Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
EMBO J ; 42(8): e110454, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36727601

RESUMO

Cells need to sense stresses to initiate the execution of the dormant cell death program. Since the discovery of the first BH3-only protein Bad, BH3-only proteins have been recognized as indispensable stress sensors that induce apoptosis. BH3-only proteins have so far not been identified in Drosophila despite their importance in other organisms. Here, we identify the first Drosophila BH3-only protein and name it sayonara. Sayonara induces apoptosis in a BH3 motif-dependent manner and interacts genetically and biochemically with the BCL-2 homologous proteins, Buffy and Debcl. There is a positive feedback loop between Sayonara-mediated caspase activation and autophagy. The BH3 motif of sayonara phylogenetically appeared at the time of the ancestral gene duplication that led to the formation of Buffy and Debcl in the dipteran lineage. To our knowledge, this is the first identification of a bona fide BH3-only protein in Drosophila, thus providing a unique example of how cell death mechanisms can evolve both through time and across taxa.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Apoptose/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas de Drosophila/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(29): 7629-7634, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28673969

RESUMO

BAK and BAX are the essential effectors of apoptosis because without them a cell is resistant to most apoptotic stimuli. BAK and BAX undergo conformation changes to homooligomerize then permeabilize the mitochondrial outer membrane during apoptosis. How BCL-2 homology 3 (BH3)-only proteins bind to activate BAK and BAX is unclear. We report that BH3-only proteins bind inactive full-length BAK at mitochondria and then dissociate following exposure of the BAK BH3 and BH4 domains before BAK homodimerization. Using a functional obstructive labeling approach, we show that activation of BAK involves important interactions of BH3-only proteins with both the canonical hydrophobic binding groove (α2-5) and α6 at the rear of BAK, with interaction at α6 promoting an open groove to receive a BH3-only protein. Once activated, how BAK homodimers multimerize to form the putative apoptotic pore is unknown. Obstructive labeling of BAK beyond the BH3 domain and hydrophobic groove did not inhibit multimerization and mitochondrial damage, indicating that critical protein-protein interfaces in BAK self-association are limited to the α2-5 homodimerization domain.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Animais , Apoptose , Sítios de Ligação , Linhagem Celular , Citocromos c/metabolismo , Dissulfetos/química , Epitopos/química , Fibroblastos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Multimerização Proteica , Proteína X Associada a bcl-2/metabolismo
3.
FASEB J ; : fj201800425R, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799788

RESUMO

Rheumatoid arthritis (RA) is characterized by hyperplastic pannus formation mediated by activated synovial fibroblasts (RASFs) that cause joint destruction. We have shown earlier that RASFs exhibit resistance to apoptosis, primarily as a result of enhanced expression of myeloid cell leukemia-1 (Mcl-1). In this study, we discovered that ursolic acid (UA), a plant-derived pentacyclic triterpenoid, selectively induces B-cell lymphoma 2 homology 3-only protein Noxa in human RASFs. We observed that UA-induced Noxa expression was followed by a consequent decrease in Mcl-1 expression in a dose-dependent manner. Subsequent evaluation of the signaling pathways showed that UA-induced Noxa is primarily mediated by the JNK pathway in human RASFs. Chromatin immunoprecipitation (IP) studies into the promoter region of Noxa indicated the role of transcription factor specificity protein 1 in JNK-mediated Noxa expression. Furthermore, the results from IP studies and proximity ligation assays indicated that UA-induced Noxa colocalizes and associates with Mcl-1 to prime it for proteasomal degradation through K48-linked ubiquitination by the selective recruitment of Mcl-1 ubiquitin ligase E3, a homologous to E6-associated protein C terminus domain-containing E3 ubiquitin ligase. These findings unveil a novel mechanism of inducing apoptosis in RASFs and a potential adjunct therapeutic strategy of regulating synovial hyperplasia in RA.-Kim, E. Y., Sudini, K., Singh, A. K., Haque, M., Leaman, D., Khuder, S., Ahmed, S. Ursolic acid facilitates apoptosis in rheumatoid arthritis synovial fibroblasts by inducing SP1-mediated Noxa expression and proteasomal degradation of Mcl-1.

4.
Phytother Res ; 33(3): 610-617, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30537241

RESUMO

Protopanaxadiol (PPD), a ginseng metabolite generated by the gut bacteria, was shown to induce colorectal cancer cell death and enhance the anticancer effect of chemotherapeutic agent 5-FU. However, the mechanism by which PPD promotes cancer cell death is not clear. In this manuscript, we showed that PPD activated p53 and endoplasmic reticulum (ER) stress and induced expression of BH3-only proteins Puma and Noxa to promote cell death. Induction of Puma by PPD was p53-dependent, whereas induction of Noxa was p53-independent. On the other hand, PPD also induced prosurvival mechanisms including autophagy and expression of Bcl2 family apoptosis regulator Mcl-1. Inhibition of autophagy or knockdown of Mcl-1 significantly enhanced PPD-induced cell death. Interestingly, PPD inhibited expression of genes involved in fatty acid and cholesterol biosynthesis and induced synergistic cancer cell death with fatty acid synthase inhibitor cerulenin. As PPD-induced ER stress was not significantly affected by inhibition of new protein synthesis, we suggest PPD may induce ER stress directly through causing lipid disequilibrium.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Panax/metabolismo , Sapogeninas/farmacologia , Autofagia/efeitos dos fármacos , Células HCT116 , Humanos , Proteína Supressora de Tumor p53/fisiologia
5.
Cell Commun Signal ; 16(1): 30, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29898735

RESUMO

In this study, we investigated the role of microRNA-644a (miR-644a) in the growth and survival of hepatocellular carcinoma (HCC) cells. MiR-644a levels were lower in HCC tissues than in adjacent peri-cancerous tissues (n = 135). MiR-644a expression was inversely correlated with heat shock factor 1 (HSF1) expression, tumour diameter and TNM stage. Moreover, HepG2 and SMMC-7721 cell lines showed lower miR-644a expression than normal L-O2 hepatocytes. MiR-644a overexpression in HepG2 and SMMC-7721 cells increased apoptosis by downregulating HSF1. Dual luciferase reporter assays confirmed the presence of a miR-644a binding site in the 3'-untranslated region (3'-UTR) of HSF1. Xenograft tumours derived from SMMC-7721 cells transfected with a miR-664a mimic showed less growth than tumours derived from untransfected controls. Protein chip analysis revealed that miR-644a-overexpressing SMMC-7721 and HepG2 cells strongly expressed pro-apoptotic BH3-only proteins, such as BID, BAD, BIM, SMAC, Apaf-1 and cleaved caspases-3 and -9. These findings suggest miR-644a promotes apoptosis in HCC cells by inhibiting HSF1.


Assuntos
Apoptose/genética , Carcinoma Hepatocelular/patologia , Regulação para Baixo/genética , Fatores de Transcrição de Choque Térmico/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Animais , Carcinoma Hepatocelular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica , Progressão da Doença , Feminino , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Carga Tumoral/genética
6.
Int J Med Microbiol ; 305(6): 553-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26197709

RESUMO

BH3-only protein, Bim, is a pro-apoptotic protein that mediates mitochondria-dependent cell death. However, the role of Bim in Helicobacter pylori-associated gastritis remains unclear. This study aimed to assess the cellular localization of Bim and its possible role in H. pylori-induced gastritis. The study was conducted on biopsy specimens obtained from 80 patients who underwent upper gastrointestinal endoscopy (H. pylori-negative: n=30, positive: n=50). Association between Bim mRNA expression and severity of gastritis was evaluated and the localization of Bim was examined by immunofluorescence. Bim mRNA expression was positively correlated with the degree of gastritis, as defined by the Sydney system. Immunohistochemical analysis confirmed increased Bim expression in H. pylori-infected gastric mucosa compared with uninfected mucosa in both humans and mice. Bim localized in myeloperoxidase- and CD138-positive cells of H. pylori-infected lamina propria and submucosa of the gastric tract, indicating that this protein is predominantly expressed in neutrophils and plasma cells. In contrast, Bim did not localize in CD20-, CD3-, or CD68-positive cells. Bim was expressed in the mitochondria, where it was partially co-localized with activated Bax and cleaved-PARP. In conclusion, Bim is expressed in neutrophils and plasma cells in H. pylori-associated gastritis, where it may participate in the termination of inflammatory response by causing mitochondria-mediated apoptosis in specific leucocytes.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Mucosa Gástrica/microbiologia , Gastrite/microbiologia , Helicobacter pylori/isolamento & purificação , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas/genética , RNA Bacteriano/isolamento & purificação , Adulto , Idoso , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Feminino , Regulação da Expressão Gênica , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/genética , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/microbiologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Plasmócitos/metabolismo , Plasmócitos/microbiologia , Proteínas Proto-Oncogênicas/metabolismo , RNA Bacteriano/genética
7.
bioRxiv ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38712027

RESUMO

While traditionally studied for their pro-apoptotic functions, recent research suggests BH3-only proteins also have non-apoptotic roles. Here, we find that EGL-1, the BH3-only protein in Caenorhabditis elegans, promotes the cell-autonomous production of exophers in adult neurons. Exophers are large, micron-scale vesicles that are ejected from the cell and contain cellular components such as mitochondria. EGL-1 facilitates exopher production potentially through regulation of mitochondrial dynamics. Moreover, an endogenous, low level of EGL-1 expression appears to benefit dendritic health. Our findings provide insights into the mechanistic role of BH3-only protein in mitochondrial dynamics, downstream exopher production, and ultimately neuronal health.

8.
Glia ; 61(10): 1712-23, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23922240

RESUMO

The mechanisms involved in oligodendroglial cell death in human demyelinating diseases are only partly understood. Here, we demonstrate that the BH3 only protein Puma, but not Noxa, is essential for oligodendroglial cell death in toxic demyelination induced by the copper chelator cuprizone. Primary oligodendrocytes derived from Noxa- or Puma-deficient mice showed comparable differentiation to wild-type cells, but Puma-deficient oligodendrocytes were less susceptible to spontaneous, staurosporine, or nitric oxide-induced cell death. Furthermore, Puma was expressed in oligodendrocytes in multiple sclerosis (MS) lesions and Puma mRNA levels were upregulated in primary human oligodendrocytes upon cell death induction by staurosporine. Our data demonstrate that Puma is pivotal for oligodendroglial cell death induced by different cell death stimuli and might play a role in oligodendroglial cell death in MS.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Oligodendroglia/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adulto , Idoso , Análise de Variância , Animais , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/deficiência , Encéfalo/citologia , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Células Cultivadas , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/prevenção & controle , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Marcação In Situ das Extremidades Cortadas , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Oligodendroglia/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/deficiência , Proteínas Supressoras de Tumor/deficiência
9.
Comput Struct Biotechnol J ; 21: 3760-3767, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560128

RESUMO

The apoptotic pathway is regulated by protein-protein interactions between members of the Bcl-2 family. Pro-survival Bcl-2 family proteins act as cell guardians and protect cells against death. Selective binding and neutralization of BH3-only proteins with pro-survival Bcl-2 family proteins is critical for initiating apoptosis. In this study, the binding assay shows that the BH3 peptide derived from the BH3-only protein Bmf has a high affinity for the pro-survival proteins Bcl-2 and Bcl-xL, but a much lower affinity for Mcl-1. The complex structures of Bmf BH3 with Bcl-2, Bcl-xL and Mcl-1 reveal that the α-helical Bmf BH3 accommodates into the canonical groove of these pro-survival proteins, but the conformational changes and some interactions are different among the three complexes. Bmf BH3 forms conserved hydrophobic and salt bridge interactions with Bcl-2 and Bcl-xL, and also establishes several hydrogen bonds to support their binding. However, the highly conserved Asp-Arg salt bridge is not formed in the Mcl-1/Bmf BH3 complex, and few hydrogen bonds are observed. Furthermore, mutational analysis shows that substitutions of less-conserved residues in the α2-α3 region of these pro-survival Bcl-2 family proteins, as well as the highly conserved Arg, lead to significant changes in their binding affinity to Bmf BH3, while substitutions of less-conserved residues in Bmf BH3 have a more dramatic effect on its affinity to Mcl-1. This study provides structural insight into the specificity and interaction mechanism of Bmf BH3 binding to pro-survival Bcl-2 family proteins, and helps guide the design of BH3 mimics targeting pro-survival Bcl-2 family proteins.

10.
Autoimmunity ; 54(8): 539-546, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34477041

RESUMO

BACKGROUND AND OBJECTIVE: Membranous nephropathy (MN) is an autoimmune disease. The up-regulation of the long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (Neat1) has been found in MN but the mechanism is still unclear. Here, we explored the effect and the underlying mechanism of lncRNA Neat1 on the apoptosis of renal tubular epithelial cells in MN. METHODS: Albumin-stimulated E11 podocytes and proximal tubular epithelial cells in vitro and the cationic-bovine serum albumin-induced MN mouse model in vivo were established. The expression of Neat1 in E11 podocytes, renal tubular epithelial cells, and renal tubules and the mRNA expression of BH3-only (the Bcl-2 homology 3-only) proteins were determined by quantitative reverse transcription-polymerase chain reaction. Levels of Cleaved Caspase 3, 6, 7, and Noxa were examined by western blotting. The number of apoptotic cells was detected by flow cytometry. Cellular proliferation was determined by 5-Ethynyl-2'-deoxyuridine and Cell Counting Kit-8 assay. Interactions between BH3-only protein Noxa and Bcl-2 as well as Bcl-xL were evaluated with co-immunoprecipitation. RESULTS: The expression of lncRNA Neat1 was unchanged in albumin-stimulated E11 podocytes, but it was up-regulated in albumin-stimulated renal tubular epithelial cells and MN renal tubule tissues and there was a time-dependent increase in vivo. In the albumin-stimulated proximal tubular epithelial cells, overexpression of Neat1 could increase apoptosis and decrease proliferation. In turn, interference with Neat1 reduced apoptosis and increased proliferation accordingly. The mRNA expression levels of BH3-only proteins (Bad, Bim, Bid, Puma, Noxa) were detected with qRT-PCR, the results indicated that after overexpression of Neat1, mRNA and protein levels of Noxa were significantly increased, and the interference with BH3-only protein Noxa alleviated apoptosis of renal tubular epithelial cells in vitro. CONCLUSION: In our study, we proved that lncRNA Neat1 promoted the development of MN by inducing apoptosis and this effect may be exerted by inhibiting the anti-apoptotic protein activity mediated by Noxa.


Assuntos
Glomerulonefrite Membranosa , RNA Longo não Codificante , Animais , Apoptose/genética , Proliferação de Células , Células Epiteliais/metabolismo , Glomerulonefrite Membranosa/genética , Glomerulonefrite Membranosa/metabolismo , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
11.
BMC Res Notes ; 13(1): 450, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32957987

RESUMO

OBJECTIVES: The purpose of this study was to explore whether plant programmed cell death (PCD) cascade can sense the presence of the animal-only BH3 protein Bid, a BCL-2 family protein known to play a regulatory role in the signaling cascade of animal apoptosis. RESULTS: We have expressed the mouse pro-apoptotic protein Bid in Arabidopsis thaliana and in Nicotiana tabacum. We did not obtain any transformed plant constitutively expressing the truncated protein (tBid-i.e. the caspase-activated form) whereas ectopic expression of the full-length protein (flBid) does not interfere with growth and development of the transformed plants. To verify whether the presence of this animal pro-apoptotic protein modified stress responses and PCD execution, both N. tabacum and A. thaliana plants constitutively expressing flBid have been studied under different stress conditions triggering cell death activation. The results show that the presence of flBid in transgenic plants did not significantly change the responses to abiotic stress (H2O2 or NO) and biotic stress treatments. Moreover, the finding that no Bid active form was present in treated tobacco plants suggests an absence of a proper activation of Bid.


Assuntos
Proteínas Reguladoras de Apoptose , Arabidopsis , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Arabidopsis/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Peróxido de Hidrogênio , Camundongos
12.
Front Immunol ; 9: 592, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29623080

RESUMO

The proapoptotic BH3-only protein BIM (Bcl2l11) plays key roles in the maintenance of multiple hematopoietic cell types. In mice, germline knockout or conditional pan-hematopoietic deletion of Bim results in marked splenomegaly and significantly increased numbers of B cells. However, it has remained unclear whether these abnormalities reflect the loss of cell-intrinsic functions of BIM within the B lymphoid lineage and, if so, which stages in the lifecycle of B cells are most impacted by the loss of BIM. Here, we show that B lymphoid-specific conditional deletion of Bim during early development (i.e., in pro-B cells using Mb1-Cre) or during the final differentiation steps (i.e., in transitional B cells using Cd23-Cre) led to a similar >2-fold expansion of the mature follicular B cell pool. Notably, while the expansion of mature B cells was quantitatively similar in conditional and germline Bim-deficient mice, the splenomegaly was significantly attenuated after B lymphoid-specific compared to global Bim deletion. In vitro, conditional loss of Bim substantially increased the survival of mature B cells that were refractory to activation by lipopolysaccharide. Finally, we also found that conditional deletion of just one Bim allele by Mb1-Cre dramatically accelerated the development of Myc-driven B cell lymphoma, in a manner that was comparable to the effect of germline Bim heterozygosity. These data indicate that, under physiological conditions, BIM regulates B cell homeostasis predominantly by limiting the life span of non-activated mature B cells, and that it can have additional effects on developing B cells under pathological conditions.


Assuntos
Apoptose/genética , Apoptose/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Homeostase , Animais , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Deleção de Genes , Genes myc , Genótipo , Imunofenotipagem , Linfopoese/genética , Linfopoese/imunologia , Camundongos , Fenótipo
13.
Structure ; 26(1): 153-160.e4, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29276033

RESUMO

BCL-2 family proteins are high-priority cancer targets whose structures provide essential blueprints for drug design. Whereas numerous structures of anti-apoptotic BCL-2 protein complexes with α-helical BH3 peptides have been reported, the corresponding panel of apo structures remains incomplete. Here, we report the crystal structure of apo BFL-1 at 1.69-Å resolution, revealing similarities and key differences among unliganded anti-apoptotic proteins. Unlike all other BCL-2 proteins, apo BFL-1 contains a surface-accessible cysteine within its BH3-binding groove, allowing for selective covalent targeting by a NOXA BH3-based stapled peptide inhibitor. The crystal structure of this complex demonstrated the sulfhydryl bond and fortuitous interactions between the acrylamide-bearing moiety and a newly formed hydrophobic cavity. Comparison of the apo and BH3-liganded structures further revealed an induced conformational change. The two BFL-1 structures expand our understanding of the surface landscapes available for therapeutic targeting so that the apoptotic blockades of BFL-1-dependent cancers can be overcome.


Assuntos
Antineoplásicos/química , Apoproteínas/química , Antígenos de Histocompatibilidade Menor/química , Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas/química , Sequência de Aminoácidos , Antineoplásicos/síntese química , Apoproteínas/antagonistas & inibidores , Apoproteínas/genética , Apoproteínas/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Modelos Moleculares , Fragmentos de Peptídeos/síntese química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas/síntese química , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Cell Rep ; 21(7): 1910-1921, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29141222

RESUMO

Developmental morphogenesis, tissue injury, and oncogenic transformation can cause the detachment of epithelial cells. These cells are eliminated by a specialized form of apoptosis (anoikis). While the processes that contribute to this form of cell death have been studied, the underlying mechanisms remain unclear. Here, we tested the role of the cJUN NH2-terminal kinase (JNK) signaling pathway using murine models with compound JNK deficiency in mammary and kidney epithelial cells. These studies demonstrated that JNK is required for efficient anoikis in vitro and in vivo. Moreover, JNK-promoted anoikis required pro-apoptotic members of the BCL2 family of proteins. We show that JNK acts through a BAK/BAX-dependent apoptotic pathway by increasing BIM expression and phosphorylating BMF, leading to death of detached epithelial cells.


Assuntos
Anoikis , Células Epiteliais/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
Cell Signal ; 26(1): 149-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24140475

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is characterized as a high-risk stratified disease associated with frequent relapse, chemotherapy resistance, and a poorer prognostic outlook than B-precursor ALL. Many of the challenges in treating T-ALL reflect the lack of prognostic cytogenetic or molecular abnormalities on which to base therapy, including targeted therapy. Notch1 activating mutations were identified in more than 50% of T-ALL cases and can be therapeutically targeted with γ-secretase inhibitors (GSIs). Mutant Notch1 can activate cMyc and PI3K-AKT-mTOR1 signaling in T-ALL. In T-ALLs with wild-type phosphatase and tensin homolog deleted on chromosome ten (PTEN), Notch1 transcriptionally represses PTEN, an effect reversible by GSIs. Notch1 also promotes growth factor receptor (IGF1R and IL7Rα) signaling to PI3K-AKT. Loss of PTEN is common in primary T-ALLs due to mutation or posttranslational inactivation and results in chronic activation of PI3K-AKT-mTOR1 signaling, GSI-resistance, and repression of p53-mediated apoptosis. Notch1 itself might regulate posttranslational inactivation of PTEN. PP2A is activated by Notch1 in PTEN-null T-ALL cells, and GSIs reduce PP2A activity and increase phosphorylation of AKT, AMPK, and p70S6K. This review focuses on the central role of the PI3K-AKT-mTOR1 signaling in T-ALL, including its regulation by Notch1 and potential therapeutic interventions, with emphasis on GSI-resistant T-ALL.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-24273467

RESUMO

Deregulation of apoptosis is a hallmark of human cancer and contributes to therapeutic resistance. Recent advances in cancer genomics reveal a myriad of alterations in key pathways that directly or indirectly increase tumor cell survival. This review will outline the pathways of apoptosis in mammalian cells, and highlight the common alterations of apoptosis regulators found in colon cancer, the role of apoptosis and underlying mechanisms in colon cancer treatment and prevention, including recent advances on investigational agents, such as kinase inhibitors, proteasome inhibitors, HSP90 inhibitors, BH3 mimetics, TRAIL, and IAP antagonists. Topics will also include novel concepts, as well as opportunities and challenges for drug discovery and combination therapy by exploring cancer-specific genetic defects, and therefore selective induction of apoptosis in cancer cells. Although the emphasis is on colon cancer, the main theme and many of the aspects are applicable to other solid tumors.

17.
Prog Neurobiol ; 106-107: 33-54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23827971

RESUMO

The accumulation of amyloid-ß-containing neuritic plaques and intracellular tau protein tangles are key histopathological hallmarks of Alzheimer's disease (AD). This type of pathology clearly indicates that the mechanisms of neuronal housekeeping and protein quality control are compromised in AD. There is mounting evidence that the autophagosome-lysosomal degradation is impaired, which could disturb the processing of APP and provoke AD pathology. Beclin 1 is a molecular platform assembling an interactome with stimulating and suppressive components which regulate the initiation of the autophagosome formation. Recent studies have indicated that the expression Beclin 1 is reduced in AD brain. Moreover, the deficiency of Beclin 1 in cultured neurons and transgenic mice provokes the deposition of amyloid-ß peptides whereas its overexpression reduces the accumulation of amyloid-ß. There are several potential mechanisms, which could inhibit the function of Beclin 1 interactome and thus impair autophagy and promote AD pathology. The mechanisms include (i) reduction of Beclin 1 expression or its increased proteolytic cleavage by caspases, (ii) sequestration of Beclin 1 to non-functional locations, such as tau tangles, (iii) formation of inhibitory complexes between Beclin 1 and antiapoptotic Bcl-2 proteins or inflammasomes, (iv) interaction of Beclin 1 with inhibitory neurovirulent proteins, e.g. herpex simplex ICP34.5, or (v) inhibition of the Beclin 1/Vps34 complex through the activation of CDK1 and CDK5. We will shortly introduce the function of Beclin 1 interactome in autophagy and phagocytosis, review the recent evidence indicating that Beclin 1 regulates autophagy and APP processing in AD, and finally examine the potential mechanisms through which Beclin 1 dysfunction could be involved in the pathogenesis of AD.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Proteoma/metabolismo , Doença de Alzheimer/genética , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/genética , Autofagia/genética , Proteína Beclina-1 , Humanos , Proteínas de Membrana/genética
18.
Genes Cancer ; 1(9): 964-71, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21779475

RESUMO

BCL-2/E1B-19 kDa-interacting protein 3 (BNIP3) is a BH3-only mitochondrial protein. Expression of BNIP3 is strongly stimulated by hypoxia. Up-regulation of BNIP3 has been detected in several human carcinomas including carcinomas of the lung and breast. The significance of BNIP3 overexpression in these cancers is not known. To determine whether BNIP3 plays a role in tumor growth, we generated A549 lung carcinoma cells that overexpressed BNIP3 and examined their ability to form tumors in the mouse xenograft model. All cell lines that overexpressed BNIP3 formed larger tumors compared to the parental or vector-transformed A549 cells. Breast carcinoma cell lines that overexpressed BNIP3 also induced tumors in athymic mice in the absence of hormone administration, while the parental cell line did not. Stable shRNA-mediated knockdown of endogenous BNIP3 severely impaired the tumorigenic activity of A549 cells. The tumor growth-enhancing activity was reduced by deletion of the BH3 domain of BNIP3. Expression of a dominant-negative mutant of BNIP3 lacking the C-terminal transmembrane domain also inhibited the tumorigenic potential of A549 cells. These results suggest that BNIP3 plays a fundamental role in the development of certain solid tumors such as the lung and breast carcinomas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA