Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125634

RESUMO

Mesoporous bioactive glass nanoparticles (MBGNs) doped with therapeutical ions present multifunctional systems that enable a synergistic outcome through the dual delivery of drugs and ions. The aim of this study was to evaluate influence of co-doping with strontium and magnesium ions (SrMg-MBGNs) on the properties of MBGNs. A modified microemulsion-assisted sol-gel synthesis was used to obtain particles, and their physicochemical properties, bioactivity, and drug-loading/release ability were evaluated. Indirect biological assays using 2D and 3D cell culture models on human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and endothelial EA.hy926 cells, respectively, were used to determine biocompatibility of MBGNs, their influence on alkaline phosphatase (ALP) production, calcium deposition, and cytoskeletal organization. Results showed that Sr,Mg-doping increased pore volume and solubility, and changed the mesoporous structure from worm-like to radial-dendritic, which led to a slightly accelerated drug release compared to pristine MBGNs. Biological assays confirmed that particles are biocompatible, and have ability to slightly induce ALP production and calcium deposition of hBM-MSCs, as well as to significantly improve the proliferation of EA.hy926 compared to biochemical stimulation via vascular endothelial growth factor (VEGF) administration or regular media. Fluorescence staining revealed that SrMg-MBGNs had a similar effect on EA.hy926 cytoskeletal organization to the VEGF group. In conclusion, Sr,Mg-MBGNs might be considered promising biomaterial for biomedical applications.


Assuntos
Regeneração Óssea , Sistemas de Liberação de Medicamentos , Vidro , Magnésio , Células-Tronco Mesenquimais , Nanopartículas , Estrôncio , Humanos , Regeneração Óssea/efeitos dos fármacos , Nanopartículas/química , Estrôncio/química , Estrôncio/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Porosidade , Magnésio/química , Vidro/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Linhagem Celular , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos
2.
J Stroke Cerebrovasc Dis ; 31(11): 106748, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087376

RESUMO

BACKGROUND: Toll-like receptor 4 (TLR4) plays a critical role in ischemic brain injury by mediating the inflammatory response. The microRNA miR-185-5p suppresses inflammatory signaling by targeting TLR4. This study investigates whether overexpressing miR-182-5p in bone marrow-derived mesenchymal stem cells (BM-MSCs) could potentiate the neuroprotective effects of BM-MSCs in a mouse model of ischemic brain injury. METHODS: We isolated BM-MSCs from mice, transfected the cells with miR-182-5p mimic, determined their MSC lineage through flow cytometry analysis of surface markers, examined miR-182-5p and TLR4 expression levels, and injected them into mice undergone middle cerebral artery occlusion (MCAO). MSC transplanted mice were subjected to behavior assays to determine cognitive and motor functions and biochemical analysis to determine neuroinflammation and TLR4/NF-κB in the ischemic hemisphere. RESULTS: We found that BM-MSCs overexpressing miR-182-5p showed reduced TLR4 expression without affecting their MSC lineage. Mice transplanted with miR-182-5p overexpressing BM-MSCs after MCAO showed significantly improved cognitive and motor functions and reduced neuroinflammation, including suppressed microglial M1 polarization, reduced inflammatory cytokines, and inhibited TLR4/ NF-κB signaling. CONCLUSION: Our findings suggest that overexpressing miR-182-5p in BM-MSCs can enhance the neuroprotective effects of BM-MSCs against ischemic brain injury by suppressing TLR4-mediated inflammatory response.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Células-Tronco Mesenquimais , MicroRNAs , Fármacos Neuroprotetores , Animais , Camundongos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Medula Óssea/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fármacos Neuroprotetores/metabolismo , Células-Tronco Mesenquimais/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/metabolismo , Modelos Animais de Doenças , Citocinas/metabolismo
3.
Bull Exp Biol Med ; 173(1): 119-122, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35616788

RESUMO

We determined optimal parameters of bone marrow (BM) irradiation in vivo for rapid increase in the number of mesenchymal stem cells (MSC) at the initial stages of the culturing without changing the karyotype, polyploidy, which are observed at higher passages. Such an increase is necessary to achieve the required number of cells at the initial passages for subsequent transplantation into the body. It was shown that after irradiation with λ=0.97 µm, the maximum and similar increase in the content of BM MSC in comparison with the control (by 2.4 times) was observed on day 2 in the irradiated and contralateral tibia. An insignificant difference in the number of BM MSC for the irradiated and contralateral tibia remained at all terms after irradiation, with a general decrease in the number of BM MSC up to 21 days. After laser irradiation with λ=1.56 µm, the maximum number of BM MSC was also observed on day 2. In this case, the concentration of these cells in the irradiated and contralateral limbs exceeded the control by 3.1 and 1.7 times, respectively. With increasing the time after exposure, the number of BM MSC in both limbs showed the same tendency to a decrease as after irradiation at λ=0.97 µm.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Medula Óssea , Células da Medula Óssea , Transplante de Medula Óssea , Lasers
4.
J Am Acad Dermatol ; 83(2): 447-454, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31786163

RESUMO

BACKGROUND: Recessive dystrophic epidermolysis bullosa (RDEB) is a hereditary blistering disorder due to a lack of type VII collagen. At present, treatment is mainly supportive. OBJECTIVES: To determine whether intravenous allogeneic bone marrow-derived mesenchymal stromal/stem cells (BM-MSCs) are safe in RDEB adults and if the cells improve wound healing and quality of life. METHODS: We conducted a prospective, phase I/II, open-label study recruiting 10 RDEB adults to receive 2 intravenous infusions of BM-MSCs (on day 0 and day 14; each dose 2-4 × 106 cells/kg). RESULTS: BM-MSCs were well tolerated with no serious adverse events to 12 months. Regarding efficacy, there was a transient reduction in disease activity scores (8/10 subjects) and a significant reduction in itch. One individual showed a transient increase in type VII collagen. LIMITATIONS: Open-label trial with no placebo. CONCLUSIONS: MSC infusion is safe in RDEB adults and can have clinical benefits for at least 2 months.


Assuntos
Epidermólise Bolhosa Distrófica/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Prurido/terapia , Adolescente , Adulto , Idoso , Epidermólise Bolhosa Distrófica/complicações , Epidermólise Bolhosa Distrófica/diagnóstico , Feminino , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Prurido/diagnóstico , Prurido/etiologia , Qualidade de Vida , Índice de Gravidade de Doença , Transplante Homólogo/métodos , Resultado do Tratamento , Cicatrização , Adulto Jovem
5.
Molecules ; 25(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751124

RESUMO

Metabolic bone disease affects hundreds of millions of people worldwide, and as a result, in vitro models of bone tissue have become essential tools to help analyze bone pathogenesis, develop drug screening, and test potential therapeutic strategies. Drugs that either promote or impair bone formation are in high demand for the treatment of metabolic bone diseases. These drugs work by targeting numerous signaling pathways responsible for regulating osteogenesis such as Hedgehog, Wnt/ß-catenin, and PI3K-AKT. In this study, differentiated bone marrow-derived mesenchymal stem cell (BM-MSC) scaffold-free 3D bioprinted constructs and 2D monolayer cultures were utilized to screen four drugs predicted to either promote (Icariin and Purmorphamine) or impair osteogenesis (PD98059 and U0126). Osteogenic differentiation capacity was analyzed over a four week culture period by evaluating mineralization, alkaline phosphatase (ALP) activity, and osteogenesis related gene expression. Responses to drug treatment were observed in both 3D differentiated constructs and 2D monolayer cultures. After four weeks in culture, 3D differentiated constructs and 2D monolayer cultures treated with Icariin or Purmorphamine showed increased mineralization, ALP activity, and the gene expression of bone formation markers (BGLAP, SSP1, and COL1A1), signaling molecules (MAPK1, WNT1, and AKT1), and transcription factors (RUNX2 and GLI1) that regulate osteogenic differentiation relative to untreated. 3D differentiated constructs and 2D monolayer cultures treated with PD98059 or U0126 showed decreased mineralization, ALP activity, and the expression of the aforementioned genes BGLAP, SPP1, COL1A1, MAPK1, AKT1, RUNX2, and GLI1 relative to untreated. Differences in ALP activity and osteogenesis related gene expression relative to untreated cells cultured in a 2D monolayer were greater in 3D constructs compared to 2D monolayer cultures. These findings suggest that our bioprinted bone model system offers a more sensitive, biologically relevant drug screening platform than traditional 2D monolayer in vitro testing platforms.


Assuntos
Bioimpressão , Avaliação Pré-Clínica de Medicamentos/métodos , Osteogênese/efeitos dos fármacos , Impressão Tridimensional , Engenharia Tecidual , Fosfatase Alcalina/metabolismo , Bioimpressão/métodos , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Técnicas de Cultura de Células , Humanos , Modelos Biológicos
6.
J Cell Physiol ; 234(4): 3697-3710, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30317554

RESUMO

Leukemic cells can impact the bone marrow niche to create a tumor-favorable microenvironment using their secreted factors. Little knowledge is available about immunosuppressive and tumor-promoting properties of chronic myeloid leukemia derived exosomes in bone marrow stromal components. We report here that K562-derived exosomes can affect the gene expression, cytokine secretion, nitric oxide (NO) production, and redox potential of bone marrow mesenchymal stem cells (BM-MSCs) and macrophages. Human BM-MSCs and mouse macrophages were treated with K562-derived exosomes. Our results demonstrated that the expression of the genes involved in hematopoietic developmental pathways and immune responses, including C-X-C motif chemokine 12 (Cxcl12), Dickkopf-related protein 1 (DKK1), wnt5a, interleukin 6 (IL-6), transforming growth factor-beta, and tumor necrosis factor-alpha (TNF-alpha), changed with respect to time and exosome concentration in BM-MSCs. The TNF-alpha level was higher in exosome-treated BM-MSCs compared with the control. Exosome treatment of BM-MSCs led to an increased production of NO and a decreased production of reactive oxygen species (ROS) in a time- and concentration-dependent manner. We have shown that K562-derived exosomes induce overexpression of IL-10 and TNF-alpha and downregulation of iNOS transcript levels in macrophages. The enzyme-linked immunosorbent assay results showed that TNF-alpha and IL-10 secretions increased in macrophages. Treatment of macrophages with purified exosomes led to reduced NO and ROS levels. These results suggest that K562-derived exosomes may alter the local bone marrow niche toward a leukemia-reinforcing microenvironment. They can modulate the inflammatory molecules (TNF-alpha and NO) and the redox potential of BM-MSCs and macrophages and direct the polarization of macrophages toward tumor-associated macrophages.


Assuntos
Comunicação Celular , Exossomos/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Nicho de Células-Tronco , Microambiente Tumoral , Animais , Citocinas/metabolismo , Exossomos/genética , Exossomos/imunologia , Exossomos/ultraestrutura , Feminino , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Macrófagos/imunologia , Células-Tronco Mesenquimais/imunologia , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Evasão Tumoral
7.
Cell Biol Int ; 43(3): 222-232, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30095215

RESUMO

Human bone marrow mesenchymal stem cells (hBM-MSC) have the ability of differentiating into chondrocytes and osteoblasts. miR-182-5p promotes osteoclastogenesis and bone metastasis by up-regulating the expression of parathyroid hormone-like hormone (PTHLH). However, the function of miR-182-5p in chondrogenesis is still unknown. Mimic or inhibitor of miR-182-5p was used to upregulate or knock-down miR-182-5p expression, respectively. We analyzed chondrogenesis by Safranin O staining and Blyscan™ Sulfated Glycosaminoglycan Assay. Immunohistochemistry, real-time PCR, and Western bolts were used to detect related makers. miR-182-5p overexpression inhibited chondrogenesis. Dual-luciferase reporter assay indicated that PTHLH was one of the target genes of miR-182-5p. Further studies showed that miR-182-5p overexpression down-regulated the expression of SOX-9 and COL2A1, but up-regulated COL1A1 and COL10A1. Consistently, miR-182-5p knock-down had the opposite effects. This effect of miR-182-5p in BM-MSCs can be rescued by PTHLH overexpression. miR-182-5p may play a negative role in chondrogenesis by down-regulating PTHLH.


Assuntos
Condrogênese/genética , Regulação para Baixo/genética , MicroRNAs/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/genética , Sequência de Bases , Diferenciação Celular/genética , Humanos , Células-Tronco Mesenquimais , MicroRNAs/genética , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo
8.
Mol Biol Rep ; 46(1): 1157-1165, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30628022

RESUMO

The immunomodulatory property of mesenchymal stem cells (MSCs) has been previously reported. Still it is unclear if this property can be affected by the cell origin and cell quality. Using primary MSCs expanded from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) of mice, we investigated whether the immunomodulatory property of MSCs varied with cell origin and cell quality (early- vs. late-passaged BM-MSCs). BM-MSCs (p1) and AD-MSCs (p1) had a typical spindle shape, but morphological changes were observed in late-passaged BM-MSCs (p6). A pathway-focused array showed that the expression of chemokine/cytokine genes varied with different cell origins and qualities. By co-culturing with spleen mononuclear cells (MNC) for 3 days, the expression of CD4 was suppressed by all types of MSCs. By contrast, the expression of CD8 was suppressed by BM-MSCs and increased by AD-MSCs. The expression ratio of CD206 to CD86 was at a comparable level after co-culture with AD-MSCs and BM-MSCs, but was lower with late-passaged BM-MSCs. AD-MSCs highly induced the release of IL6, IL-10 and TGF-ß in culture medium. Compared with early-passaged BM-MSCs (p1), late-passaged BM-MSCs (p6) released less TGF-ß. Our data suggests that the immunomodulatory properties of MSCs vary with cell origin and cell quality and that BM-MSCs of good quality are likely the optimal source of immunomodulation.


Assuntos
Imunomodulação/imunologia , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/fisiologia , Tecido Adiposo/citologia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Neurosurg Focus ; 46(3): E10, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30835679

RESUMO

Recent advances in stem cell biology present significant opportunities to advance clinical applications of stem cell-based therapies for spinal cord injury (SCI). In this review, the authors critically analyze the basic science and translational evidence that supports the use of various stem cell sources, including induced pluripotent stem cells, oligodendrocyte precursor cells, and mesenchymal stem cells. They subsequently explore recent advances in stem cell biology and discuss ongoing clinical translation efforts, including combinatorial strategies utilizing scaffolds, biogels, and growth factors to augment stem cell survival, function, and engraftment. Finally, the authors discuss the evolution of stem cell therapies for SCI by providing an overview of completed (n = 18) and ongoing (n = 9) clinical trials.


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Transplante de Células-Tronco Mesenquimais , Células Precursoras de Oligodendrócitos/transplante , Traumatismos da Medula Espinal/terapia , Tecido Adiposo/citologia , Células da Medula Óssea , Ensaios Clínicos como Assunto , Células-Tronco Embrionárias/transplante , Previsões , Sobrevivência de Enxerto/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Alicerces Teciduais , Cordão Umbilical/citologia
10.
Gynecol Endocrinol ; 34(4): 320-326, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29073798

RESUMO

Premature ovarian insufficiency (POI) is an important cause of infertility and also cause menopausal symptoms, which greatly reduced the quality of life for women. Hormone replacement therapy (HRT), as an important strategy, improved the quality of life for patients, however, the role of HRT in promoting fertility remains controversial. Therefore, seeking an optimal regime for POI becomes more urgent. In this study, we established POI model induced by CTX and BUS and utilized bone marrow derived mesenchymal stem cells (BM-MSCs) transplantation to treat the POI. We found that the decrease of estrogen and the increase of FSH induced by administration of CTX and BUS were rescued by BM-MSC transplantation. H&E staining and TUNEL assay showed that there were more healthy ovarian follicles and less apoptosis of ovarian cells after treatment with BM-MSCs. Further studies showed that there was an obvious decrease of Bax, p53, and p21 after transplantation, however, CyclinD2 was increased. In conclusion, our results demonstrated that BM-MSCs could restore injured ovarian function. Inhibiting apoptosis and promoting residual ovarian cell proliferation may contribute to the process.


Assuntos
Antineoplásicos/efeitos adversos , Transplante de Células-Tronco Mesenquimais , Insuficiência Ovariana Primária/terapia , Animais , Modelos Animais de Doenças , Estrogênios/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Células-Tronco Mesenquimais , Camundongos , Insuficiência Ovariana Primária/sangue , Insuficiência Ovariana Primária/induzido quimicamente , Resultado do Tratamento
11.
Bratisl Lek Listy ; 118(1): 34-43, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28127981

RESUMO

BACKGROUND: Staurospurine induces apoptosis in cell line. Bone Marrow Mesenchymal stem cells Soup is a promising tool for cell proliferation via a variety of secreted factors. In this study, we examined the effects of BMSCs Soup on Staurospurine induced-cell death in MCF-7 and AGS cells. METHODS: There were three Groups: Group I: no incubation with BM Soup; Group II: incubated with 24 h BM Soup; Group III: incubation with 48 h BM Soup. There were two treatments in each group. The treatments were 1µM Staurospurine (Treatment 1) and 0.0 µM Staurospurine (Treatment 2). The cells were cultured in culture medium containing 0.2 % BSA. We obtained the cell viability, cell death and NO concentration. RESULTS: Our results showed that BM soup administration for 48 hours protectsed against 1µM staurosporine concentration induced cell death and reduced cell toxicity in MCF-7 and AGS cells. Cell viability and cell toxicity assay showed that BM soup in time dependent manner increased cell viability (p < 0.05) and cell death assay showed that cell death in time dependent manner was decreased(p < 0.05). Our data showed that BM soup with increasing NO concentration reduced staurospurine induced cell death and cell cytotoxicity (p < 0.05). CONCLUSION: It's concluded that BMSCs soup suppressed staurospurine-induced cytotoxicity activity process in MCF-7 and AGS cells (Fig. 9, Ref. 79).


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Células da Medula Óssea/fisiologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Citocinas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Estaurosporina/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Células MCF-7 , Células-Tronco Mesenquimais/química , Camundongos
12.
Pharmacol Res ; 97: 70-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25917209

RESUMO

Human bone marrow derived mesenchymal stem cells (BM-MSCs) are a novel cell source used in stem cell therapy to treat bone diseases owing to their high potential to differentiate into osteoblasts. Effective induction of osteogenic differentiation from human BM-MSCs is critical to fulfill their therapeutic potential. In this study, Ginkgo biloba extract (GBE), a traditional herbal medicine, was used to stimulate the proliferation and osteogenic differentiation of human BM-MSCs. The present study revealed that GBE improved the proliferation and osteogenesis of human BM-MSCs in a dose-dependent manner in the range 25-75 mg/l, as indicated by alkaline phosphatase (ALP) activity and calcium content. However, such effect was decreased or inhibited at 100mg/l or higher. The dose-dependent improvement in osteogenesis of human BM-MSCs by GBE was further confirmed by the dose-dependent upregulation of marker genes, osteopontin (OPN) and Collagen I. The increased osteoprotegerin (OPG) expression and minimal expression of receptor activator of nuclear factor-κB ligand (RANKL) suggested that GBE also inhibited osteoclastogenesis of human BM-MSCs. Further mechanistic study demonstrated that the transcriptional levels of bone morphogenetic protein 4 (BMP4) and runt-related transcription factor 2 (RUNX2) in the BMP signaling, ß-catenin and Cyclin D1 in the Wnt/ß-catenin signaling, increased significantly during GBE-promoted osteogenesis. Meanwhile, loss-of-function assay with the signaling inhibitor(s) confirmed that the BMP and Wnt/ß-catenin signaling pathways were indispensable during the GBE-promoted osteogenesis, suggesting that GBE improved osteogenesis via upregulation of the BMP and Wnt/ß-catenin signaling. The present study proposed GBE to be used to upregulate the osteogenic differentiation of human BM-MSCs for new bone formation in BM-MSC-based cell therapy, which could provide an attractive and promising treatment for bone disorders.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Cateninas/efeitos dos fármacos , Ginkgo biloba/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas Wnt/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Proteína Morfogenética Óssea 4/efeitos dos fármacos , Cálcio/metabolismo , Colágeno Tipo I/biossíntese , Subunidade alfa 1 de Fator de Ligação ao Core/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Osteopontina/biossíntese , Ligante RANK/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
13.
Br J Haematol ; 166(2): 240-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24697337

RESUMO

Malignant cells infiltrating the bone marrow (BM) interfere with normal cellular behaviour of supporting cells, thereby creating a malignant niche. We found that CXCR4-receptor expression was increased in paediatric precursor B-cell acute lymphoblastic leukaemia (BCP-ALL) cells compared with normal mononuclear haematopoietic cells (P < 0·0001). Furthermore, high CXCR4-expression correlated with an unfavourable outcome in BCP-ALL (5-year cumulative incidence of relapse ± standard error: 38·4% ± 6·9% in CXCR4-high versus 12% ± 4·6% in CXCR4-low expressing cases, P < 0·0001). Interestingly, BM levels of the CXCR4-ligand (CXCL12) were 2·7-fold lower (P = 0·005) in diagnostic BCP-ALL samples compared with non-leukaemic controls. Induction chemotherapy restored CXCL12 levels to normal. Blocking the CXCR4-receptor with Plerixafor showed that the lower CXCL12 serum levels at diagnosis could not be explained by consumption by the leukaemic cells, nor did we observe an altered CXCL12-production capacity of BM-mesenchymal stromal cells (BM-MSC) at this time-point. We rather observed that a very high density of leukaemic cells negatively affected CXCL12-production by the BM-MSC while stimulating the secretion levels of granulocyte colony-stimulating factor (G-CSF). These results suggest that highly proliferative leukaemic cells are able to down-regulate secretion of cytokines involved in homing (CXCL12), while simultaneously up-regulating those involved in haematopoietic mobilization (G-CSF). Therefore, interference with the CXCR4/CXCL12 axis may be an effective way to mobilize BCP-ALL cells.


Assuntos
Biomarcadores Tumorais/metabolismo , Quimiocina CXCL12/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores CXCR4/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Criança , Meios de Cultivo Condicionados , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prognóstico , Recidiva , Indução de Remissão , Células Tumorais Cultivadas
14.
Tissue Cell ; 88: 102427, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833940

RESUMO

Exosomes which are tiny extracellular vesicles (30-150 nm), transport vital proteins and gene materials such as miRNA, mRNA, or DNA, whose role in cell communication and epithelia regulation is critical. Many techniques have been developed as a result of studying exosomes' biochemical and physicochemical properties, although there is still no standard method to isolate exosomes simply with high yield. Commercial kits have gained popularity for exosome extraction despite concerns about their effectiveness in scientific research. On the other hand, ultracentrifugation remains the gold standard isolation method. This study compares these two common exosome isolation methods to determine their impact on the quality and quantity of exosomes isolated from bone marrow (BM) and Wharton's jelly (WJ)-derived mesenchymal stem cells. Isolated exosomes from the two sources of the cell's conditioned medium by two methods (polymer kit and ultracentrifuge) were characterized using western blotting, scanning electron microscopy (SEM), dynamic light scattering (DLS), and the Bradford assay. Western blot analysis confirmed separation efficiency based on CD81 and CD63 markers, with the absence of calnexin serving as a negative control. The Morphology of exosomes studied by SEM image analysis revealed a similar round shape appearance and their sizes (30-150 nm) were the same in both isolation techniques. The DLS analysis of the sample results was consistent with the SEM ones, showing a similar size range and very low disparity. The exosome protein content concentration analysis revealed that exosomes isolated by the polymer-based kits contained higher protein concentration density and purity (p <0.001). In general, though the protein yield was higher when the polymer-based kits were used, there were no significant differences in morphology, or size between WJ-derived and BM-derived exosomes, regardless of the isolation method employed.


Assuntos
Células da Medula Óssea , Exossomos , Células-Tronco Mesenquimais , Ultracentrifugação , Geleia de Wharton , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Exossomos/metabolismo , Exossomos/ultraestrutura , Exossomos/química , Humanos , Ultracentrifugação/métodos , Geleia de Wharton/citologia , Geleia de Wharton/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Polímeros/química
15.
Diseases ; 12(5)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38785754

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is an incurable disease. There are vigorous attempts to develop treatments to reduce the effects of this disease, and among these treatments is the transplantation of stem cells. This study aimed to retrospectively evaluate a mesenchymal stem cell (MSC) therapy cohort as a promising novel treatment modality by estimating some additional new parameters, such as immunological and biochemical factors. METHODS: This study was designed as an open-label, one-arm cohort retrospective study to evaluate potential diagnostic biomarkers of repeated infusions of autologous-bone marrow-derived mesenchymal stem cells (BM-MSCs) in 15 confirmed patients with ALS, administered at a dose of 1 × 106 cells/kg BW with a one-month interval, in equal amounts in both an intravenous (IV) and intrathecal (IT) capacity simultaneously, via various biochemical (iron (Fe), ferritin, total-iron-binding capacity (TIBC), transferrin, and creatine kinase (CK)) and immunological parameters (tumor necrosis factor-alpha (TNF-α), neurofilament light chain (NFL), and glial-cell-derived neurotrophic factor (GDNF) levels, evaluated during the three-month follow-up period in serum and cerebrospinal fluid (CSF). RESULTS: Our study indicated that, in the case of immunological biomarkers, TNF-α levels in the CSF showed a significant decrease at month three after transplantation compared with levels at month zero, and the p-value was p < 0.01. No statistically significant changes were observed for other immunological as well as biochemical parameters and a p-value of p > 0.05. CONCLUSIONS: These results can indicate the potential benefit of stem cell transfusion in patients with ALS and suggest some diagnostic biomarkers. Several studies are required to approve these results.

16.
Sci Rep ; 14(1): 6649, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38503815

RESUMO

Current treatments for inflammatory bowel disease (IBD) are often inadequate due to limited efficacy and toxicity, leading to surgical resection in refractory cases. IBD's broad and complex pathogenesis involving the immune system, enteric nervous system, microbiome, and oxidative stress requires more effective therapeutic strategies. In this study, we investigated the therapeutic potential of bone marrow-derived mesenchymal stem cell (BM-MSC) treatments in spontaneous chronic colitis using the Winnie mouse model which closely replicates the presentation and inflammatory profile of ulcerative colitis. The 14-day BM-MSC treatment regimen reduced the severity of colitis, leading to the attenuation of diarrheal symptoms and recovery in body mass. Morphological and histological abnormalities in the colon were also alleviated. Transcriptomic analysis demonstrated that BM-MSC treatment led to alterations in gene expression profiles primarily downregulating genes related to inflammation, including pro-inflammatory cytokines, chemokines and other biomarkers of inflammation. Further evaluation of immune cell populations using immunohistochemistry revealed a reduction in leukocyte infiltration upon BM-MSC treatment. Notably, enteric neuronal gene signatures were the most impacted by BM-MSC treatment, which correlated with the restoration of neuronal density in the myenteric ganglia. Moreover, BM-MSCs exhibited neuroprotective effects against oxidative stress-induced neuronal loss through antioxidant mechanisms, including the reduction of mitochondrial-derived superoxide and attenuation of oxidative stress-induced HMGB1 translocation, potentially relying on MSC-derived SOD1. These findings suggest that BM-MSCs hold promise as a therapeutic intervention to mitigate chronic colitis by exerting anti-inflammatory effects and protecting the enteric nervous system from oxidative stress-induced damage.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Pseudo-Obstrução Intestinal , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos , Animais , Medula Óssea/patologia , Colite/induzido quimicamente , Células-Tronco Mesenquimais/patologia , Inflamação , Anti-Inflamatórios/efeitos adversos , Modelos Animais de Doenças
17.
Biomed Phys Eng Express ; 9(4)2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37276854

RESUMO

Artificial bone substitutes have been developed using various biomaterials for use in medicine. Silk fibroin (SF) displays excellent mechanical properties and cell compatibility. Nonetheless, the mechanical properties of silk fibroin scaffolds used in artificial bone substitutes are weaker than those of natural bone, and silk fibroin is deficient as an osteogenic agent. This limits their effectiveness in bone tissue engineering. We added nano-hydroxyapatite (nHAp) particles to an existing cell-based artificial bone substitute with a silk fibroin scaffold, which will improve its mechanical properties and osteogenic efficacy, leading to significant bone regeneration. The mechanical characters of silk fibroin modifying with nHAp were measured by Atomic Force Microscopy Analysis, dispersive x-ray spectroscopy, Porosity measurement, and Microcomputed Tomography. The proliferation and toxicity of a fibroin/dextran/collagen sponge (FDS) containing nHAp were evaluatedin vitro, and its osteogenic efficacy was evaluated using nude mouse and rabbit radius defect models. The defect area was repaired and showed callus formation of new bone in the rabbit radius defect models of the nHAp-FDS-treated group, whereas the defect area was unchanged in the FDS-treated group. The nHAp-FDS manufactured in this study showed significant bone regeneration owing to the synergistic effects of the components, such as those due to the broad range of pore sizes in the sponge and protein adsorbability of the nHAp, which could be suggested as a better supportive material for bone tissue engineering.


Assuntos
Substitutos Ósseos , Fibroínas , Camundongos , Animais , Coelhos , Materiais Biocompatíveis/química , Fibroínas/química , Substitutos Ósseos/química , Microtomografia por Raio-X
18.
ACS Chem Neurosci ; 13(1): 112-119, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34875163

RESUMO

Mesenchymal stem cells (MSCs) derived from the bone marrow (BM) are reported to protect against ischemic brain injury. This study aimed to investigate whether the steroid receptor cofactor 3 (SRC3) was involved in MSC-induced neuroprotection. BM-MSCs were isolated from wild-type (WT) and SRC3 knockout (SRC3-/-) mice and transplanted into mice with middle cerebral artery occlusion (MCAO). The MSC identification and differentiation were determined by flow cytometry and Alizarin Red S staining after osteogenic and adipogenic stimulations. The effects of MSCs on brain injury were assessed by brain water content, modified neurological severity score (mNSS), Morris water maze test, and open field test. Finally, the effects of MSCs on MCAO-induced oxidative stress were assessed by measuring the levels of malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) and mRNA levels of SOD1, SOD2, and CAT. We found that SRC3 deficiency did not impact the MSC identification or osteogenic and adipogenic differentiation. MSC-SRC3-/- transplantation in mice that underwent the MCAO procedure exhibited diminished effects on suppression of brain edema, neurological deficits, cognitive disruption, locomotor impairment, and anxiety compared to comparable levels of MSC-WT. Finally, MSC-WT transplantation inhibited MCAO-induced oxidative stress, and the effects were significantly attenuated in MCAO mice transplanted with MSC-SRC3-/-. MSCs suppressed the MCAO-induced upregulation of MDA activity and the inhibition of SOD, GSH, SOD1, SOD2, and CAT levels, and SRC3-deficient MSCs showed significantly reduced effects. Our results indicate that SRC3 plays an important role in mediating the neuroprotective effects of MSCs in mice that experienced ischemic stroke.


Assuntos
Isquemia Encefálica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Receptores de Esteroides , Animais , Medula Óssea , Camundongos
19.
Stem Cell Res Ther ; 13(1): 348, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883121

RESUMO

Bone marrow mesenchymal stromal cells (BM-MSCs) have anti-inflammatory and pro-survival properties. Naturally, they do not express human leukocyte antigen class II surface antigens and have immunosuppressive capabilities. Together with their relatively easy accessibility and expansion, they are an attractive tool for organ support in transplantation and regenerative therapy. Autologous BM-MSC transplantation alone or together with transplanted islets improves ß-cell function, graft survival, and glycemic control in diabetes. Albeit MSCs' capacity to transdifferentiate into ß-cell is limited, their protective effects are mediated mainly by paracrine mechanisms through BM-MSCs circulating through the body. Direct cell-cell contact and spontaneous fusion of BM-MSCs with injured cells, although at a very low rate, are further mechanisms of their supportive effect and for tissue regeneration. Diabetes is a disease of long-term chronic inflammation and cell therapy requires stable, highly functional cells. Several tools and protocols have been developed by mimicking natural fusion events to induce and accelerate fusion in vitro to promote ß-cell-specific gene expression in fused cells. BM-MSC-islet fusion before transplantation may be a strategy for long-term islet survival and improved function. This review discusses the cell-protective and anti-inflammatory characteristics of BM-MSCs to boost highly functional insulin-producing cells in vitro and in vivo, and the efficacy of their fusion with ß-cells as a path to promote ß-cell regeneration.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Medula Óssea , Células da Medula Óssea , Diabetes Mellitus/metabolismo , Diabetes Mellitus/terapia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo
20.
Stem Cells Transl Med ; 11(1): 88-96, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35641173

RESUMO

Mesenchymal stromal stem/cells (MSC) therapies are clinically used in a wide range of disorders based on their robust HLA-independent immunosuppressive and anti-inflammatory properties. However, the mechanisms underlying MSC therapeutic activity remain elusive as demonstrated by the unpredictable therapeutic efficacy of MSC infusions reported in multiple clinical trials. A seminal recent study showed that infused MSCs are actively induced to undergo apoptosis by recipient cytotoxic T cells, a mechanism that triggers in vivo recipient-induced immunomodulation by such apoptotic MSCs, and the need for such recipient cytotoxic cell activity could be replaced by the administration of ex vivo-generated apoptotic MSCs. Moreover, the use of MSC-derived extracellular vesicles (MSC-EVs) is being actively explored as a cell-free therapeutic alternative over the parental MSCs. We hypothesized that the introduction of a "suicide gene" switch into MSCs may offer on-demand in vivo apoptosis of transplanted MSCs. Here, we prompted to investigate the utility of the iCasp9/AP1903 suicide gene system in inducing apoptosis of MSCs. iCasp9/AP1903-induced apoptotic MSCs (MSCiCasp9+) were tested in vitro and in in vivo models of acute colitis. Our data show a very similar and robust immunosuppressive and anti-inflammatory properties of both "parental" alive MSCGFP+ cells and apoptotic MSCiCasp9+ cells in vitro and in vivo regardless of whether apoptosis was induced in vivo or in vitro before administering MSCiCasp9+ lysates. This development of an efficient iCasp9 switch may potentiate the safety of MSC-based therapies in the case of an adverse event and, will also circumvent current logistic technical limitations and biological uncertainties associated to MSC-EVs.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Anti-Inflamatórios , Caspase 9 , Vesículas Extracelulares/transplante , Humanos , Imunomodulação , Imunossupressores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA