): 1215-1226.e4, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31053471

RESUMO

Programmed death ligand 1 (PD-L1, also called B7-H1) is an immune checkpoint protein that inhibits immune function through its binding of the programmed cell death protein 1 (PD-1) receptor. Clinically approved antibodies block extracellular PD-1 and PD-L1 binding, yet the role of intracellular PD-L1 in cancer remains poorly understood. Here, we discovered that intracellular PD-L1 acts as an RNA binding protein that regulates the mRNA stability of NBS1, BRCA1, and other DNA damage-related genes. Through competition with the RNA exosome, intracellular PD-L1 protects targeted RNAs from degradation, thereby increasing cellular resistance to DNA damage. RNA immunoprecipitation and RNA-seq experiments demonstrated that PD-L1 regulates RNA stability genome-wide. Furthermore, we developed a PD-L1 antibody, H1A, which abrogates the interaction of PD-L1 with CMTM6, thereby promoting PD-L1 degradation. Intracellular PD-L1 may be a potential therapeutic target to enhance the efficacy of radiotherapy and chemotherapy in cancer through the inhibition of DNA damage response and repair.


Assuntos
Antígeno B7-H1/genética , Reparo do DNA , DNA de Neoplasias/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Regulação Neoplásica da Expressão Gênica , Receptor de Morte Celular Programada 1/genética , Animais , Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Dano ao DNA , DNA de Neoplasias/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Raios gama/uso terapêutico , Células HCT116 , Células HeLa , Humanos , Proteínas com Domínio MARVEL , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas da Mielina , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Proteólise/efeitos dos fármacos , Proteólise/efeitos da radiação , Estabilidade de RNA/efeitos dos fármacos , Estabilidade de RNA/efeitos da radiação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Immunity ; 47(5): 943-958.e9, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29150240

RESUMO

T cell antigen-presenting cell (APC) interactions early during chronic viral infection are crucial for determining viral set point and disease outcome, but how and when different APC subtypes contribute to these outcomes is unclear. The TNF receptor superfamily (TNFRSF) member GITR is important for CD4+ T cell accumulation and control of chronic lymphocytic choriomeningitis virus (LCMV). We found that type I interferon (IFN-I) induced TNFSF ligands GITRL, 4-1BBL, OX40L, and CD70 predominantly on monocyte-derived APCs and CD80 and CD86 predominantly on classical dendritic cells (cDCs). Mice with hypofunctional GITRL in Lyz2+ cells had decreased LCMV-specific CD4+ T cell accumulation and increased viral load. GITR signals in CD4+ T cells occurred after priming to upregulate OX40, CD25, and chemokine receptor CX3CR1. Thus IFN-I (signal 3) induced a post-priming checkpoint (signal 4) for CD4+ T cell accumulation, revealing a division of labor between cDCs and monocyte-derived APCs in regulating T cell expansion.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Fatores de Necrose Tumoral/análise , Animais , Ligante CD27/análise , Receptor 1 de Quimiocina CX3C/análise , Células Dendríticas/imunologia , Feminino , Proteína Relacionada a TNFR Induzida por Glucocorticoide/análise , Proteína Relacionada a TNFR Induzida por Glucocorticoide/fisiologia , Glicoproteínas de Membrana/análise , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Ligante OX40
9.
Cancer Metastasis Rev ; 43(1): 115-133, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37768439

RESUMO

B7-H3 (B7 homology 3 protein) is an important transmembrane immunoregulatory protein expressed in immune cells, antigen-presenting cells, and tumor cells. Studies reveal a multifaceted role of B7-H3 in tumor progression by modulating various cancer hallmarks involving angiogenesis, immune evasion, and tumor microenvironment, and it is also a promising candidate for cancer immunotherapy. In colorectal cancer (CRC), B7-H3 has been associated with various aspects of disease progression, such as evasion of tumor immune surveillance, tumor-node metastasis, and poor prognosis. Strategies to block or interfere with B7-H3 in its immunological and non-immunological functions are under investigation. In this study, we explore the role of B7-H3 in tumor plasticity, emphasizing tumor glucose metabolism, angiogenesis, epithelial-mesenchymal transition, cancer stem cells, apoptosis, and changing immune signatures in the tumor immune landscape. We discuss how B7-H3-induced tumor plasticity contributes to immune evasion, metastasis, and therapy resistance. Furthermore, we delve into the most recent advancements in targeting B7-H3-based tumor immunotherapy as a potential approach to CRC treatment.


Assuntos
Antígenos B7 , Neoplasias Colorretais , Humanos , Antígenos B7/metabolismo , Neoplasias Colorretais/patologia , Imunoterapia , Microambiente Tumoral
10.
FASEB J ; 38(1): e23378, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38127104

RESUMO

In recent years, accumulating evidence has demonstrated the role of long noncoding RNAs (lncRNAs) in colon cancer. We aim to investigate the role of MIR143HG, also known as CARMN (Cardiac mesoderm enhancer-associated noncoding RNA) in colon cancer and explore the related mechanisms. An RNAseq data analysis was performed to screen differentially expressed lncRNAs associated with colon cancer. Next, MIR143HG expression was quantified in colon cancer cells. Moreover, the contributory roles of MIR143HG in the progression of colon cancer with the involvement of DNMT1 and HOXB7 (Homeobox B7) were evaluated after restored MIR143HG or depleted HOXB7. Finally, the effects of MIR143HG were investigated in vivo by measuring tumor formation in nude mice. High-throughput transcriptome sequencing was employed to validate the specific mechanisms by which MIR143HG and HOXB7 affect tumor growth in vivo. MIR143HG was found to be poorly expressed, while HOXB7 was highly expressed in colon cancer. MIR143HG could promote HOXB7 methylation by recruiting DNMT1 to reduce HOXB7 expression. Upregulation of MIR143HG or downregulation of HOXB7 inhibited cell proliferation, invasion and migration and facilitated apoptosis in colon cancer cells so as to delay the progression of colon cancer. The same trend was identified in vivo. Our study provides evidence that restoration of MIR143HG suppressed the progression of colon cancer via downregulation of HOXB7 through DNMT1-mediated HOXB7 promoter methylation. Thus, MIR143HG may be a potential candidate for the treatment of colon cancer.


Assuntos
Neoplasias do Colo , DNA (Citosina-5-)-Metiltransferase 1 , Proteínas de Homeodomínio , RNA Longo não Codificante , Animais , Camundongos , Neoplasias do Colo/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteínas de Homeodomínio/genética , Metilação , Metiltransferases , Camundongos Nus , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Fatores de Transcrição , Humanos
11.
J Cell Mol Med ; 28(14): e18575, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39048916

RESUMO

In recent years, in the development of emerging immunotherapy, B7-H3 is also termed as CD276 and has become a novel chimeric antigen receptor (CAR)-T target against glioma and other tumours, and aroused extensive attention. However, B7-H3 has three isoforms (2, 3 and 4Ig) with the controversial expression and elusive function in tumour especially glioma. The current study mainly focuses on the regulatory factors and related mechanisms of generation of different B7-H3 isoforms. First, we have determined that 2Ig is dominant in glioma with high malignancy, and 4Ig is widely expressed, whereas 3Ig shows negative expression in all glioma. Next, we have further found that RNA binding protein annexin A2 (ANXA2) is essential for B7-H3 isoform maintenance, but fail to determine the choice of 4Ig or 2Ig. RNA methyltransferase NOP2/Sun RNA methyltransferase 2 (NSUN2) and 5-methylcytosine reader Y-box binding protein 1 (YBX1) facilitate the production of 2Ig. Our findings have uncovered a series of factors (ANXA2/NSUN2/YBX1) that can determine the alternative generation of different isoforms of B7-H3 in glioma. Our result aims to help peers gain a clearer understanding of the expression and regulatory mechanisms of B7H3 in tumour patients, and to provide better strategies for designing B7H3 as a target in immunotherapy.


Assuntos
Anexina A2 , Antígenos B7 , Regulação Neoplásica da Expressão Gênica , Glioma , Isoformas de Proteínas , Humanos , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Antígenos B7/metabolismo , Antígenos B7/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Anexina A2/metabolismo , Anexina A2/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia
12.
J Cell Mol Med ; 28(10): e18360, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38785199

RESUMO

Neuroblastoma (NB), a common solid tumour in young children originating from the sympathetic nervous system during embryonic development, poses challenges despite therapeutic advances like high-dose chemotherapy and immunotherapy. Some survivors still grapple with severe side effects and drug resistance. The role of lncRNA NUTM2A-AS1 has been explored in various cancers, but its function in drug-resistant NB progression is unclear. Our study found that NUTM2A-AS1 expression in cisplatin-resistant NB cells increased in a time- and dose-dependent manner. Knockdown of NUTM2A-AS1 significantly improved NB cell sensitivity to cisplatin and inhibited metastatic abilities. Additionally, we identified B7-H3, an immune checkpoint-related protein, as a NUTM2A-AS1-associated protein in NB cells. NUTM2A-AS1 was shown to inhibit the protein degradation of B7-H3. Moreover, NUTM2A-AS1 modulated immune evasion in cisplatin-resistant NB cells through B7-H3. Furthermore, NUTM2A-AS1 expression in cisplatin-resistant NB cells was transactivated by NR1D1. In summary, our results unveil the molecular or biological relationship within the NR1D1/NUTM2A-AS1/B7-H3 axis in NB cells under cisplatin treatment, providing an intriguing avenue for fundamental research into cisplatin-resistant NB.


Assuntos
Antígenos B7 , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neuroblastoma , RNA Longo não Codificante , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Antígenos B7/metabolismo , Antígenos B7/genética , RNA Longo não Codificante/genética , Cisplatino/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Evasão da Resposta Imune , Animais , Proteólise/efeitos dos fármacos , Camundongos
13.
J Cell Biochem ; 125(3): e30521, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38226525

RESUMO

Despite surgical treatment combined with multidrug therapy having made some progress, chemotherapy resistance is the main cause of recurrence and death of gastric cancer (GC). Gastric cancer mesenchymal stem cells (GCMSCs) have been reported to be correlated with the limited efficacy of chemotherapy in GC, but the mechanism of GCMSCs regulating GC resistance needs to be further studied. The gene set enrichment analysis (GSEA) was performed to explore the glycolysis-related pathways heterogeneity across different cell subpopulations. Glucose uptake and lactate production assays were used to evaluate the importance of B7H3 expression in GCMSCs-treated GC cells. The therapeutic efficacy of oxaliplatin (OXA) and paclitaxel (PTX) was determined using CCK-8 and colony formation assays. Signaling pathways altered by GCMSCs-CM were revealed by immunoblotting. The expression of TNF-α in GCMSCs and bone marrow mesenchymal stem cells (BMMSCs) was detected by western blot analysis and qPCR. Our results showed that the OXA and PTX resistance of GC cells were significantly enhanced in the GCMSCs-CM treated GC cells. Acquired OXA and PTX resistance was characterized by increased cell viability for OXA and PTX, the formation of cell colonies, and decreased levels of cell apoptosis, which were accompanied by reduced levels of cleaved caspase-3 and Bax expression, and increased levels of Bcl-2, HK2, MDR1, and B7H3 expression. Blocking TNF-α in GCMSCs-CM, B7H3 knockdown or the use of 2-DG, a key enzyme inhibitor of glycolysis in GC cells suppressed the OXA and PTX resistance of GC cells that had been treated with GCMSCs-CM. This study shows that GCMSCs-CM derived TNF-α could upregulate the expression of B7H3 of GC cells to promote tumor chemoresistance. Our results provide a new basis for the treatment of GC.


Assuntos
Células-Tronco Mesenquimais , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Quimioterapia Combinada , Glicólise , Hansenostáticos/farmacologia , Células-Tronco Mesenquimais/metabolismo , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fator de Necrose Tumoral alfa/metabolismo
14.
Immunogenetics ; 76(1): 51-67, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38197898

RESUMO

The CD28-B7 interaction is required to deliver a second signal necessary for T-cell activation. Additional membrane receptors of the CD28 and B7 families are also involved in immune checkpoints that positively or negatively regulate leukocyte activation, in particular T lymphocytes. BTLA is an inhibitory receptor that belongs to a third receptor family. Fish orthologs exist only for some of these genes, and the potential interactions between the corresponding ligands remain mostly unclear. In this work, we focused on the channel catfish (Ictalurus punctatus), a long-standing model for fish immunology, to analyze these co-stimulatory and co-inhibitory receptors. We identified one copy of cd28, ctla4, cd80/86, b7h1/dc, b7h3, b7h4, b7h5, two btla, and four b7h7 genes. Catfish CD28 contains the highly conserved mammalian cytoplasmic motif for PI3K and GRB2 recruitment, however this motif is absent in cyprinids. Fish CTLA4 share a C-terminal putative GRB2-binding site but lacks the mammalian PI3K/GRB2-binding motif. While critical V-domain residues for human CD80 or CD86 binding to CD28/CTLA4 show low conservation in fish CD80/86, C-domain residues are highly conserved, underscoring their significance. Catfish B7H1/DC had a long intracytoplasmic domain with a P-loop-NTPase domain that is absent in mammalian sequences, while the lack of NLS motif in fish B7H4 suggests this protein may not regulate cell growth when expressed intracellularly. Finally, there is a notable expansion of fish B7H7s, which likely play diverse roles in leukocyte regulation. Overall, our work contributes to a better understanding of fish leukocyte co-stimulatory and co-inhibitory receptors.


Assuntos
Antígenos CD28 , Ictaluridae , Animais , Humanos , Antígenos CD28/genética , Antígenos CD28/metabolismo , Antígeno CTLA-4 , Ictaluridae/genética , Ictaluridae/metabolismo , Antígenos CD , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Ligantes , Moléculas de Adesão Celular , Fosfatidilinositol 3-Quinases , Mamíferos
15.
Cancer Immunol Immunother ; 73(5): 78, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554152

RESUMO

BACKGROUND: Lipid droplets (LDs) as major lipid storage organelles are recently reported to be innate immune hubs. Perilipin-3 (PLIN3) is indispensable for the formation and accumulation of LDs. Since cancer patients show dysregulated lipid metabolism, we aimed to elaborate the role of LDs-related PLIN3 in oral squamous cell carcinoma (OSCC). METHODS: PLIN3 expression patterns (n = 87), its immune-related landscape (n = 74) and association with B7-H2 (n = 51) were assessed by immunohistochemistry and flow cytometry. Real-time PCR, Western blot, Oil Red O assay, immunofluorescence, migration assay, spheroid-forming assay and flow cytometry were performed for function analysis. RESULTS: Spotted LDs-like PLIN3 staining was dominantly enriched in tumor cells than other cell types. PLIN3high tumor showed high proliferation index with metastasis potential, accompanied with less CD3+CD8+ T cells in peripheral blood and in situ tissue, conferring immunosuppressive microenvironment and shorter postoperative survival. Consistently, PLIN3 knockdown in tumor cells not only reduced LD deposits and tumor migration, but benefited for CD8+ T cells activation in co-culture system with decreased B7-H2. An OSCC subpopulation harbored PLIN3highB7-H2high tumor showed more T cells exhaustion, rendering higher risk of cancer-related death (95% CI 1.285-6.851). CONCLUSIONS: LDs marker PLIN3 may be a novel immunotherapeutic target in OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Gotículas Lipídicas/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Oncogenes , Perilipina-3/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Microambiente Tumoral
16.
Cancer Immunol Immunother ; 73(1): 19, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240863

RESUMO

BACKGROUND: GD2-directed immunotherapy is highly effective in the treatment of high-risk neuroblastoma (NB), and might be an interesting target also in other high-risk tumors. METHODS: The German-Austrian Retinoblastoma Registry, Essen, was searched for patients, who were treated with anti-GD2 monoclonal antibody (mAb) dinutuximab beta (Db) in order to evaluate toxicity, response and outcome in these patients. Additionally, we evaluated anti-GD2 antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in retinoblastoma cell lines in vitro. Furthermore, in vitro cytotoxicity assays directed against B7-H3 (CD276), a new identified potential target in RB, were performed. RESULTS: We identified four patients with relapsed stage IV retinoblastoma, who were treated with Db following autologous stem cell transplantation (ASCT). Two out of two evaluable patients with detectable tumors responded to immunotherapy. One of these and another patient who received immunotherapy without residual disease relapsed 10 and 12 months after start of Db. The other patients remained in remission until last follow-up 26 and 45 months, respectively. In vitro, significant lysis of RB cell lines by ADCC and CDC with samples from patients and healthy donors and anti-GD2 and anti-CD276-mAbs were demonstrated. CONCLUSION: Anti-GD2-directed immunotherapy represents an additional therapeutic option in high-risk metastasized RB. Moreover, CD276 is another target of interest.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias da Retina , Retinoblastoma , Humanos , Retinoblastoma/terapia , Transplante Autólogo , Recidiva Local de Neoplasia , Imunoterapia , Gangliosídeos , Antígenos B7
17.
Cancer Immunol Immunother ; 73(9): 173, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953982

RESUMO

Recent studies have indicated that combining oncolytic viruses with CAR-T cells in therapy has shown superior anti-tumor effects, representing a promising approach. Nonetheless, the localized delivery method of intratumoral injection poses challenges for treating metastatic tumors or distal tumors that are difficult to reach. To address this obstacle, we employed HSV-1-infected CAR-T cells, which systemically delivery HSV into solid tumors. The biological function of CAR-T cells remained intact after loading them with HSV for a period of three days. In both immunocompromised and immunocompetent GBM orthotopic mouse models, B7-H3 CAR-T cells effectively delivered HSV to tumor lesions, resulting in enhanced T-cell infiltration and significantly prolonged survival in mice. We also employed a bilateral subcutaneous tumor model and observed that the group receiving intratumoral virus injection exhibited a significant reduction in tumor volume on the injected side, while the group receiving intravenous infusion of CAR-T cells carrying HSV displayed suppressed tumor growth on both sides. Hence, CAR-THSV cells offer notable advantages in the systemic delivery of HSV to distant tumors. In conclusion, our findings emphasize the potential of CAR-T cells as carriers for HSV, presenting significant advantages for oncolytic virotherapy targeting distant tumors.


Assuntos
Imunoterapia Adotiva , Terapia Viral Oncolítica , Vírus Oncolíticos , Receptores de Antígenos Quiméricos , Animais , Camundongos , Terapia Viral Oncolítica/métodos , Humanos , Vírus Oncolíticos/imunologia , Vírus Oncolíticos/genética , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Herpesvirus Humano 1/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Linfócitos T/imunologia , Feminino , Glioblastoma/terapia , Glioblastoma/imunologia
18.
Cancer Immunol Immunother ; 73(10): 188, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093440

RESUMO

Chordoma is a rare bone tumor that frequently recurs after surgery, and the prognosis is poor with current treatments. This study aimed to identify potential novel immunotherapeutic targets for chordomas by identifying target proteins in clinical samples as well as tumor microenvironmental factors to enhance efficacy. Fourteen chordoma samples were analyzed by single-cell RNA sequencing, and B7-H3 and IL-7 were identified as potential targets and potentiators, respectively. B7-H3-targeted chimeric antigen receptor T (CAR-T) cells and B7-H3 CAR-T cells expressing IL-7 were synthesized and their anti-tumor activity evaluated in vitro, including in primary chordoma organoid models. The B7-H3 CAR-T/IL-7 therapy showed enhanced cytotoxicity and prolonged duration of action against tumor cells. Additionally, IL-7 modulated favorable subpopulations of cultured CAR-T cells, diminished immune checkpoint expression on T-cell surfaces, and enhanced T-cell functionality. The incorporation of IL-7 molecules into the B7-H3 CAR structure augmented CAR-T-cell function and improved CAR-T-cell efficacy, thus providing a novel dual therapeutic strategy for chordoma treatment.


Assuntos
Antígenos B7 , Cordoma , Imunoterapia Adotiva , Interleucina-7 , Receptores de Antígenos Quiméricos , Cordoma/imunologia , Cordoma/terapia , Cordoma/patologia , Cordoma/metabolismo , Cordoma/genética , Humanos , Interleucina-7/metabolismo , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Antígenos B7/metabolismo , Antígenos B7/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Microambiente Tumoral/imunologia , Sobrevivência Celular , Linhagem Celular Tumoral , Adulto
19.
Mod Pathol ; 37(1): 100371, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38015043

RESUMO

B7-H4 (VTCN1), a member of the B7 family, is overexpressed in several types of cancer. Here we investigated the pattern of expression of B7-H4 in salivary gland carcinomas (SGC) and assessed its potential as a prognostic marker and therapeutic target. Immunohistochemistry (IHC) analyses were performed in a cohort of 340 patient tumors, composed of 124 adenoid cystic carcinomas (ACC), 107 salivary duct carcinomas (SDC), 64 acinic cell carcinomas, 36 mucoepidermoid carcinomas (MEC), 9 secretory carcinomas (SC), as well as 20 normal salivary glands (controls). B7-H4 expression was scored and categorized into negative (<5% expression of any intensity), low (5%-70% expression of any intensity or >70% with weak intensity), or high (>70% moderate or strong diffuse intensity). The associations between B7-H4 expression and clinicopathologic characteristics, as well as overall survival, were assessed. Among all tumors, B7-H4 expression was more prevalent in ACC (94%) compared with those of SC (67%), MEC (44%), SDC (32%), and acinic cell carcinomas (0%). Normal salivary gland tissue did not express B7-H4. High expression of B7-H4 was found exclusively in ACC (27%), SDC (11%), and MEC (8%). In SDC, B7-H4 expression was associated with female gender (P = .002) and lack of androgen receptor expression (P = .012). In ACC, B7-H4 expression was significantly associated with solid histology (P < .0001) and minor salivary gland primary (P = .02). High B7-H4 expression was associated with a poorer prognosis in ACC, regardless of clinical stage and histologic subtype. B7-H4 expression was not prognostic in the non-ACC SGC evaluated. Our comparative study revealed distinct patterns of B7-H4 expression according to SGC histology, which has potential therapeutic implications. B7-H4 expression was particularly high in solid ACC and was an independent prognostic marker in this disease but not in the other SGC assessed.


Assuntos
Neoplasias da Mama , Carcinoma de Células Acinares , Carcinoma Adenoide Cístico , Carcinoma Mucoepidermoide , Carcinoma , Neoplasias das Glândulas Salivares , Humanos , Feminino , Carcinoma Adenoide Cístico/patologia , Prognóstico , Carcinoma de Células Acinares/patologia , Neoplasias das Glândulas Salivares/patologia , Carcinoma Mucoepidermoide/patologia , Carcinoma/patologia , Glândulas Salivares/química , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Biomarcadores Tumorais/análise
20.
Cytometry A ; 105(5): 376-381, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38379087

RESUMO

Cross reactivities are known for human leukocyte antigen inside HLA-B7 related Cross-Reactive Group (B7CREG). Some CE-IVD flow-cytometry kits use double monoclonal antibodies (mAb) to distinguish HLA-B27 and HLA-B7 but practice reveals more complexes results. This study explores the performances of this test. Analysis of 466 consecutive cases using HLA-B27 IOTest™ kit on a Navios™ cytometer from Beckman-Coulter, partially compared to their genotypes. Expected haplotypes HLA-B27-/HLA-B7- (undoubtedly HLA-B27 negative) and HLA-B27+/HLA-B7- (undoubtedly HLA-B27+) were clearly identified according to the manufacturer's instructions. On the opposite, patients strongly labeled with anti-HLA-B7 showed three different phenotypes regarding anti-HLA-B27 labeling: (1) most of the cases were poorly labeled in accordance with cross reactivity inside B7CREG (HLA-B27-/HLA-B7+ haplotype); (2) rare cases had strong B7 and B27 labeling corresponding to HLA-B27+/HLA-B7+ haplotype; (3) even less cases had strong labeling by anti-HLA-B7 but non for anti-HLA-B27, all expressing HLA-B44 and no B7CREG molecules. Surprisingly, more cases were not labeled with anti-HLA-B7 antibody but partially labeled with anti-HLA-B27 suggesting another cross reactivity out of B7CREG. mAb HLA typing suggests new, cross reactivities of anti-HLA-B27 antibody to more molecules out of B7CREG and of anti-HLA-B7 antibody but not anti-HLA-B27 to HLA-B44 molecule also out of B7CREG. HLA-B27 could surely be excluded in most samples labeled with HLA-B27, below a "grey zone" on intermediate intensity. More comparison is needed in future studies.


Assuntos
Anticorpos Monoclonais , Reações Cruzadas , Citometria de Fluxo , Antígeno HLA-B27 , Antígeno HLA-B44 , Antígeno HLA-B7 , Haplótipos , Humanos , Citometria de Fluxo/métodos , Reações Cruzadas/imunologia , Antígeno HLA-B27/imunologia , Antígeno HLA-B27/genética , Haplótipos/genética , Antígeno HLA-B7/imunologia , Antígeno HLA-B7/genética , Antígeno HLA-B44/imunologia , Antígeno HLA-B44/genética , Anticorpos Monoclonais/imunologia , Antígenos HLA-B/imunologia , Antígenos HLA-B/genética , Genótipo , Imunofenotipagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA