RESUMO
BCG vaccination in children protects against heterologous infections and improves survival independently of tuberculosis prevention. The phase III ACTIVATE trial assessed whether BCG has similar effects in the elderly. In this double-blind, randomized trial, elderly patients (n = 198) received BCG or placebo vaccine at hospital discharge and were followed for 12 months for new infections. At interim analysis, BCG vaccination significantly increased the time to first infection (median 16 weeks compared to 11 weeks after placebo). The incidence of new infections was 42.3% (95% CIs 31.9%-53.4%) after placebo vaccination and 25.0% (95% CIs 16.4%-36.1%) after BCG vaccination; most of the protection was against respiratory tract infections of probable viral origin (hazard ratio 0.21, p = 0.013). No difference in the frequency of adverse effects was found. Data show that BCG vaccination is safe and can protect the elderly against infections. Larger studies are needed to assess protection against respiratory infections, including COVID-19 (ClinicalTrials.gov NCT03296423).
Assuntos
Vacina BCG/efeitos adversos , Vacina BCG/imunologia , Infecções Respiratórias/prevenção & controle , Idoso , Idoso de 80 Anos ou mais , Vacina BCG/administração & dosagem , Método Duplo-Cego , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Infecções Respiratórias/imunologia , Viroses/imunologia , Viroses/prevenção & controleRESUMO
A greater understanding of hematopoietic stem cell (HSC) regulation is required for dissecting protective versus detrimental immunity to pathogens that cause chronic infections such as Mycobacterium tuberculosis (Mtb). We have shown that systemic administration of Bacille Calmette-Guérin (BCG) or ß-glucan reprograms HSCs in the bone marrow (BM) via a type II interferon (IFN-II) or interleukin-1 (IL1) response, respectively, which confers protective trained immunity against Mtb. Here, we demonstrate that, unlike BCG or ß-glucan, Mtb reprograms HSCs via an IFN-I response that suppresses myelopoiesis and impairs development of protective trained immunity to Mtb. Mechanistically, IFN-I signaling dysregulates iron metabolism, depolarizes mitochondrial membrane potential, and induces cell death specifically in myeloid progenitors. Additionally, activation of the IFN-I/iron axis in HSCs impairs trained immunity to Mtb infection. These results identify an unanticipated immune evasion strategy of Mtb in the BM that controls the magnitude and intrinsic anti-microbial capacity of innate immunity to infection.
Assuntos
Células-Tronco Hematopoéticas/microbiologia , Imunidade , Mycobacterium tuberculosis/fisiologia , Mielopoese , Animais , Células da Medula Óssea/metabolismo , Proliferação de Células , Suscetibilidade a Doenças , Homeostase , Interferon Tipo I/metabolismo , Ferro/metabolismo , Cinética , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Necrose , Transdução de Sinais , Transcrição Gênica , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/patologiaRESUMO
Although the Bacille-Calmette-Guérin (BCG) vaccine is used to prevent tuberculosis, it also offers protection against a diverse range of non-mycobacterial infections. However, the underlying protective mechanisms in humans are not yet fully understood. Here, we surveyed at single-cell resolution the gene expression and chromatin landscape of human bone marrow, aspirated before and 90 days after BCG vaccination or placebo. We showed that BCG alters both the gene expression and epigenetic profiles of human hematopoietic stem and progenitor cells (HSPCs). Changes in gene expression occurred primarily within uncommitted stem cells. By contrast, changes in chromatin accessibility were most prevalent within differentiated progenitor cells at sites influenced by Kruppel-like factor (KLF) and early growth response (EGR) transcription factors and were highly correlated (r > 0.8) with the interleukin (IL)-1ß secretion capacity of paired peripheral blood mononuclear cells (PBMCs). Our findings shed light on BCG vaccination's profound and lasting effects on HSPCs and its influence on innate immune responses and trained immunity.
Assuntos
Vacina BCG , Epigênese Genética , Imunidade Inata , Vacinação , Humanos , Vacina BCG/imunologia , Epigênese Genética/imunologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Interleucina-1beta/metabolismo , Medula Óssea/imunologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Adulto , Leucócitos Mononucleares/imunologia , Cromatina/metabolismo , Feminino , Masculino , Diferenciação Celular/imunologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/imunologiaRESUMO
Immune responses are tightly regulated yet highly variable between individuals. To investigate human population variation of trained immunity, we immunized healthy individuals with Bacillus Calmette-Guérin (BCG). This live-attenuated vaccine induces not only an adaptive immune response against tuberculosis but also triggers innate immune activation and memory that are indicative of trained immunity. We established personal immune profiles and chromatin accessibility maps over a 90-day time course of BCG vaccination in 323 individuals. Our analysis uncovered genetic and epigenetic predictors of baseline immunity and immune response. BCG vaccination enhanced the innate immune response specifically in individuals with a dormant immune state at baseline, rather than providing a general boost of innate immunity. This study advances our understanding of BCG's heterologous immune-stimulatory effects and trained immunity in humans. Furthermore, it highlights the value of epigenetic cell states for connecting immune function with genotype and the environment.
Assuntos
Vacina BCG , Imunidade Treinada , Humanos , Multiômica , Vacinação , Epigênese GenéticaRESUMO
The dogma that adaptive immunity is the only arm of the immune response with memory capacity has been recently challenged by several studies demonstrating evidence for memory-like innate immune training. However, the underlying mechanisms and location for generating such innate memory responses in vivo remain unknown. Here, we show that access of Bacillus Calmette-Guérin (BCG) to the bone marrow (BM) changes the transcriptional landscape of hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), leading to local cell expansion and enhanced myelopoiesis at the expense of lymphopoiesis. Importantly, BCG-educated HSCs generate epigenetically modified macrophages that provide significantly better protection against virulent M. tuberculosis infection than naïve macrophages. By using parabiotic and chimeric mice, as well as adoptive transfer approaches, we demonstrate that training of the monocyte/macrophage lineage via BCG-induced HSC reprogramming is sustainable in vivo. Our results indicate that targeting the HSC compartment provides a novel approach for vaccine development.
Assuntos
Células-Tronco Hematopoéticas/imunologia , Imunidade Inata , Memória Imunológica , Mycobacterium bovis/imunologia , Transcriptoma , Animais , Linhagem Celular , Células Cultivadas , Epigênese Genética , Hematopoese , Camundongos , Camundongos Endogâmicos C57BL , Tuberculose/imunologiaRESUMO
Conventionally, it was thought that innate immunity operated through a simple system of nonspecific responses to an insult. However, this perspective now seems overly simplistic. It has become evident that intricate cooperation and networking among various cells, receptors, signaling pathways, and protein complexes are essential for regulating and defining the overall activation status of the immune response, where the distinction between innate and adaptive immunity becomes ambiguous. Given the evolutionary timeline of vertebrates and the success of plants and invertebrates which depend solely on innate immunity, immune memory cannot be considered an innovation of only the lymphoid lineage. Indeed, the evolutionary innate immune memory program is a conserved mechanism whereby innate immune cells can induce a heightened response to a secondary stimulus due to metabolic and epigenetic reprogramming. Importantly, the longevity of this memory phenotype can be attributed to the reprogramming of self-renewing hematopoietic stem cells (HSCs) in the bone marrow, which is subsequently transmitted to lineage-committed innate immune cells. HSCs reside within a complex regulated network of immune and stromal cells that govern their two primary functions: self-renewal and differentiation. In this review, we delve into the emerging cellular and molecular mechanisms as well as metabolic pathways of innate memory in HSCs, which harbor substantial therapeutic promise.
Assuntos
Imunidade Adaptativa , Células-Tronco Hematopoéticas , Imunidade Inata , Memória Imunológica , Animais , Humanos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/imunologia , Transdução de Sinais , Diferenciação Celular , Epigênese Genética , Linhagem da Célula , Imunidade TreinadaRESUMO
Mycobacterium tuberculosis (Mtb) reprograms FAs metabolism of macrophages during infection and affects inflammatory reaction eventually, however, the mechanism remains poorly understood. Here we show that Mycobacterium bovis (BCG) induces DUSP5 expression through TLR2-MAPKs signaling pathway and promotes fatty acid oxidation (FAO). Silencing DUSP5 by adeno-associated virus vector (AAV) ameliorates lung injury and DUSP5 knockdown reduces the expression of IL-1ß, IL-6 and inactivated NF-κB signaling in BCG-infected macrophages. Of note, DUSP5 specific siRNA increases the content of free fatty acids (FFAs) and triglyceride (TG), but represses the expression of FAO associated enzymes such as CPT1A and PPARα, suggesting DUSP5 mediated FAO during BCG infection. Moreover, Inhibiting FAO by pharmacological manner suppresses IL-1ß, IL-6, TNF-α expression and relieves lung damage. Taken together, our data indicates DUSP5 mediates FAO reprogramming and promotes inflammatory response to BCG infection.
Assuntos
Mycobacterium bovis , Interleucina-6/genética , Interleucina-6/metabolismo , Transdução de Sinais , Fosfatases de Especificidade Dupla/genética , Ácidos GraxosRESUMO
Intradermal Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccination is currently the only licensed strategy for preventing tuberculosis (TB). It provides limited protection against pulmonary TB. To enhance the efficacy of BCG, we developed a recombinant BCG expressing exogenous monocyte chemoattractant CC chemokine ligand 2 (CCL2) called rBCG-CCL2. Co-culturing macrophages with rBCG-CCL2 enhances their abilities in migration, phagocytosis, and effector molecule expression. In the mouse model, intranasal vaccination with rBCG-CCL2 induced greater immune cell infiltration and a more extensive innate immune response in lung compared to vaccination with parental BCG, as determined by multiparameter flow cytometry, transcriptomic analysis, and pathological assessments. Moreover, rBCG-CCL2 induced a high frequency of activated macrophages and antigen-specific T helper 1 (Th1) and Th17 T cells in lungs. The enhanced immune microenvironment responded more effectively to intravenous challenge with Mycobacterium tuberculosis (Mtb) H37Ra, leading to significant reductions in H37Ra burden and pathological damage to the lungs and spleen. Intranasal rBCG-CCL2-vaccinated mice rapidly initiated pro-inflammatory Th1 cytokine release and reduced pathological damage to the lungs and spleen during the early stage of H37Ra challenge. The finding that co-expression of CCL2 synergistically enhances the immune barrier induced by BCG provides a model for defining immune correlates and mechanisms of vaccine-elicited protection against TB.
RESUMO
COVID-19 remains a stark health threat worldwide, in part because of minimal levels of targeted vaccination outside high-income countries and highly transmissible variants causing infection in vaccinated individuals. Decades of theoretical and experimental data suggest that nonspecific effects of non-COVID-19 vaccines may help bolster population immunological resilience to new pathogens. These routine vaccinations can stimulate heterologous cross-protective effects, which modulate nontargeted infections. For example, immunization with Bacillus Calmette-Guérin, inactivated influenza vaccine, oral polio vaccine, and other vaccines have been associated with some protection from SARS-CoV-2 infection and amelioration of COVID-19 disease. If heterologous vaccine interventions (HVIs) are to be seriously considered by policy makers as bridging or boosting interventions in pandemic settings to augment nonpharmaceutical interventions and specific vaccination efforts, evidence is needed to determine their optimal implementation. Using the COVID-19 International Modeling Consortium mathematical model, we show that logistically realistic HVIs with low (5 to 15%) effectiveness could have reduced COVID-19 cases, hospitalization, and mortality in the United States fall/winter 2020 wave. Similar to other mass drug administration campaigns (e.g., for malaria), HVI impact is highly dependent on both age targeting and intervention timing in relation to incidence, with maximal benefit accruing from implementation across the widest age cohort when the pandemic reproduction number is >1.0. Optimal HVI logistics therefore differ from optimal rollout parameters for specific COVID-19 immunizations. These results may be generalizable beyond COVID-19 and the US to indicate how even minimally effective heterologous immunization campaigns could reduce the burden of future viral pandemics.
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Modelos Teóricos , SARS-CoV-2/imunologia , Estações do Ano , Vacinação/métodos , Algoritmos , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Mortalidade Hospitalar , Hospitalização/estatística & dados numéricos , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Pandemias/prevenção & controle , Admissão do Paciente/estatística & dados numéricos , SARS-CoV-2/fisiologia , Taxa de Sobrevida , Estados Unidos/epidemiologia , Vacinação/estatística & dados numéricosRESUMO
BACKGROUND: Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare clinical syndrome characterized by vulnerability to weakly virulent mycobacterial species, including Bacillus Calmette-Guérin (BCG) vaccines and environmental mycobacteria. OBJECTIVE: We sought to perform a systematic review of the genetic, immunologic, and clinical findings for reported patients with MSMD. METHODS: We searched PubMed, Web of Science, and Scopus databases for publications in English relating to MSMD. All full texts were evaluated for eligibility for inclusion. Two reviewers independently selected the publications, with a third reviewer consulted in cases of disagreement. RESULTS: A primary systematic search and searches of other resources identified 16,155 articles. In total, 158 articles from 63 countries were included in qualitative and quantitative analyses. In total, 830 patients-436 males (52.5%), 369 females (44.5%), and 25 patients of unknown sex (3.0%)-from 581 families were evaluated. A positive family history was reported in 347 patients (45.5%). The patients had a mean age of 10.41 ± 0.42 (SEM) years. The frequency of MSMD was highest in Iran, Turkey, and Saudi Arabia. Lymphadenopathy was the most common clinical manifestation of MSMD, reported in 378 (45.5%) cases and multifocal in 35.1%. Fever, organomegaly, and sepsis were the next most frequent findings, reported in 251 (30.2%), 206 (24.8%), and 171 (20.8%) cases, respectively. In total, 299 unique mutations in 21 genes known to be involved in MSMD were reported: 100 missense (34%), 80 indel-frameshift (insertion or deletion, 27%), 53 nonsense (18%), 35 splice site (12%), 10 indel-in frame (2.7%), 6 indel (2%), and 15 large deletion/duplication mutations. Finally, 61% of the reported patients with MSMD had mutations of IL12RB1 (41%) or IFNGR1 (20%). At the time of the report, 177 of the patients (21.3%) were dead and 597 (71.9%) were still alive. CONCLUSIONS: MSMD is associated with a high mortality rate, mostly due to impaired control of infection. Preexposure strategies, such as changes in vaccination policy in endemic areas, the establishment of a worldwide registry of patients with MSMD, and precise follow-up over generations in affected families, appear to be vital to decrease MSMD-related mortality.
Assuntos
Predisposição Genética para Doença , Infecções por Mycobacterium , Humanos , Infecções por Mycobacterium/genética , Infecções por Mycobacterium/imunologia , Masculino , Feminino , Criança , Vacina BCG/imunologiaRESUMO
The tuberculosis (TB) vaccine Bacillus Calmette-Guérin (BCG) was introduced 100 years ago, but as it provides insufficient protection against TB disease, especially in adults, new vaccines are being developed and evaluated. The discovery that BCG protects humans from becoming infected with Mycobacterium tuberculosis (Mtb) and not just from progressing to TB disease provides justification for considering Mtb infection as an endpoint in vaccine trials. Such trials would require fewer participants than those with disease as an endpoint. In this review, we first define Mtb infection and disease phenotypes that can be used for mechanistic studies and/or endpoints for vaccine trials. Secondly, we review the evidence for BCG-induced protection against Mtb infection from observational and BCG re-vaccination studies, and discuss limitations and variation of this protection. Thirdly, we review possible underlying mechanisms for BCG efficacy against Mtb infection, including alternative T cell responses, antibody-mediated protection, and innate immune mechanisms, with a specific focus on BCG-induced trained immunity, which involves epigenetic and metabolic reprogramming of innate immune cells. Finally, we discuss the implications for further studies of BCG efficacy against Mtb infection, including for mechanistic research, and their relevance to the design and evaluation of new TB vaccines.
Assuntos
Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Vacina BCG , Humanos , Linfócitos T , Tuberculose/prevenção & controleRESUMO
BCG turns 100 this year and while it might not be the perfect vaccine, it has certainly contributed significantly towards eradication and prevention of spread of tuberculosis (TB). The search for newer and better vaccines for TB is an ongoing endeavor and latest results from trials of candidate TB vaccines such as M72AS01 look promising. However, recent encouraging data from BCG revaccination trials in adults combined with studies on mucosal and intravenous routes of BCG vaccination in non-human primate models have renewed interest in BCG for TB prevention. In addition, several well-demonstrated non-specific effects of BCG, for example, prevention of viral and respiratory infections, give BCG an added advantage. Also, BCG vaccination is currently being widely tested in human clinical trials to determine whether it protects against SARS-CoV-2 infection and/or death with detailed analyses and outcomes from several ongoing trials across the world awaited. Through this review, we attempt to bring together information on various aspects of the BCG-induced immune response, its efficacy in TB control, comparison with other candidate TB vaccines and strategies to improve its efficiency including revaccination and alternate routes of administration. Finally, we discuss the future relevance of BCG use especially in light of its several heterologous benefits.
Assuntos
Vacina BCG/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Vacinação , Imunidade Adaptativa , Vacina BCG/administração & dosagem , Humanos , Imunidade Heteróloga , Imunidade Inata , Imunogenicidade da Vacina , Memória ImunológicaRESUMO
BACKGROUND: Maternal priming with bacille Calmette-Guérin (BCG) has been associated with reduced mortality in male offspring. We investigated this association in a cohort of healthy BCG-vaccinated neonates. METHODS: This observational study within a randomized controlled trial comparing different BCG strains was conducted in Guinea-Bissau from 2017 to 2020. As part of trial inclusion procedures, on the day of discharge from the maternity ward, maternal BCG scar status was evaluated by visual inspection, followed by offspring BCG and polio vaccination. Through mortality data collected at telephone interviews at 6 weeks and 6 months of age, we assessed all-cause mortality risk in Cox proportional hazards models adjusted for maternal schooling and BCG strain, providing adjusted mortality rate ratios (aMRRs). RESULTS: In total, 64% (11 070/17 275) of mothers had a BCG scar, which was not associated with admission risk, admission severity, or all-cause mortality for females and the overall sample. By 6 months of age, the mortality rate (MR) was 4.1 (200 deaths/4919 person-years) for the maternal BCG scar cohort and 5.2 (139/2661) for no maternal scar (aMRR, 0.86; 95% Confidence Interval [CI], .69-1.06). In males, 6-month MRs were 4.3 (109 deaths/2531 person-years) for maternal BCG scar vs 6.3 (87/1376) for no scar (aMRR, 0.74; 95% CI, .56-.99). In females, 6-month MRs were 3.8 (91 deaths/2388 person-years) vs 4.0 (52/1286), respectively (aMRR, 1.04; 95% CI, .74-1.47; for interaction with sex, P = .16). CONCLUSIONS: While we cannot rule out an association in females, being born to a mother with a BCG scar reduced the risk of death during early infancy for BCG-vaccinated males, reproducing findings from previous studies.
Assuntos
Vacina BCG , Cicatriz , Humanos , Vacina BCG/administração & dosagem , Vacina BCG/efeitos adversos , Guiné-Bissau/epidemiologia , Feminino , Masculino , Recém-Nascido , Cicatriz/mortalidade , Adulto , Lactente , Gravidez , Vacinação , Mortalidade Infantil , Tuberculose/mortalidade , Fatores de Risco , Modelos de Riscos ProporcionaisRESUMO
An upcoming trial may provide further evidence that adolescent/adult-targeted BCG revaccination prevents sustained Mycobacterium tuberculosis infection, but its public health value depends on its impact on overall tuberculosis morbidity and mortality, which will remain unknown. Using previously calibrated models for India and South Africa, we simulated BCG revaccination assuming 45% prevention-of-infection efficacy, and we evaluated scenarios varying additional prevention-of-disease efficacy between +50% (reducing risk) and -50% (increasing risk). Given the assumed prevention-of-infection efficacy and range in prevention-of-disease efficacy, BCG revaccination may have a positive health impact and be cost-effective. This may be useful when considering future evaluations and implementation of adolescent/adult BCG revaccination.
Assuntos
Vacina BCG , Imunização Secundária , Saúde Pública , Tuberculose , Humanos , Tuberculose/prevenção & controle , Tuberculose/epidemiologia , Vacina BCG/imunologia , África do Sul/epidemiologia , Adolescente , Índia/epidemiologia , Adulto , Análise Custo-Benefício , Criança , Adulto Jovem , Lactente , Pré-Escolar , Mycobacterium tuberculosisRESUMO
BACKGROUND: The BCG (Bacillus Calmette-Guérin) vaccine can induce nonspecific protection against unrelated infections. We aimed to test the effect of BCG on absenteeism and health of Danish health care workers (HCWs) during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: A single-blinded randomized controlled trial included 1221 HCWs from 9 Danish hospitals. Participants were randomized 1:1 to standard dose BCG or placebo. Primary outcome was days of unplanned absenteeism. Main secondary outcomes were incidence of COVID-19, all-cause hospitalization, and infectious disease episodes. RESULTS: There was no significant effect of BCG on unplanned absenteeism. Mean number of days absent per 1000 workdays was 20 in the BCG group and 17 in the placebo group (risk ratio, 1.23; 95% credibility interval, 0.98-1.53). BCG had no effect on incidence of COVID-19 or all-cause hospitalization overall. In secondary analyses BCG revaccination was associated with higher COVID-19 incidence (hazard ratio [HR], 2.47; 95% confidence interval [CI], 1.07-5.71), but also reduced risk of hospitalization (HR, 0.28; 95% CI, .09-.86). The incidence of infectious disease episodes was similar between randomization groups (HR, 1.09; 95% CI, .96-1.24). CONCLUSIONS: In this relatively healthy cohort of HCWs, there was no overall effect of BCG on any of the study outcomes. CLINICAL TRIALS REGISTRATION: NCT0437329 and EU Clinical Trials Register (EudraCT number 2020-001888-90).
Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacina BCG , Pandemias/prevenção & controle , SARS-CoV-2 , Pessoal de SaúdeRESUMO
Treatment for higher-risk non-muscle invasive bladder cancer (NMIBC) involves intravesical immunotherapy with Bacillus Calmette Guérin (BCG); however, disease recurrence and progression occur frequently. Systemic immunity is critical for successful cancer immunotherapy; thus, recurrence of NMIBC may be due to suboptimal systemic activation of anti-tumor immunity after local immunotherapy. We previously reported that systemically acquired trained immunity (a form of innate immune memory) in circulating monocytes is associated with increased time-to-recurrence in patients with NMIBC treated with BCG. Herein, we used a mouse model of NMIBC to compare the effects of intravesical versus intravenous (systemic) BCG immunotherapy on the local and peripheral immune microenvironments. We also assessed whether BCG-induced trained immunity modulates anti-tumor immune responses. Compared with intravesical BCG, which led to a tumor-promoting immune microenvironment, intravenous BCG resulted in an anti-tumoral bladder microenvironment characterized by increased proportions of cytotoxic T lymphocytes (CTLs), and decreased proportions of myeloid-derived suppressor cells. Polarization toward anti-tumoral immunity occurred in draining lymph nodes, spleen, and bone marrow following intravenous versus intravesical BCG treatment. Pre-treatment with intravesical BCG was associated with increased rate of tumor growth compared with intravenous BCG pre-treatment. Trained immunity contributed to remodeling of the tumor immune microenvironment, as co-instillation of BCG-trained macrophages with ovalbumin-expressing bladder tumor cells increased the proportion of tumor-specific CTLs. Furthermore, BCG-trained dendritic cells exhibited enhanced antigen uptake and presentation and promoted CTL proliferation. Our data support the concept that systemic immune activation promotes anti-tumor responses, and that BCG-induced trained immunity is important in driving anti-tumor adaptive immunity.
Assuntos
Vacina BCG , Imunoterapia , Microambiente Tumoral , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Microambiente Tumoral/imunologia , Camundongos , Vacina BCG/imunologia , Vacina BCG/administração & dosagem , Vacina BCG/uso terapêutico , Imunoterapia/métodos , Feminino , Administração Intravesical , Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos/imunologia , Humanos , Modelos Animais de Doenças , Imunidade Inata/imunologia , Linhagem Celular Tumoral , Memória Imunológica/imunologia , Células Supressoras Mieloides/imunologia , Imunidade TreinadaRESUMO
BACKGROUND: Bacillus Calmette-Guérin (BCG) vaccination has off-target protective effects against infections unrelated to tuberculosis. Among these, murine and human studies suggest that BCG vaccination may protect against malaria. We investigated whether BCG vaccination influences neonatal in vitro cytokine responses to Plasmodium falciparum. Blood samples were collected from 108 participants in the Melbourne Infant Study BCG for Allergy and Infection Reduction (MIS BAIR) randomised controlled trial (Clinical trials registration NCT01906853, registered July 2013), seven days after randomisation to neonatal BCG (n = 66) or no BCG vaccination (BCG-naïve, n = 42). In vitro cytokine responses were measured following stimulation with P. falciparum-infected erythrocytes (PfIE) or E. coli. RESULTS: No difference in the measured cytokines were observed between BCG-vaccinated and BCG-naïve neonates following stimulation with PfIE or E. coli. However, age at which blood was sampled was independently associated with altered cytokine responses to PfIE. Being male was also independently associated with increased TNF-a responses to both PfIE and E. coli. CONCLUSION: These findings do not support a role for BCG vaccination in influencing in vitro neonatal cytokine responses to P. falciparum. Older neonates are more likely to develop P. falciparum-induced IFN-γ and IFN-γ-inducible chemokine responses implicated in early protection against malaria and malaria pathogenesis.
Assuntos
Vacina BCG , Citocinas , Malária Falciparum , Plasmodium falciparum , Vacinação , Humanos , Plasmodium falciparum/imunologia , Vacina BCG/imunologia , Recém-Nascido , Feminino , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Citocinas/metabolismo , Masculino , Eritrócitos/imunologia , Eritrócitos/parasitologia , Escherichia coli/imunologia , LactenteRESUMO
Autoinflammatory diseases, while having a variety of underlying causes, are mediated by dysfunctional innate immune responses. Therefore, standard treatments target innate cytokines or block their receptors. Despite excellent responses in some patients, first-line treatments fail in others, for reasons which remain to be understood. We studied the effects of IL-37, an anti-inflammatory cytokine, on immune cells using multi-omics profiling of 325 healthy adults. Our findings show that IL-37 is associated with inflammation control and generally reduced immune cell activity. Further, genetic variants in IL37 are associated with impaired trained immunity, a memory phenotype of innate immune cells contributing to autoinflammation. To underpin the medical potential of IL-37, an explorative cohort of seven autoinflammatory disorders was built. In vitro stimulation experiments argue for recombinant IL-37 as a potential therapy in IL-6-, and IL-22-driven conditions. Concluding, IL-37 is highlighted as a cytokine with broad anti-inflammatory functions, implicating its potential as therapeutic intervention.
RESUMO
While the efficacy of many current vaccines is well-established, various factors can diminish their effectiveness, particularly in vulnerable groups. Amidst emerging pandemic threats, enhancing vaccine responses is critical. Our review synthesizes insights from immunology and epidemiology, focusing on the concept of trained immunity (TRIM) and the non-specific effects (NSEs) of vaccines that confer heterologous protection. We elucidate the mechanisms driving TRIM, emphasizing its regulation through metabolic and epigenetic reprogramming in innate immune cells. Notably, we explore the extended protective scope of vaccines like BCG and COVID-19 vaccines against unrelated infections, underscoring their role in reducing neonatal mortality and combating diseases like malaria and yellow fever. We also highlight novel strategies to boost vaccine efficacy, incorporating TRIM inducers into vaccine formulations to enhance both specific and non-specific immune responses. This approach promises significant advancements in vaccine development, aiming to improve global public health outcomes, especially for the elderly and immunocompromised populations.
Assuntos
Vacinas contra COVID-19 , Vacinas , Recém-Nascido , Humanos , Idoso , Vacina BCG , Imunidade Treinada , Imunidade Inata , Memória Imunológica , Desenvolvimento de VacinasRESUMO
PURPOSE: Inborn errors of IFN-γ immunity underlie Mendelian susceptibility to mycobacterial disease (MSMD). Twenty-two genes with products involved in the production of, or response to, IFN-γ and variants of which underlie MSMD have been identified. However, pathogenic variants of IFNG encoding a defective IFN-γ have been described in only two siblings, who both underwent hematopoietic stem cell transplantation (HCST). METHODS: We characterized a new patient with MSMD by genetic, immunological, and clinical means. Therapeutic decisions were taken on the basis of these findings. RESULTS: The patient was born to consanguineous Turkish parents and developed bacillus Calmette-Guérin (BCG) disease following vaccination at birth. Whole-exome sequencing revealed a homozygous private IFNG variant (c.224 T > C, p.F75S). Upon overexpression in recipient cells or constitutive expression in the patient's cells, the mutant IFN-γ was produced within the cells but was not correctly folded or secreted. The patient was treated for 6 months with two or three antimycobacterial drugs only and then for 30 months with subcutaneous recombinant IFN-γ1b plus two antimycobacterial drugs. Treatment with IFN-γ1b finally normalized all biological parameters. The patient presented no recurrence of mycobacterial disease or other related infectious diseases. The treatment was well tolerated, without the production of detectable autoantibodies against IFN-γ. CONCLUSION: We describe a patient with a new form of autosomal recessive IFN-γ deficiency, with intracellular, but not extracellular IFN-γ. IFN-γ1b treatment appears to have been beneficial in this patient, with no recurrence of mycobacterial infection over a period of more than 30 months. This targeted treatment provides an alternative to HCST in patients with complete IFN-γ deficiency or at least an option to better control mycobacterial infection prior to HCST.