Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 207: 108568, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33839112

RESUMO

Hydrocinnamoyl-L-valylpyrrolidine (AS-1), a synthetic low-molecule mimetic of myeloid differentiation primary response gene 88 (MyD88), inhibits inflammation by disrupting the interaction between the interleukin-1 receptor (IL-1R) and MyD88. Here, we describe the effects of AS-1 on injury-induced increases in inflammation and neovascularization in mouse corneas. Mice were administered a subconjunctival injection of 8 µL AS-1 diluent before or after corneal alkali burn, followed by evaluation of corneal resurfacing and corneal neovascularization (CNV) by slit-lamp biomicroscopy and clinical assessment. Corneal inflammation was assessed by whole-mount CD45+ immunofluorescence staining, and corneal hemangiogenesis and lymphangiogenesis following injury were evaluated by immunostaining for the vascular markers isolectin B4 (IB4) and the lymphatic vascularized marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), respectively. Additionally, corneal tissues were collected to determine the expression of 35 cytokines, and we detected activation of IL-1RI, MyD88, and mitogen-activated protein kinase (MAPK). The results showed that alkali conditions increased the number of CD45+ cells and expression of vascular endothelial growth factor (VEGF)-A, VEGF-C, and LYVE1 in corneas, with these levels decreased in the AS-1-treated group. Moreover, AS-1 effectively prevented alkali-induced cytokine production, blocked interactions between IL-1RI and MyD88, and inhibited MAPK activation post-alkali burn. These results indicated that AS-1 prevented alkali-induced corneal hemangiogenesis and lymphangiogenesis by blocking IL-1RI-MyD88 interaction, as well as extracellular signal-regulated kinase phosphorylation, and could be efficacious for the prevention and treatment of corneal alkali burn.


Assuntos
Queimaduras Químicas/prevenção & controle , Neovascularização da Córnea/prevenção & controle , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Queimaduras Oculares/induzido quimicamente , Pirrolidinas/uso terapêutico , Valina/análogos & derivados , Inibidores da Angiogênese , Animais , Biomarcadores/metabolismo , Western Blotting , Queimaduras Químicas/enzimologia , Queimaduras Químicas/patologia , Neovascularização da Córnea/enzimologia , Neovascularização da Córnea/patologia , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Queimaduras Oculares/enzimologia , Queimaduras Oculares/patologia , Proteínas do Olho/metabolismo , Humanos , Imunoprecipitação , Linfangiogênese/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Hidróxido de Sódio , Valina/uso terapêutico
2.
Proteins ; 86(5): 524-535, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29383749

RESUMO

Extensive research performed on Toll-like receptor (TLR) signaling has identified residues in the Toll/interleukin-1 receptor (TIR) domains that are essential for its proper functioning. Among these residues, those in BB loop are particularly significant as single amino acid mutations in this region can cause drastic changes in downstream signaling. However, while the effect of these mutations on the function is well studied (like the P681H mutation in TLR2, the A795P mutation in TLR3, and the P714H mutation in TLR4), their influence on the dynamics and inter-residue networks is not well understood. The effects of local perturbations induced by these mutations could propagate throughout the TIR domain, influencing interactions with other TIR domain-containing proteins. The identification of these subtle changes in inter-residue interactions can provide new insights and structural rationale for how single-point mutations cause drastic changes in TIR-TIR interactions. We employed molecular dynamics simulations and protein structure network (PSN) analyses to investigate the structural transitions with special emphasis on TLR2 and TLR3. Our results reveal that phosphorylation of the Tyr 759 residue in the TIR domain of TLR3 introduces rigidity to its BB loop. Subtle differences in the intra BB loop hydrogen bonding network between TLR3 and TLR2 are also observed. The PSN analyses indicate that the TIR domain is highly connected and pinpoints key differences in the inter-residue interactions between the wild-type and mutant TIR domains, suggesting that TIR domain structure is prone to allosteric effects, consistent with the current view of the influence of allostery on TLR signaling.


Assuntos
Simulação de Dinâmica Molecular , Receptor 2 Toll-Like/química , Receptor 3 Toll-Like/química , Sítios de Ligação , Humanos , Fosforilação , Mutação Puntual , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Relação Estrutura-Atividade
3.
Proteins ; 86(4): 475-490, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29383743

RESUMO

The Toll-like receptors (TLRs) are critical components of the innate immune system due to their ability to detect conserved pathogen-associated molecular patterns, present in bacteria, viruses, and other microorganisms. Ligand detection by TLRs leads to a signaling cascade, mediated by interactions among TIR domains present in the receptors, the bridging adaptors and sorting adaptors. The BB loop is a highly conserved region present in the TIR domain and is crucial for mediating interactions among TIR domain-containing proteins. Mutations in the BB loop of the Toll-like receptors, such as the A795P mutation in TLR3 and the P712H mutation (Lpsd mutation) in TLR4, have been reported to disrupt or alter downstream signaling. While the phenotypic effect of these mutations is known, the underlying effect of these mutations on the structure, dynamics and interactions with other TIR domain-containing proteins is not well understood. Here, we have attempted to investigate the effect of the BB loop mutations on the dimer form of TLRs, using TLR2 and TLR3 as case studies. Our results based on molecular dynamics simulations, protein-protein interaction analyses and protein structure network analyses highlight significant differences between the dimer interfaces of the wild-type and mutant forms and provide a logical reasoning for the effect of these mutations on adaptor binding to TLRs. Furthermore, it also leads us to propose a hypothesis for the differential requirement of signaling and bridging adaptors by TLRs. This could aid in further understanding of the mechanisms governing such signaling pathways.


Assuntos
Mutação Puntual , Multimerização Proteica , Receptores Toll-Like/química , Receptores Toll-Like/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Estabilidade Proteica , Receptor 1 Toll-Like/química , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(17): 5455-60, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25870276

RESUMO

Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein-protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors.


Assuntos
Anti-Inflamatórios , Benzaldeídos , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/antagonistas & inibidores , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Benzaldeídos/química , Benzaldeídos/farmacologia , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Camundongos , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/imunologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 6 Toll-Like/genética , Receptor 6 Toll-Like/imunologia
5.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1152-1159, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30684639

RESUMO

The nitrone spin trap 5,5­dimethyl­1­pyrroline N­oxide (DMPO) dampens endotoxin-induced and TLR4-driven priming of macrophages, but the mechanism remains unknown. The available information suggests a direct binding of DMPO to the TIR domain, which is shared between TLRs. However, TLR2-TIR domain is the only TLR that have been crystallized. Our in silico data show that DMPO binds to four specific residues in the BB-loop within the TLR2-TIR domain. Our functional analysis using hTLR2.6-expressing HEKs cells showed that DMPO can block zymosan-triggered-TLR2-mediated NF-κB activation. However, DMPO did not affect the overall TLR2-MyD88 protein-protein interaction. DMPO binds to the BB-loop in the TIR-domain and dampens downstream signaling without affecting the overall TIR-MyD88 interaction. These data encourage the use of DMPO-derivatives as potential mechanism-based inhibitors of TLR-triggered inflammation.


Assuntos
Óxidos N-Cíclicos/metabolismo , Inflamação/metabolismo , Óxidos de Nitrogênio/metabolismo , Transdução de Sinais , Marcadores de Spin , Receptor 2 Toll-Like/metabolismo , Animais , Óxidos N-Cíclicos/química , Células HEK293 , Humanos , Inflamação/imunologia , Camundongos , Simulação de Dinâmica Molecular , Fator 88 de Diferenciação Mieloide/química , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/química , NF-kappa B/metabolismo , Óxidos de Nitrogênio/química , Ligação Proteica , Domínios Proteicos , Células RAW 264.7 , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA