Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Cell Physiol ; 234(5): 5904-5914, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30488440

RESUMO

OBJECTIVE: This study aims to investigate the effect of polo-like kinase 1 (PLK1) inhibition on cisplatin (DDP)-resistant gastric cancer (GC) cells. METHODS: The transcriptional level of PLK1 was measured by quantitative reverse-transcription polymerase chain reaction. Expressions of PLK1 and its downstream mediators as well as autophagy-related protein LC3 I/LC3 II were detected by western blot. An 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 5-ethynyl-2'-deoxyuridine immunofluorescent staining were conducted to evaluate the cell viability and replication activity separately. Flow cytometry was carried out to determine the cell cycle status. The GFP-LC3 vector contributed toward tracking the formation and aggregation of autophagosomes. RESULTS: Drug-resistant SGC-7901/DDP cells showed insignificant changes in all phases after DDP treatment, including DNA replication, cell proliferation, cell cycle, and apoptosis, whereas DDP could significantly improve the autophagy level of SGC-7901/DDP as well as PLK1expression. By downregulating the expression of PLK1, both BI2536 andsi-PLK1 enhanced SGC-7901/DDP sensitivity to DDP, suppressing the proliferation and autophagy as well as improving the apoptosis rate. PLK1 inhibition also resulted in the repression of cell division regulators CDC25C and cyclin B1. CONCLUSION: Together, our experimental results illustrated that the DDP resistance of GC cells might be associated with the aberrant overexpression of PLK1. PLK1 inhibition, including si-PLK1 and BI2536 treatment, could restore the chemosensitivity of drug-resistant SGC-7901/DDP cells and enhance the efficacy of DDP, revealing the potential value of PLK1 inhibition in GC chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Cisplatino/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Quinase 1 Polo-Like
2.
Bioorg Med Chem ; 27(13): 2813-2821, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31079968

RESUMO

Recently, diverse kinase inhibitors were reported having interaction with BRD4. It provided a strategy for developing a new structural framework for the next-generation BRD4-selective inhibitors. Starting from PLK1 kinase inhibitor BI-2536, we designed 18 compounds by modifying dihydropteridine core. Compound 23 showed potent BRD4 inhibitory activities with IC50 of 79 nM and no inhibitory activities for PLK1. Cell antiproliferation assay was performed and potent inhibitory activity against MV4;11 with IC50 of 1.53 µM. Cell apoptosis and western blotting indicated compound 23 induced apoptosis by down-regulating c-Myc. These novel selective BRD4 inhibitors provided new lead compounds for further drug development.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Pteridinas/química , Pteridinas/síntese química , Fatores de Transcrição/antagonistas & inibidores , Humanos , Estrutura Molecular
3.
J Cell Mol Med ; 22(11): 5300-5310, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30133120

RESUMO

Glioblastoma is the most frequent and most aggressive brain tumour in adults. Temozolomide is an oral chemotherapy drug and one of the major components of chemotherapy regimens used as a treatment of some brain cancers. We examined the tolerance of stem cells isolated from glioma cell line U87 and U251 to temozolomide (TMZ) and explored the effect of PLK1 (Polo like kinase 1) protein expression on TMZ sensibility. In our results, the inhibitory effects of TMZ on glioma cells U87, U251 and its stem cells were confirmed to be dose dependent and time dependent. Compared with glioma cells, the glioma stem cells showed a greater degree of tolerance. As the concentration of TMZ increased, the expression of PLK1 protein increased in U87 cells, CD133+ U87 stem cells and CD133- U87 cells. The increase range of PLK1 protein was large in CD133+ U87 stem cells and small in CD133- U87 cells. TMZ treatment in cells with low PLK1 protein expression efficiently suppressed the cell proliferation and sphere formation, while G2/M arrest was strongly induced. What's more, TMZ and PLK1 inhibitor synergize to inhibit glioma growth in vivo. In conclusion, our results suggest that down-regulation of PLK1 protein enhanced the inhibition of TMZ on glioma stem cells, suggesting its clinical value to adverse TMZ resistance in glioma treatment.


Assuntos
Proteínas de Ciclo Celular/genética , Inibidores Enzimáticos/farmacologia , Glioma/tratamento farmacológico , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Temozolomida/farmacologia , Antígeno AC133/genética , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/genética , Glioma/patologia , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Quinase 1 Polo-Like
4.
Cell Physiol Biochem ; 43(2): 431-444, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28922657

RESUMO

Suicidal erythrocyte death or eryptosis contributes to or even accounts for anemia in a wide variety of clinical conditions, such as iron deficiency, dehydration, hyperphosphatemia, vitamin D excess, chronic kidney disease (CKD), hemolytic-uremic syndrome, diabetes, hepatic failure, malignancy, arteriitis, sepsis, fever, malaria, sickle-cell disease, beta-thalassemia, Hb-C and G6PD-deficiency, Wilsons disease, as well as advanced age. Moreover, eryptosis is triggered by a myriad of xenobiotics and endogenous substances including cytotoxic drugs and uremic toxins. Eryptosis is characterized by cell membrane scrambling with phosphatidylserine exposure to the erythrocyte surface. Triggers of eryptosis include oxidative stress, hyperosmotic shock, and energy depletion. Signalling involved in the regulation of eryptosis includes Ca2+ entry, ceramide, caspases, calpain, p38 kinase, protein kinase C, Janus-activated kinase 3, casein kinase 1α, cyclin-dependent kinase 4, AMP-activated kinase, p21-activated kinase 2, cGMP-dependent protein kinase, mitogen- and stress-activated kinase MSK1/2, and ill-defined tyrosine kinases. Inhibitors of eryptosis may prevent anaemia in clinical conditions associated with enhanced eryptosis and stimulators of eryptosis may favourably influence the clinical course of malaria. Additional experimentation is required to uncover further clinical conditions with enhanced eryptosis, as well as further signalling pathways, further stimulators, and further inhibitors of eryptosis. Thus, a detailed description of the methods employed in the analysis of eryptosis may help those, who enter this exciting research area. The present synopsis describes the experimental procedures required for the analysis of phosphatidylserine exposure at the cell surface with annexin-V, cell volume with forward scatter, cytosolic Ca2+ activity ([Ca2+]i) with Fluo3, oxidative stress with 2',7'-dichlorodihydrofuorescein diacetate (DCFDA), glutathione (GSH) with mercury orange 1(4-chloromercuryphenyl-azo-2-naphthol), lipid peroxidation with BODIPY 581/591 C11 fluorescence, and ceramide abundance with specific antibodies. The contribution of kinases and caspases is defined with the use of the respective inhibitors. It is hoped that the present detailed description of materials and methods required for the analysis of eryptosis encourages further scientists to enter this highly relevant research area.


Assuntos
Eriptose , Eritrócitos/citologia , Citometria de Fluxo/métodos , Cálcio/análise , Cálcio/metabolismo , Tamanho Celular , Citosol/metabolismo , Eritrócitos/metabolismo , Glutationa/análise , Glutationa/metabolismo , Humanos , Peroxidação de Lipídeos , Estresse Oxidativo , Fosfatidilserinas/metabolismo , Proteínas Quinases/análise , Proteínas Quinases/metabolismo
5.
Biochem J ; 468(3): 363-72, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25891802

RESUMO

PLK (Polo-like kinase) inhibitors, such as BI-2536, have been reported to suppress IFNB (encoding IFNß, interferon ß) gene transcription induced by ligands that activate TLR3 (Toll-like receptor 3) and TLR4. In the present study, we found that BI-2536 is likely to exert this effect by preventing the interaction of the transcription factors IRF3 (interferon-regulatory factor 3) and c-Jun with the IFNB promoter, but without affecting the TBK1 {TANK [TRAF (tumour-necrosis-factor-receptor-associated factor)-associated nuclear factor κB activator]-binding kinase 1}-catalysed phosphorylation of IRF3 at Ser³96, the dimerization and nuclear translocation of IRF3 or the phosphorylation of c-Jun and ATF2 (activating transcription factor 2). Although BI-2536 inhibits few other kinases tested, it interacts with BET (bromodomain and extra-terminal) family members and displaces them from acetylated lysine residues on histones. We found that BET inhibitors that do not inhibit PLKs phenocopied the effect of BI-2536 on IFNB gene transcription. Similarly, BET inhibitors blocked the interaction of IRF5 with the IFNB promoter and the secretion of IFNß induced by TLR7 or TLR9 ligands in the human plasmacytoid dendritic cell line GEN2.2, but without affecting the nuclear translocation of IRF5. We found that the BET family member BRD4 (bromodomain-containing protein 4) was associated with the IFNB promoter and that this interaction was enhanced by TLR3- or TLR4-ligation and prevented by BI-2536 and other BET inhibitors. Our results establish that BET family members are essential for TLR-stimulated IFNB gene transcription by permitting transcription factors to interact with the IFNB promoter. They also show that the interaction of the IFNB promoter with BRD4 is regulated by TLR ligation and that BI-2536 is likely to suppress IFNB gene transcription by targeting BET family members.


Assuntos
Células Dendríticas/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Antimitóticos/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Transformada , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Humanos , Fator Regulador 3 de Interferon/antagonistas & inibidores , Interferon beta/antagonistas & inibidores , Interferon beta/genética , Ligantes , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Proteínas Nucleares/antagonistas & inibidores , Regiões Promotoras Genéticas/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-jun/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-jun/metabolismo , Pteridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos
6.
Zygote ; 24(3): 338-45, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26174739

RESUMO

Polo-like kinase 1 (PLK1) is involved in essential events of cell cycle including mitosis in which it participates in centrosomal microtubule nucleation, spindle bipolarity establishment and cytokinesis. Although PLK1 function has been studied in cycling cancer cells, only limited data are known about its role in the first mitosis of mammalian zygotes. During the 1-cell stage of mouse embryo development, the acentriolar spindle is formed and the shift from acentriolar to centrosomal spindle formation progresses gradually throughout the preimplantation stage, thus providing a unique possibility to study acentriolar spindle formation. We have shown previously that PLK1 activity is not essential for entry into first mitosis, but is required for correct spindle formation and anaphase onset in 1-cell mouse embryos. In the present study, we extend this knowledge by employing quantitative confocal live cell imaging to determine spindle formation kinetics in the absence of PLK1 activity and answer the question whether metaphase arrest at PLK1-inhibited embryos is associated with low anaphase-promoting complex/cyclosome (APC/C) activity and consequently high securin level. We have shown that inhibition of PLK1 activity induces a delay in onset of acentriolar spindle formation during first mitosis. Although these PLK1-inhibited 1-cell embryos were finally able to form a bipolar spindle, not all chromosomes were aligned at the metaphase equator. PLK1-inhibited embryos were arrested in metaphase without any sign of APC/C activation with high securin levels. Our results document that PLK1 controls the onset of spindle assembly and spindle formation, and is essential for APC/C activation before anaphase onset in mouse zygotes.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/metabolismo , Zigoto/metabolismo , Anáfase , Animais , Blastocisto , Proteínas de Ciclo Celular/antagonistas & inibidores , Centrossomo/metabolismo , Feminino , Cinética , Cinetocoros/metabolismo , Masculino , Camundongos , Microscopia Confocal , Mitose , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pteridinas/farmacologia , Imagem com Lapso de Tempo , Zigoto/efeitos dos fármacos , Quinase 1 Polo-Like
7.
Pediatr Blood Cancer ; 61(7): 1227-31, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24519995

RESUMO

BACKGROUND: Polo-like kinase 1 (PLK1) is a conserved kinase that mediates various mitotic events. Compelling data have repeatedly demonstrated its upregulation in different neoplasia, being frequently associated with poor prognosis. However, in childhood acute lymphoblastic leukemia (ALL), no studies have yet been conducted. PROCEDURE: PLK1 expression and association with biological features were evaluated in 65 consecutively diagnosed childhood ALL samples by quantitative real-time PCR. Moreover, the effects of a specific PLK1 inhibitor, BI 2536, was tested against a panel of nine ALL cell lines at nanomolar concentrations (10, 50, 100 nM). RESULTS: The mRNA expression of PLK1 showed great variability in pediatric ALL, but no difference was evidenced compared to normal bone marrow. Additionally, no association was found between PLK1 mRNA expression with any clinical or biological features. Alternatively, high mRNA expression of PLK1 was present in ALL cell lines. In vitro treatment with BI 2536 strongly diminished growth, while presenting significant reduction in colony formation capacity and increased apoptosis rates. Moreover, strong G2/M arrest was detected suggesting important impaired proliferation after treatment. CONCLUSIONS: PLK1 mRNA expression level is not associated with prognosis in childhood ALL; however, considering the great variability observed in the sample and the in vitro experiments presented herein, BI 2536 treatment might serve as a promising therapeutic to enhance the efficacy of conventional treatment modalities in some childhood ALL cases.


Assuntos
Proteínas de Ciclo Celular , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Pteridinas/farmacologia , Adolescente , Medula Óssea/metabolismo , Medula Óssea/patologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/biossíntese , Criança , Pré-Escolar , Intervalo Livre de Doença , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Lactente , Células Jurkat , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/biossíntese , RNA Mensageiro/biossíntese , RNA Neoplásico/biossíntese , Estudos Retrospectivos , Taxa de Sobrevida , Quinase 1 Polo-Like
8.
Front Immunol ; 15: 1369289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756785

RESUMO

Background: This study aims to identify precise biomarkers for breast cancer to improve patient outcomes, addressing the limitations of traditional staging in predicting treatment responses. Methods: Our analysis encompassed data from over 7,000 breast cancer patients across 14 datasets, which included in-house clinical data and single-cell data from 8 patients (totaling 43,766 cells). We utilized an integrative approach, applying 10 machine learning algorithms in 54 unique combinations to analyze 100 existing breast cancer signatures. Immunohistochemistry assays were performed for empirical validation. The study also investigated potential immunotherapies and chemotherapies. Results: Our research identified five consistent glutamine metabolic reprogramming (GMR)-related genes from multi-center cohorts, forming the foundation of a novel GMR-model. This model demonstrated superior accuracy in predicting recurrence and mortality risks compared to existing clinical and molecular features. Patients classified as high-risk by the model exhibited poorer outcomes. IHC validation in 30 patients reinforced these findings, suggesting the model's broad applicability. Intriguingly, the model indicates a differential therapeutic response: low-risk patients may benefit more from immunotherapy, whereas high-risk patients showed sensitivity to specific chemotherapies like BI-2536 and ispinesib. Conclusions: The GMR-model marks a significant leap forward in breast cancer prognosis and the personalization of treatment strategies, offering vital insights for the effective management of diverse breast cancer patient populations.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Glutamina , Aprendizado de Máquina , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Feminino , Glutamina/metabolismo , Biomarcadores Tumorais/metabolismo , Prognóstico , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Transcriptoma , Reprogramação Metabólica
9.
Front Immunol ; 15: 1359204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504988

RESUMO

Background: Despite advancements, breast cancer outcomes remain stagnant, highlighting the need for precise biomarkers in precision medicine. Traditional TNM staging is insufficient for identifying patients who will respond well to treatment. Methods: Our study involved over 6,900 breast cancer patients from 14 datasets, including in-house clinical data and single-cell data from 8 patients (37,451 cells). We integrated 10 machine learning algorithms in 55 combinations and analyzed 100 existing breast cancer signatures. IHC assays were conducted for validation, and potential immunotherapies and chemotherapies were explored. Results: We pinpointed six stable Panoptosis-related genes from multi-center cohorts, leading to a robust Panoptosis-model. This model outperformed existing clinical and molecular features in predicting recurrence and mortality risks, with high-risk patients showing worse outcomes. IHC validation from 30 patients confirmed our findings, indicating the model's broader applicability. Additionally, the model suggested that low-risk patients benefit more from immunotherapy, while high-risk patients are sensitive to specific chemotherapies like BI-2536 and ispinesib. Conclusion: The Panoptosis-model represents a major advancement in breast cancer prognosis and treatment personalization, offering significant insights for effectively managing a wide range of breast cancer patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Prognóstico , Mama , Imunoterapia , Medicina de Precisão
10.
Cancer Chemother Pharmacol ; 94(2): 183-195, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38536443

RESUMO

BACKGROUND: Polo-like kinase 1 (PLK1) is a critical therapeutic target in the treatment of head and neck squamous cell carcinoma (HNSCC). The objective of this study was to investigate the therapeutic effect of the combination of BI 2536, a PLK1 inhibitor, and erastin, a ferroptosis inducer, in HNSCC. METHODS: The proliferation, invasion, and migration abilities of Tu177 and FaDu cells upon exposure to BI 2536 and erastin, used in combination or alone, were tested. Fe2+, glutathione (GSH), and malondialdehyde (MDA) detection kits were used to determine whether the addition of BI 2536 enhanced the accumulation of Fe2+ and MDA, along with the depletion of GSH. Quantitative real-time PCR, western blot analyses were performed to investigate whether BI 2536 further altered the mRNA and expression level of ferroptosis genes. Furthermore, si PLK1 was used to investigate whether targeting PLK1 gene promoted erastin-induced ferroptosis. RESULTS: The combination of BI 2536 and erastin exerted a stronger cytotoxicity than treatment with a single agent. Compared with erastin treatment alone, the combination of BI 2536 and erastin lowered the ability of tumor cells to self-clone, invade, and migrate. BI 2536 enhanced the accumulation of Fe2+ and MDA, and the depletion of GSH. BI 2536 increased erastin-induced changes in ferroptosis-related gene mRNA and expression. Importantly, targeting PKL1 enhanced the anti-cancer effect of erastin. CONCLUSION: BI 2536 enhanced the sensitivity of HNSCC cells to erastin, which provides a new perspective for cancer treatment.


Assuntos
Proteínas de Ciclo Celular , Movimento Celular , Proliferação de Células , Ferroptose , Neoplasias de Cabeça e Pescoço , Piperazinas , Quinase 1 Polo-Like , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Pteridinas , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/genética , Ferroptose/efeitos dos fármacos , Piperazinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Pteridinas/farmacologia , Movimento Celular/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores de Proteínas Quinases/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia
11.
Animals (Basel) ; 14(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791684

RESUMO

B-cell lymphomas (BCL) is the most frequent hematological cancer in dogs. Treatment typically consists of chemotherapy, with CHOP-based protocols. However, outcome remains generally poor, urging the exploration of new therapeutic strategies with a targeted approach. Myc transcription factor plays a crucial role in regulating cellular processes, and its dysregulation is implicated in numerous human and canine malignancies, including canine BCL (cBCL). This study aims to evaluate the efficacy of indirectly inhibiting Myc in cBCL using BI2536 and MZ1 compounds in two in vitro models (CLBL-1 and KLR-1201). Both BI2536 and MZ1, alone and combined, affected cell viability in a significant concentration- and time-dependent manner. Western Blot revealed an upregulation of PLK1 expression in both cell lines upon treatment with BI2536, in association with a reduction in c-Myc protein levels. Conversely, MZ1 led to a decrease in its primary target, BRD4, along with a reduction in c-Myc. Furthermore, BI2536, both alone and in combination with MZ1, induced larger transcriptomic changes in cells compared to MZ1 alone, primarily affecting MYC target genes and genes involved in cell cycle regulation. These data underscore the potential role of Myc as therapeutic target in cBCL, providing a novel approach to indirectly modulate this molecule.

12.
Eur J Pharmacol ; 972: 176558, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38614382

RESUMO

Inhibitors of polo-like kinase (PLK) are currently being evaluated as anticancer drugs. However, the molecular mechanism of PLK inhibitor-induced cell death is not fully understood. In this study, we found that GW843682X and BI2536, two inhibitors of PLK1, significantly induced cell death in multiple type cells. The induction of cell death was related to the preferring expression of PLK1. However, in human umbilical vascular endothelial cells (HUVEC) and human colorectal carcinoma cells, which expressed higher levels of both PLK1 and PLK2, PLK1 inhibitors induced very low levels of cell death. Clinical analysis reveals PLK1 presence in 26 of 30 NPC tumor tissues. In in vivo NPC lung metastasis nude mouse models, PLK1 inhibitors decreased NPC progress. Mechanistically, the PLK1 inhibitor did not activate p53, and the cell death was not reversed by p53 inhibition. Moreover, PLK1 inhibitor-induced cell death was PARP- and caspase-independent. Although PLK1 inhibitors induced down-regulation of calpain inhibitor calpastatin and calpain was activated by PLK1 inhibition, calpain blocking did not reverse cell death induced by PLK1 inhibitors, suggesting the non-involvement of calpain. Surprisingly, we found that PLK1 inhibitors induced the activation of proteasome, and the treatment of cells with PLK1 inhibitors reduced the levels of ubiquitinated proteins. And proteasome inhibitors reversed cell death induced by PLK1 inhibitors in various cell types in which PLK1 was preferentially expressed. Moreover, PLK1 inhibition reversed the degradation of proteins including p53, caspase 8, PARP and calpastatin. These results suggest that the activation of proteasome is critical for cell death induced by PLK1 inhibition.


Assuntos
Proteínas de Ciclo Celular , Morte Celular , Quinase 1 Polo-Like , Complexo de Endopeptidases do Proteassoma , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Humanos , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Morte Celular/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Camundongos Nus , Pteridinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/farmacologia
13.
Oncol Lett ; 28(1): 316, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38807667

RESUMO

Cholangiocarcinoma (CCA) is a lethal cancer originating from the epithelial cells within the bile duct and ranks as the second most prevalent form of liver cancer in Thailand. Polo-like kinase 1 (PLK1), a protein serine/threonine kinase, regulates a number of steps in cell mitosis and is upregulated in several types of cancer, including CCA. Our previous study identified PLK1 as a biomarker of the C1 subtype, correlating with poor prognosis in intrahepatic CCA. The present study aimed to examine the effect of PLK1 inhibition on CCA cells. Different CCA cell lines developed from Thai patients, HuCCA1, KKU055, KKU100 and KKU213A, were treated with two PLK1 inhibitors, BI2536 and BI6727, and were transfected with small interfering RNA, followed by analysis of cell proliferation, cell cycle distribution and cell apoptosis. It was discovered that BI2536 and BI6727 inhibited cell proliferation and caused G2/M-phase arrest in CCA cells. Furthermore, the number of total apoptotic cells was increased in PLK1 inhibitor-treated CCA cells. The expression levels of mitotic proteins, aurora kinase A, phosphorylated PLK1 (T210) and cyclin B1, were augmented in PLK1-inhibited CCA cells. Additionally, inhibition of PLK1 led to increased DNA damage, as determined by the upregulated levels of γH2AX and increased cleavage of poly (ADP-ribose) polymerase, an apoptotic marker. These results suggested that inhibiting PLK1 prolonged mitotic arrest and subsequently triggered cell apoptosis. Validation of the antiproliferative effects of PLK1 inhibition was accomplished through silencing of the PLK1 gene. In conclusion, targeting PLK1 provided promising results for further study as a potential candidate for targeted therapy in CCA.

14.
Oncol Rep ; 50(3)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37477142

RESUMO

Adrenocortical carcinoma (ACC) is a rare but malignant tumor. Surgical removal, radiotherapy and combined chemotherapy are commonly used to treat ACC. Despite efforts for several decades, the mortality rate of ACC remains high after treatments. Therefore, identifying a novel therapeutic molecule is important to increase the survival rate of patients with ACC. The centrosome is a microtubule organizing center, and it also functions as a signaling hub to coordinate cell cycle progression. Deficiencies in the regulation of centrosome copy numbers may cause cell cycle arrest or even apoptosis. BI2536 is a polo like kinase 1­selective inhibitor and has been tested for the treatment of several types of cancer, including lung, oral and gastric cancer. However, to the best of our knowledge, its effects on ACC have not yet been examined. The present study revealed that BI2536 inhibited Y1 ACC cell proliferation in a time­ and dose­dependent manner. BI2536 blocked cell cycle progression and also induced cell apoptosis as shown by flow cytometry. Furthermore, following BI2536 treatment, centrosome amplification was induced, which resulted in aberrant mitosis. In terms of the mechanism, BI2536 induced DNA damage as evidenced by γH2AX staining and comet assay, followed by activation of ATM serine/threonine kinase­ERK signaling to promote centrosome amplification. Therefore, the present study suggested that BI2536 could be used as an adjuvant therapy in the treatment of ACC, and also revealed the underlying molecular mechanism.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Humanos , Carcinoma Adrenocortical/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Centrossomo/metabolismo , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Neoplasias do Córtex Suprarrenal/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 1 Polo-Like
15.
J Photochem Photobiol B ; 232: 112477, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35644070

RESUMO

In the present work, the interactions of the novel kinase inhibitors BI-2536, Volasetib (BI-6727) and Ro-3280 with the pharmacological target PLK1 have been studied by fluorescence spectroscopy and molecular dynamics calculations. High Stern-Volmer constants were found in fluorescence experiments suggesting the formation of stable protein-ligand complexes. In addition, it was observed that the binding constant between BI-2536 and PLK1 increases about 100-fold in presence of the phosphopeptide Cdc25C-p that docks to the polo box domain of the protein and releases the kinase domain. All the determined binding constants are higher for the kinase inhibitors than for their competitor for the active center (ATP) being BI-2536 and Volasertib the inhibitors that showed more affinity for PLK1. Calculated binding free energies confirmed the higher affinity of PLK1 for BI-2536 and Volasertib than for ATP. The higher affinity of the inhibitors to PLK1 compared to ATP was mainly attributed to stronger van der Waals interactions. Results may help with the challenge of designing and developing new kinase inhibitors more effective in clinical cancer therapy.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Trifosfato de Adenosina , Proteínas de Ciclo Celular/metabolismo , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas/metabolismo , Pteridinas
16.
Pharmaceutics ; 14(6)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35745782

RESUMO

The efficacy of antimitotics is limited by slippage, whereby treated cells arrested in mitosis exit mitosis without cell division and, eventually, escape apoptosis, constituting a serious resistance mechanism to antimitotics. Strategies to overcome slippage should potentiate the cancer cell killing activity of these antimitotics. Such strategies should accelerate cell death in mitosis before slippage. Here, we undertook a mechanistic analysis to test whether the apoptosis activator Navitoclax potentiates apoptosis triggered by the antimitotic BI2536, a potent inhibitor of Polo-like kinase 1 (PLK1) with the goal of overcoming slippage. We found that cancer cells in 2D cultures treated with BI2536 alone accumulate in mitosis, but a significant fraction of arrested cells undergo slippage and survive. Remarkably, combining BI2536 with Navitoclax dramatically reduces slippage, shifting the cell fate to accelerated death in mitosis. The results are confirmed in 3D spheroids, a preclinical system that mimics in vivo tumor drug responses. Importantly, in 3D spheroids, the effect of the BI2536/Navitoclax combination requires a lower therapeutic dosage of each drug, underlying its potential to improve the therapeutic index. Our results highlight the relevance of apoptosis potentiators to circumvent slippage associated with antimitotics. The combination of BI2536 with Navitoclax shows in vitro synergy/additive effect, which warrants further clinical research.

17.
ACS Infect Dis ; 7(8): 2238-2249, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33203208

RESUMO

The Trypanosoma cruzi (T. cruzi) parasite is the cause of Chagas disease, a neglected disease endemic in South America. The life cycle of the T. cruzi parasite is complex and includes transitions between distinct life stages. This change in phenotype (without a change in genotype) could be controlled by epigenetic regulation, and might involve the bromodomain-containing factors 1-5 (TcBDF1-5). However, little is known about the function of the TcBDF1-5. Here we describe a fragment-based approach to identify ligands for T. cruzi bromodomain-containing factor 3 (TcBDF3). We expressed a soluble construct of TcBDF3 in E. coli, and used this to develop a range of biophysical assays for this protein. Fragment screening identified 12 compounds that bind to the TcBDF3 bromodomain. On the basis of this screen, we developed functional ligands containing a fluorescence or 19F reporter group, and a photo-crosslinking probe for TcBDF3. These tool compounds will be invaluable in future studies on the function of TcBDF3 and will provide insight into the biology of T. cruzi.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Epigênese Genética , Escherichia coli , Humanos , Ligantes , Trypanosoma cruzi/genética
18.
Pharmaceuticals (Basel) ; 15(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35056094

RESUMO

DNA replication is initiated with the recognition of the starting point of multiple replication forks by the origin recognition complex and activation of the minichromosome maintenance complex 10 (MCM10). Subsequently, DNA helicase, consisting of the MCM protein subunits MCM2-7, unwinds double-stranded DNA and DNA synthesis begins. In previous studies, replication factors have been used as clinical targets in cancer therapy. The results showed that MCM2 could be a proliferation marker for numerous types of malignant cancer. We analyzed samples obtained from patients with neuroblastoma, revealing that higher levels of MCM2 and MCM10 mRNA were associated with poor survival rate. Furthermore, we combined the results of the perturbation-induced reversal effects on the expression levels of MCM2 and MCM10 and the sensitivity correlation between perturbations and MCM2 and MCM10 from the Cancer Therapeutics Response Portal database. Small molecule BI-2536, a polo-like kinase 1 (PLK-1) inhibitor, is a candidate for the inhibition of MCM2 and MCM10 expression. To test this hypothesis, we treated neuroblastoma cells with BI-2536. The results showed that the drug decreased cell viability and reduced the expression levels of MCM2 and MCM10. Functional analysis further revealed enrichments of gene sets involved in mitochondria, cell cycle, and DNA replication for BI-2536-perturbed transcriptome. We used cellular assays to demonstrate that BI-2536 promoted mitochondria fusion, G2/M arrest, and apoptosis. In summary, our findings provide a new strategy for neuroblastoma therapy with BI-2536.

19.
Biomed Pharmacother ; 144: 112347, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34700228

RESUMO

New therapeutic targets are revolutionizing colorectal cancer clinical management, opening new horizons in metastatic patients' outcome. Polo Like Kinase1 (PLK1) inhibitors have high potential as antitumoral agents, however, the emergence of drug resistance is a major challenge for their use in clinical practice. Overcoming this challenge represents a hot topic in current drug discovery research. BI2536-resistant colorectal cancer cell lines HT29R, RKOR, SW837R and HCT116R, were generated in vitro and validated by IG50 assays and xenografts models by the T/C ratio. Exons 1 and 2 of PLK1 gene were sequenced by Sanger method. AXL pathway, Epithelial-to-Mesenchymal transition (EMT) and Multidrug Resistance (MDR1) were studied by qPCR and western blot in resistant cells. Simvastatin as a re-sensitizer drug was tested in vitro and the drug combination strategies were validated in vitro and in vivo. PLK1 gene mutation R136G was found for RKOR. AXL pathway trough TWIST1 transcription factor was identified as one of the mechanisms involved in HT29R, SW837R and HCT116R lines, inducing EMT and upregulation of MDR1. Simvastatin was able to impair the mechanisms activated by adaptive resistance and its combination with BI2536 re-sensitized resistant cells in vitro and in vivo. Targeting the mevalonate pathway contributes to re-sensitizing BI2536-resistant cells in vitro and in vivo, raising as a new strategy for the clinical management of PLK1 inhibitors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Ácido Mevalônico/metabolismo , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Pteridinas/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Sinvastatina/farmacologia , Proteína 1 Relacionada a Twist/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Células HCT116 , Células HT29 , Humanos , Camundongos Nus , Mutação , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Proteína 1 Relacionada a Twist/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl , Quinase 1 Polo-Like
20.
Cancers (Basel) ; 12(6)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486290

RESUMO

Despite recent innovations and advances in early diagnosis, the prognosis of advanced gastric cancer remains poor due to a limited number of available therapeutics. Here, we employed pharmacogenomic analysis of 37 gastric cancer cell lines and 1345 small-molecule pharmacological compounds to investigate biomarkers predictive of cytotoxicity among gastric cancer cells to the tested drugs. We discovered that expression of CCNA2, encoding cyclin A2, was commonly associated with responses to polo-like kinase 1 (PLK1) inhibitors (BI-2536 and volasertib). We also found that elevated CCNA2 expression is required to confer sensitivity to PLK1 inhibitors through increased mitotic catastrophe and apoptosis. Further, we demonstrated that CCNA2 expression is elevated in KRAS mutant gastric cancer cell lines and primary tumors, resulting in an increased sensitivity to PLK1 inhibitors. Our study suggests that CCNA2 is a novel biomarker predictive of sensitivity to PLK1 inhibitors for the treatment of advanced gastric cancer, particularly cases carrying KRAS mutation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA