Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Patterns (N Y) ; 4(4): 100729, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37123444

RESUMO

Large neural language models have transformed modern natural language processing (NLP) applications. However, fine-tuning such models for specific tasks remains challenging as model size increases, especially with small labeled datasets, which are common in biomedical NLP. We conduct a systematic study on fine-tuning stability in biomedical NLP. We show that fine-tuning performance may be sensitive to pretraining settings and conduct an exploration of techniques for addressing fine-tuning instability. We show that these techniques can substantially improve fine-tuning performance for low-resource biomedical NLP applications. Specifically, freezing lower layers is helpful for standard BERT- B A S E models, while layerwise decay is more effective for BERT- L A R G E and ELECTRA models. For low-resource text similarity tasks, such as BIOSSES, reinitializing the top layers is the optimal strategy. Overall, domain-specific vocabulary and pretraining facilitate robust models for fine-tuning. Based on these findings, we establish a new state of the art on a wide range of biomedical NLP applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA