Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crop Prot ; 127: 104963, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31902971

RESUMO

Host plant resistance has received considerable attention for the management of insect herbivores on crop plants. However, resistance is threatened by the rapid adaptation of target herbivores towards virulence (the ability to survive, develop and damage a host with major resistance genes). This study examines the potential costs and benefits of adaptation for virulence in herbivores. We continuously reared planthoppers, Nilaparvata lugens, on two susceptible and three resistant rice, Oryza sativa, varieties for 20 + generations. We then assessed the performance of selected planthoppers across a range of rice lines with distinct resistance genes. We found that planthoppers with long-term exposure to resistant hosts (particularly IR62 with the Bph3(t) and BPH32 gene loci, and PTB33 with the Bph3(t), BPH32 and BPH26 gene loci) gained virulence against related varieties with the same and different resistance genes, but planthoppers adapted to the resistant host IR65482-4-136-2-2 (BPH10 locus) had reduced performance on phylogenetically distant plants with distinct resistant genes. In choice bioassays, avirulent planthoppers showed marked preferences for susceptible lines, whereas virulent planthoppers were less selective of varieties. We also examined whether virulence was associated with insecticide susceptibility. We tested susceptibility to three insecticides using a topical application method. Populations selectively reared on IR65482-4-136-2-2 had increased susceptibility to imidacloprid and fipronil, representing a possible trade-off with virulence. In contrast, a population with virulence to the highly resistant variety PTB33 was 4.88 × more resistant to imidacloprid and 3.18 × more resistant to BPMC compared to planthoppers of the same origin but reared on the susceptible variety IR22. Our results suggest complex relations between insecticide resistance and virulence that vary according to insecticidal toxins and resistance genes, and include potentially increased insecticide-susceptibility (a trade-off) as well as common detoxification mechanisms (a benefit).

2.
Bot Stud ; 63(1): 16, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35604579

RESUMO

BACKGROUND: Nitrogen is an essential macronutrient for plant growth and development. Crops with a high nitrogen input usually have high yields. However, outbreaks of brown planthoppers (Nilaparvata lugens; BPH) frequently occur on rice farms with excessive nitrogen inputs. Rice plants carrying BPH resistance genes are used for integrated pest management. Thus, the impact of nitrogen on the resistance of rice near-isogenic lines (NILs) with BPH resistance genes was investigated. RESULTS: We tested these NILs using a standard seedbox screening test and a modified bulk seedling test under different nitrogen treatments. The amount of nitrogen applied had an impact on the resistance of some lines with BPH resistance genes. In addition, three NILs (NIL-BPH9, NIL-BPH17, and NIL-BPH32) were further examined for antibiosis and antixenosis under varying nitrogen regimes. The N. lugens nymph population growth rate, honeydew excretion, female fecundity, and nymph survival rate on the three NILs were not affected by different nitrogen treatments except the nymph survival rate on NIL-BPH9 and the nymph population growth rate on NIL-BPH17. Furthermore, in the settlement preference test, the preference of N. lugens nymphs for IR24 over NIL-BPH9 or NIL-BPH17 increased under the high-nitrogen regime, whereas the preference of N. lugens nymphs for IR24 over NIL-BPH32 was not affected by the nitrogen treatments. CONCLUSIONS: Our results indicated that the resistance of three tested NILs did not respond to different nitrogen regimes and that NIL-BPH17 exerted the most substantial inhibitory effect on N. lugens growth and development.

3.
Insects ; 13(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35206680

RESUMO

The brown planthopper, Nilaparvata lugens (Stål)(BPH) is a pest of rice in Asia. We examined the effects of seven insecticides combined with host resistance against BPH. In a screenhouse environment, we treated BPH-infested and non-infested resistant (IR62) and susceptible (IR64) rice with buprofezin, carbofuran, cartap hydrochloride, cypermethrin, deltamethrin, fipronil, or thiamethoxam + chlorantraniliprole. In one experiment, plants received one, two or three applications. In a second experiment, plants received one early or late insecticide application. Carbofuran and fipronil reduced planthopper biomass densities but resistance did not contribute to these effects (i.e., resistance was redundant). Single applications of cartap hydrochloride (at 20 or 50 days after sowing (DAS)), cypermethrin (20 DAS), or buprofezin (50 DAS) reduced BPH biomass densities on IR62 (i.e., synergies); other insecticides and application times, and multiple applications of all insecticides did not reduce BPH biomass densities on IR62 more than on IR64 (i.e., either resistance or insecticides were redundant). Deltamethrin (three applications) was antagonistic to resistance, but host resistance tended to buffer against the negative effects of single deltamethrin applications. Yields of infested IR62 were not statistically improved by insecticide applications. Late applications reduced yields of non-infested rice. We discuss how prophylactic insecticide applications could destabilize BPH populations and reduce the productivity and profitability of resistant rice.

4.
Insects ; 13(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35323548

RESUMO

Host plant resistance is the most researched method for the management of planthoppers and leafhoppers in tropical rice. For optimal effects, resistance should be resilient to fertilizer inputs and work in synergy with natural enemies. In field plot experiments, we examined how rice resistance and fertilizer inputs affect mortality of planthopper and leafhopper eggs by hymenopteran parasitoids. We used IR62 as a variety with resistance to Nilaparvata lugens (Stål) [BPH], Sogatella furcifera (Horváth) [WBPH] and Nephotettix virescens (Distant) [GLH], and IR64 as a susceptible control. The herbivores were more abundant during wet season sampling in low-nitrogen plots. During this study, parasitoids killed between 31 and 38% of BPH eggs and 24 and 52% of WBPH eggs during four days of field exposure. Parasitism, mainly due to Oligosita spp., was generally higher in high-nitrogen and IR64 plots. Similar densities of eggs in exposed plants suggest that these trends were mediated by semiochemicals and therefore support the Optimal Defense Hypothesis. Honeydew from BPH on IR62 had more xylem-derived wastes than honeydew on IR64. We applied honeydew from both varieties to sentinel plants. Parasitism by Anagrus spp. was higher on plants of either variety treated with honeydew derived from IR62; however, the effect was only apparent in high-nitrogen plots. Results suggest that Anagrus spp., by responding to honeydew, will counter the nitrogen-induced enhancement of planthopper fitness on resistant rice.

5.
Insects ; 12(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34680617

RESUMO

The standard seedling seedbox test (SSST) is the most prevalent phenotyping test in research on the genetics and breeding of planthopper-resistant rice. Using 16 rice lines that included plants susceptible, resistant and tolerant to the brown planthopper (Nilaparvata lugens), we compared the SSST to modified seedling seedbox tests (MSSTs) and the days-to-wilt (DTW) test. We also conducted a series of performance tests to assess nymph survival and development; adult longevity and egg-laying; egg survival; honeydew production; and plant weight loss. We also assessed the relative costs of the different phenotyping tests to better recommend test protocols that are suitable for high-throughput phenotyping. The SSST was found to be highly robust but fails to identify late-stage resistance; tolerance; or ovicidal responses. MSSTs improved phenotyping by identifying plants with low damage from planthoppers at later growth stages. Herbivore performance tests such as population or biomass build-up tests reduce space requirements and reduce setup and evaluation costs compared with bulk tests. They can also facilitate the assessment of plant tolerance; albeit with added costs. The DTW test most clearly segregates resistant and susceptible plants, thereby facilitating gene discovery and marker-assisted selection. We recommend that bulk testing be improved by switching from the SSST to a suitable MSST and that donor variety and pre-release lines be assessed for the nature of rice-planthopper interactions using biomass build-up tests-including the DTW test.

6.
Insects ; 12(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34821791

RESUMO

The brown planthopper, Nilaparvata lugens (Stål), is a key challenge to rice production in Asia. Outbreaks of planthoppers are associated with excessive fertilizer applications; consequently, we examined planthopper interactions with susceptible, tolerant and resistant varieties of rice under varying levels of soil nitrogen in a greenhouse experiment. We compared planthopper fitness (survival × reproduction) and plant tolerance (functional plant loss index) for 16 varieties at 0, 80 and 150 Kg added nitrogen ha-1. The planthoppers grew larger, developed more quickly and laid more eggs on susceptible varieties, compared with the resistant and tolerant varieties. Moreover, soil nitrogen generally increased planthopper fitness on resistant varieties, but relative resistance was maintained. Functional plant loss was highest among the susceptible varieties, but weight and growth rate reductions per mg of planthopper were often highest in the tolerant varieties. Tolerance was associated with large, fast-growing plants, with at least moderate resistance to the planthopper. Susceptibility was associated with a small size and/or an absence of resistance genes. Our results suggested that early-tillering rice plants can be both resistant and tolerant to the brown planthopper, but cannot be both susceptible and tolerant of planthoppers at high densities. This indicates that at least moderate resistance is required for tolerance against this herbivore. Furthermore, although dwarf varieties had a low tolerance of planthoppers, they could express resistance through functioning resistance genes.

7.
Insects ; 12(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34680677

RESUMO

The adaptation by planthoppers to feed and develop on resistant rice is a challenge for pest management in Asia. We conducted a series of manipulative experiments with the brown planthopper (Nilaparvata lugens (Stål)) on the resistant rice variety IR62 (BPH3/BPH32 genes) to assess behavioral and bionomic changes in planthoppers exhibiting virulence adaptation. We also examined the potential role of yeast-like symbionts (YLS) in virulence adaptation by assessing progeny fitness (survival × reproduction) following controlled matings between virulent males or females and avirulent males or females, and by manipulating YLS densities in progeny through heat treatment. We found virulence-adapted planthoppers developed faster, grew larger, had adults that survived for longer, had female-biased progeny, and produced more eggs than non-selected planthoppers on the resistant variety. However, feeding capacity-as revealed through honeydew composition-remained inefficient on IR62, even after 20+ generations of exposure to the resistant host. Virulence was derived from both the male and female parents; however, females contributed more than males to progeny virulence. We found that YLS are essential for normal planthopper development and densities are highest in virulent nymphs feeding on the resistant host; however, we found only weak evidence that YLS densities contributed more to virulence. Virulence against IR62 in the brown planthopper, therefore, involves a complex of traits that encompass a series of behavioral, physiological, and genetic mechanisms, some of which are determined only by the female parent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA