Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 39(24): e105561, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33236795

RESUMO

Studies of gene-targeted mice identified the roles of the different pro-survival BCL-2 proteins during embryogenesis. However, little is known about the role(s) of these proteins in adults in response to cytotoxic stresses, such as treatment with anti-cancer agents. We investigated the role of BCL-XL in adult mice using a strategy where prior bone marrow transplantation allowed for loss of BCL-XL exclusively in non-hematopoietic tissues to prevent anemia caused by BCL-XL deficiency in erythroid cells. Unexpectedly, the combination of total body γ-irradiation (TBI) and genetic loss of Bcl-x caused secondary anemia resulting from chronic renal failure due to apoptosis of renal tubular epithelium with secondary obstructive nephropathy. These findings identify a critical protective role of BCL-XL in the adult kidney and inform on the use of BCL-XL inhibitors in combination with DNA damage-inducing drugs for cancer therapy. Encouragingly, the combination of DNA damage-inducing anti-cancer therapy plus a BCL-XL inhibitor could be tolerated in mice, at least when applied sequentially.


Assuntos
Anemia/prevenção & controle , Rim/efeitos da radiação , Proteína bcl-X/metabolismo , Proteína bcl-X/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2/genética , Dano ao DNA , Feminino , Raios gama , Neoplasias Hematológicas/patologia , Inflamação , Rim/metabolismo , Rim/patologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transcriptoma , Proteínas Supressoras de Tumor/genética , Proteína bcl-X/deficiência , Proteína bcl-X/genética
2.
Apoptosis ; 28(1-2): 20-38, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36342579

RESUMO

Acquired resistance to cell death is a hallmark of cancer. The BCL-2 protein family members play important roles in controlling apoptotic cell death. Abnormal over-expression of pro-survival BCL-2 family members or abnormal reduction of pro-apoptotic BCL-2 family proteins, both resulting in the inhibition of apoptosis, are frequently detected in diverse malignancies. The critical role of the pro-survival and pro-apoptotic BCL-2 family proteins in the regulation of apoptosis makes them attractive targets for the development of agents for the treatment of cancer. This review describes the roles of the various pro-survival and pro-apoptotic members of the BCL-2 protein family in normal development and organismal function and how defects in the control of apoptosis promote the development and therapy resistance of cancer. Finally, we discuss the development of inhibitors of pro-survival BCL-2 proteins, termed BH3-mimetic drugs, as novel agents for cancer therapy.


Assuntos
Apoptose , Neoplasias , Humanos , Apoptose/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
3.
Exp Cell Res ; 322(1): 217-25, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24355809

RESUMO

Drug resistance and metastasis remain major challenges in the treatment of high-risk hepatoblastoma (HB) and require the development of alternative therapeutic strategies. Modulation of apoptosis in HB cells enhances the sensitivity of these cells towards various drugs and has been discussed to enforce treatment. We investigated the impact of apoptosis sensitisers, BH3-mimetics, on the interaction between the host and HB to reduce tumour growth and dissemination while enhancing immunity. BH3-mimetics, such as obatoclax and ABT-737, enhanced the apoptosis-inducing effect of TRAIL and TNF-α resistant HB cells (HepT1 and HUH6). Tumour cell migration was inhibited by ABT-737 and more markedly by obatoclax. In an orthotopic model of HB, tumour uptake was reduced when the cells were pretreated with low concentrations of obatoclax. Only 1 of 7 mice developed HB in the liver, compared with an incidence of 0.8 in the control group. In summary, our study showed that apoptosis sensitisers had broader effects on HB cells than expected including migration and susceptibility to cytokines in addition to the known effects on drug sensitization. Sensitising HB to apoptosis may also allow resistant HB to be targeted by immune cells and prevent tumour cell dissemination.


Assuntos
Materiais Biomiméticos/farmacologia , Compostos de Bifenilo/farmacologia , Transformação Celular Neoplásica/efeitos dos fármacos , Hepatoblastoma/prevenção & controle , Neoplasias Hepáticas/prevenção & controle , Nitrofenóis/farmacologia , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/farmacologia , Pirróis/farmacologia , Sulfonamidas/farmacologia , Animais , Materiais Biomiméticos/química , Compostos de Bifenilo/química , Transformação Celular Neoplásica/patologia , Células Cultivadas , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Hepatoblastoma/patologia , Humanos , Indóis , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos Transgênicos , Nitrofenóis/química , Fragmentos de Peptídeos/química , Piperazinas/química , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas/química , Pirróis/química , Sulfonamidas/química
4.
Biomol Ther (Seoul) ; 32(3): 267-280, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38589288

RESUMO

Apoptosis, programmed cell death pathway, is a vital physiological mechanism that ensures cellular homeostasis and overall cellular well-being. In the context of cancer, where evasion of apoptosis is a hallmark, the overexpression of anti-apoptotic proteins like Bcl2, Bcl-xL and Mcl-1 has been documented. Consequently, these proteins have emerged as promising targets for therapeutic interventions. The BCL-2 protein family is central to apoptosis and plays a significant importance in determining cellular fate serving as a critical determinant in this biological process. This review offers a comprehensive exploration of the BCL-2 protein family, emphasizing its dual nature. Specifically, certain members of this family promote cell survival (known as anti-apoptotic proteins), while others are involved in facilitating cell death (referred to as pro-apoptotic and BH3-only proteins). The potential of directly targeting these proteins is examined, particularly due to their involvement in conferring resistance to traditional cancer therapies. The effectiveness of such targeting strategies is also discussed, considering the tumor's propensity for anti-apoptotic pathways. Furthermore, the review highlights emerging research on combination therapies, where BCL-2 inhibitors are used synergistically with other treatments to enhance therapeutic outcomes. By understanding and manipulating the BCL-2 family and its associated pathways, we open doors to innovative and more effective cancer treatments, offering hope for resistant and aggressive cases.

5.
Cancer Cell ; 42(5): 850-868.e9, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38670091

RESUMO

TP53-mutant blood cancers remain a clinical challenge. BH3-mimetic drugs inhibit BCL-2 pro-survival proteins, inducing cancer cell apoptosis. Despite acting downstream of p53, functional p53 is required for maximal cancer cell killing by BH3-mimetics through an unknown mechanism. Here, we report p53 is activated following BH3-mimetic induced mitochondrial outer membrane permeabilization, leading to BH3-only protein induction and thereby potentiating the pro-apoptotic signal. TP53-deficient lymphomas lack this feedforward loop, providing opportunities for survival and disease relapse after BH3-mimetic treatment. The therapeutic barrier imposed by defects in TP53 can be overcome by direct activation of the cGAS/STING pathway, which promotes apoptosis of blood cancer cells through p53-independent BH3-only protein upregulation. Combining clinically relevant STING agonists with BH3-mimetic drugs efficiently kills TRP53/TP53-mutant mouse B lymphoma, human NK/T lymphoma, and acute myeloid leukemia cells. This represents a promising therapy regime that can be fast-tracked to tackle TP53-mutant blood cancers in the clinic.


Assuntos
Apoptose , Proteínas de Membrana , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Humanos , Animais , Camundongos , Proteínas de Membrana/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Mutação , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fragmentos de Peptídeos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética
6.
Methods Mol Biol ; 2299: 123-137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34028739

RESUMO

Evasion of apoptosis by myofibroblasts is a hallmark of fibrotic diseases, ultimately leading to persistent myofibroblast activation, extracellular matrix (ECM) deposition, and remodeling. Targeting myofibroblast apoptosis is emerging as a novel therapeutic strategy to reverse established fibrosis. We have recently discovered that in the process of fibroblast-to-myofibroblast transdifferentiation driven by matrix stiffness, the "mitochondrial priming" (readiness to undergo apoptosis) is dramatically increased in stiffness-activated myofibroblasts. Thus, myofibroblasts, traditionally viewed as apoptosis-resistant cells, appear poised to die when survival pathways are blocked, a cellular state we call "primed for death." This apoptosis-prone phenotype is driven by high levels of pro-apoptotic proteins loaded in myofibroblast's mitochondria, which require concomitant upregulation of pro-survival BCL-2 proteins to suppress mitochondrial apoptosis and ensure survival. Here, we describe a method called BH3 profiling which measures myo/fibroblast apoptotic priming as well as their antiapoptotic dependencies for survival. In addition, we describe how BH3 profiling can be used to predict myofibroblast responses to therapeutic agents targeting pro-survival BCL-2 proteins, also known as BH3 mimetic drugs. Finally, we describe methods to assess myofibroblast sensitivity to extrinsic apoptosis via Annexin V staining.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Fibroblastos/citologia , Miofibroblastos/citologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/química , Transdiferenciação Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Mitocôndrias Musculares/metabolismo , Miofibroblastos/metabolismo , Domínios Proteicos , Transdução de Sinais , Pele/citologia , Pele/metabolismo
7.
Pharmacol Ther ; 198: 59-67, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30790641

RESUMO

Dysregulation of the mitochondrial apoptotic pathway controlled by members of the Bcl-2 protein family plays a central role in cancer development and resistance to conventional cytotoxic as well as targeted therapies. Hence, selective inhibition of pro-survival Bcl-2 family of proteins to activate apoptosis in malignant cells represents an exciting anti-cancer strategy. The remarkable clinical performance of the selective Bcl-2 antagonist venetoclax has highlighted the potential for selective inhibitors of the other pro-survival members of the Bcl-2 family, particularly Mcl-1. Here we review the latest progress on the discovery and development of selective inhibitors of Mcl-1 that are undergoing clinical evaluation for cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Desenvolvimento de Medicamentos , Humanos
8.
Elife ; 82019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30860026

RESUMO

Tumor initiation, progression and resistance to chemotherapy rely on cancer cells bypassing programmed cell death by apoptosis. We report that unlike other pro-apoptotic proteins, Bim contains two distinct binding sites for the anti-apoptotic proteins Bcl-XL and Bcl-2. These include the BH3 sequence shared with other pro-apoptotic proteins and an unexpected sequence located near the Bim carboxyl-terminus (residues 181-192). Using automated Fluorescence Lifetime Imaging Microscopy - Fluorescence Resonance Energy Transfer (FLIM-FRET) we show that the two binding interfaces enable Bim to double-bolt lock Bcl-XL and Bcl-2 in complexes resistant to displacement by BH3-mimetic drugs currently in use or being evaluated for cancer therapy. Quantifying in live cells the contributions of individual amino acids revealed that residue L185 previously thought involved in binding Bim to membranes, instead contributes to binding to anti-apoptotic proteins. This double-bolt lock mechanism has profound implications for the utility of BH3-mimetics as drugs. ​.


Assuntos
Antineoplásicos/farmacologia , Proteína 11 Semelhante a Bcl-2/química , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteína bcl-X/química , Apoptose , Proteínas Reguladoras de Apoptose/química , Linhagem Celular Tumoral , Progressão da Doença , Transferência Ressonante de Energia de Fluorescência , Humanos , Processamento de Imagem Assistida por Computador , Células MCF-7 , Domínios Proteicos
9.
Cancer Cell ; 34(6): 879-891, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30537511

RESUMO

Defects in apoptotic cell death can promote cancer and impair responses of malignant cells to anti-cancer therapy. Pro-survival BCL-2 proteins prevent apoptosis by keeping the cell death effectors, BAX and BAK, in check. The BH3-only proteins initiate apoptosis by neutralizing the pro-survival BCL-2 proteins. Structural analysis and medicinal chemistry led to the development of small-molecule drugs that mimic the function of the BH3-only proteins to kill cancer cells. The BCL-2 inhibitor venetoclax has been approved for treatment of refractory chronic lymphocytic leukemia and this drug and inhibitors of pro-survival MCL-1 and BCL-XL are being tested in diverse malignancies.


Assuntos
Apoptose/efeitos dos fármacos , Materiais Biomiméticos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/farmacologia , Antineoplásicos/farmacologia , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo
10.
Oncotarget ; 7(1): 845-59, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26625317

RESUMO

In spite of intensive research to improve treatment of acute myeloid leukemia (AML) more than half of all patients continue to develop a refractory disease. Therefore there is need to improve AML treatment. The overexpression of the BCL-2 family anti-apoptotic members, like BCL-2 or BCL-xL has been largely reported in lymphoid tumors but also in AML and other tumors. To counteract the anti-apoptotic effect of BCL-2, BH3 mimetics have been developed to target cancer cells. An increase in activity of ERK1/2 mitogen activated protein (MAP) kinase has also been reported in AML and might be targeted by MEK1/2 inhibitors. Hence, in the current work, we investigated whether the association of a BH3 mimetic such ABT-263 and the MEK1/2 inhibitor pimasertib (MEKI), was efficient to target AML cells. A synergistic increasing of apoptosis was observed in AML cell lines and in primary cells without affecting normal bone marrow cells. Such cooperation was confirmed on tumor growth in a mouse xenograft model of AML. In addition we demonstrated that MEKI sensitized the cells to apoptosis through its ability to promote a G1 cell cycle arrest. So, this combination of a MAP Kinase pathway inhibitor and a BH3 mimetic could be a promising strategy to improve the treatment of AML.


Assuntos
Compostos de Anilina/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Niacinamida/análogos & derivados , Sulfonamidas/farmacologia , Doença Aguda , Compostos de Anilina/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células HL-60 , Humanos , Imuno-Histoquímica , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Niacinamida/administração & dosagem , Niacinamida/farmacologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Sulfonamidas/administração & dosagem , Carga Tumoral/efeitos dos fármacos , Células U937 , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Trends Cancer ; 2(8): 443-460, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-28741496

RESUMO

Mutations that impair apoptosis contribute to cancer development and reduce the effectiveness of conventional anti-cancer therapies. These insights and understanding of how the B cell lymphoma (BCL)-2 protein family governs apoptosis have galvanized the search for a new class of cancer drugs that target its pro-survival members by mimicking their natural antagonists, the BCL-2 homology (BH)3-only proteins. Successful initial clinical trials of the BH3 mimetic venetoclax/ABT-199, specific for BCL-2, have led to its recent licensing for refractory chronic lymphocytic leukemia and to multiple ongoing trials for other malignancies. Moreover, preclinical studies herald the potential of emerging BH3 mimetics targeting other BCL-2 pro-survival members, particularly myeloid cell leukemia (MCL)-1, for multiple cancer types. Thus, BH3 mimetics seem destined to become powerful new weapons in the arsenal against cancer. This review sketches the discovery of the BCL-2 family and its impact on cancer development and therapy; describes how interactions of family members trigger apoptosis; outlines the development of BH3 mimetic drugs; and discusses their potential to advance cancer therapy.


Assuntos
Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Compostos de Anilina/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Humanos , Neoplasias/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA