Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Cell ; 185(1): 169-183.e19, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34963055

RESUMO

Non-small cell lung cancers (NSCLCs) harboring KEAP1 mutations are often resistant to immunotherapy. Here, we show that KEAP1 targets EMSY for ubiquitin-mediated degradation to regulate homologous recombination repair (HRR) and anti-tumor immunity. Loss of KEAP1 in NSCLC induces stabilization of EMSY, producing a BRCAness phenotype, i.e., HRR defects and sensitivity to PARP inhibitors. Defective HRR contributes to a high tumor mutational burden that, in turn, is expected to prompt an innate immune response. Notably, EMSY accumulation suppresses the type I interferon response and impairs innate immune signaling, fostering cancer immune evasion. Activation of the type I interferon response in the tumor microenvironment using a STING agonist results in the engagement of innate and adaptive immune signaling and impairs the growth of KEAP1-mutant tumors. Our results suggest that targeting PARP and STING pathways, individually or in combination, represents a therapeutic strategy in NSCLC patients harboring alterations in KEAP1.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Interferon Tipo I/metabolismo , Neoplasias Pulmonares/imunologia , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Reparo de DNA por Recombinação/genética , Proteínas Repressoras/metabolismo , Evasão Tumoral/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Imunidade Inata/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Mutação , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Trends Genet ; 38(8): 793-796, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35491358

RESUMO

Proper function of structure-specific nucleases is key for faithful Okazaki fragment maturation (OFM) process completion. Deregulation of such nucleases leads to aberrant OFM and causes a spectrum of mutations, some of which may confer survival outcomes under specific stresses and serve as attractive targets for therapeutic intervention in human cancers.


Assuntos
Replicação do DNA , DNA , DNA/genética , DNA Polimerase III/genética , Humanos
3.
Prostate ; 84(11): 1056-1066, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38721925

RESUMO

BACKGROUND: Abundant evidence suggests that chronic inflammation is linked to prostate cancer and that infection is a possible cause of prostate cancer. METHODS: To identify microbiota or pathogens associated with prostate cancer, we investigated the transcriptomes of 20 human prostate cancer tissues. We performed de novo assembly of nonhuman sequences from RNA-seq data. RESULTS: We identified four bacteria as candidate microbiota in the prostate, including Moraxella osloensis, Uncultured chroococcidiopsis, Cutibacterium acnes, and Micrococcus luteus. Among these, C. acnes was detected in 19 of 20 prostate cancer tissue samples by immunohistochemistry. We then analyzed the gene expression profiles of prostate epithelial cells infected in vitro with C. acnes and found significant changes in homologous recombination (HR) and the Fanconi anemia pathway. Notably, electron microscopy demonstrated that C. acnes invaded prostate epithelial cells and localized in perinuclear vesicles, whereas analysis of γH2AX foci and HR assays demonstrated impaired HR repair. In particular, BRCA2 was significantly downregulated in C. acnes-infected cells. CONCLUSIONS: These findings suggest that C. acnes infection in the prostate could lead to HR deficiency (BRCAness) which promotes DNA double-strand breaks, thereby increasing the risk of cancer development.


Assuntos
Células Epiteliais , Próstata , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/microbiologia , Neoplasias da Próstata/patologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Células Epiteliais/metabolismo , Próstata/microbiologia , Próstata/patologia , Próstata/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Propionibacteriaceae/patogenicidade
4.
Oncologist ; 29(5): 450-e725, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38452035

RESUMO

BACKGROUND: Both germline and somatic BReast CAncer gene (BRCA) mutations are poor prognostic markers in men with localized or metastatic prostate cancer. For instance, men with these mutations often are diagnosed with prostate cancer earlier and develop metastatic disease earlier compared with those who do not harbor similar mutations. Patients with germline alterations typically have more advanced disease and shorter overall survival (Castro E, Goh C, Olmos D, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol. 2013;31(14):1748-1757. doi:10.1200/JCO.2012.43.1882). The risk of disease progression to metastatic disease is significant in patients with this genotype of prostate cancer. The percentage of patients free from metastatic disease was 90%, 72%, and 50%, respectively, compared with 97%, 94%, and 84% at 3, 5, and 10 years for patients with intact DNA repair (P < .001) (Castro E, Goh C, Leongamornlert D, et al. Effect of BRCA mutations on metastatic relapse and cause-specific survival after radical treatment for localised prostate cancer. Eur Urol. 2015;68(2):186-193. doi: 10.1016/j.eururo.2014.10.022). DNA damage repair non-BRCA mutations include alterations in genes such as ATM, CHEK2, PALB2, and RAD51. While less common than BRCA mutations, they have emerged as significant prognostic markers in prostate cancer. These BRCAness mutations are associated with a higher risk of aggressive disease and poorer survival outcomes. Given the debilitating physical and psychological side effects of androgen deprivation therapy (ADT) in relatively younger men with prostate cancer, delaying ADT in these men may be an attractive strategy. Given the proven efficacy of polyadenosine diphosphate-ribose polymerase (PARP) inhibitors in the castration-resistant prostate cancersetting, PARP inhibitor monotherapy in a nonmetastatic castration-sensitive (nmCSPC) setting has the potential to delay metastasis and delay the onset of ADT related symptoms. METHODS: This is a single-arm, single-center, open-label, phase II trial to assess the efficacy of rucaparib in patients with high-risk biochemically recurrent (BCR) nmHSPC, which was defined as PSA doubling time of <9 months, demonstrating a "BRCAness" genotype (BRCA1/2 and other homologous recombination repair mutations). A total of 15 patients were intended to be enrolled, with an expected enrollment duration of 12 months. Patients were given rucaparib 600 mg orally twice daily and were allowed to remain on study treatment until PSA progression defined by Prostate Cancer Working Group 3, with 2 years of follow-up after study treatment. We anticipated a total of 2-3 years until completion of the clinical trial. The primary endpoint was to assess the PSA progression-free survival (PSA-PFS). The secondary endpoints of the study were safety, the proportion of patients with a PSA 50% response (PSA 50), and an undetectable PSA. A 4-week treatment duration comprised one cycle. RESULTS: The study started enrolling in June 2019 and was prematurely terminated in June 2022 after the accrual of 7 patients because of changing standard of care treatments with the introduction of next-generation scans, eg, prostate-specific membrane antigen positron emission tomography (PSMA-PET). Seven patients were enrolled in the study with the following pathogenic alterations: ATM (n = 3), BRCA2 (n = 2), BRCA1 (n = 1), BRIP1 (n = 1), and RAD51 (n = 1). The median duration of follow-up was 18 months. A median of 20 cycles (range 4-42) was completed, median PSA-PFS was 35.37 months (95% CI, 0-85.11 months). In total, 2 patients achieved PSA50; both also achieved nadir PSA as undetectable. Grade ≥ 3 adverse events (AEs) were anemia and rash (in 1 patient each). No dose-limiting toxicities or severe AEs were seen. CONCLUSION: Rucaparib demonstrated acceptable toxicity and efficacy signal as an ADT-sparing approach in patients with biochemically recurrent nonmetastatic prostate cancer. It is currently challenging to understand the optimal value of systemic therapy in this disease setting due to the rapidly changing standard of care. Additionally, there are relatively few patients with BRCAness who present with nonmetastatic hormone-sensitive prostate cancer (ClinicalTrials.gov Identifier: NCT03533946).


Assuntos
Genótipo , Indóis , Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Idoso , Indóis/uso terapêutico , Pessoa de Meia-Idade , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteína BRCA2/genética , Idoso de 80 Anos ou mais , Mutação em Linhagem Germinativa , Proteína BRCA1/genética
5.
Breast Cancer Res Treat ; 203(1): 49-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37728693

RESUMO

PURPOSE: Breast cancer often metastasizes to the central nervous system. Although the prognosis of brain metastases from breast cancer has been considered poor, and systemic therapy has not contributed to an improved prognosis, newer agents are expected to be more effective. BRCAness is defined as the status of homologous recombination deficiency (HRD) in tumor tissue, regardless of the presence of pathogenic germline BRCA1/2 variants. A study employing next-generation sequencing analysis showed that HRD was found relatively frequently in brain metastases of breast cancer patients. However, there have been no studies evaluating BRCAness in brain metastases of breast cancer with more efficient, rapid, and cost-effective methods. METHODS: We retrospectively investigated 17 brain metastases of breast cancer that were surgically resected at our hospital from January 2007 to December 2022. Of these, samples from 15 patients were evaluable for BRCAness by employing multiplex ligation-dependent probe amplification (MLPA) assay. RESULTS: Of the 15 patients, five patients (33%) had tumors with BRCAness. Clinicopathological factors of patients with brain metastases with BRCAness were not statistically different from those of patients who possessed tumors without BRCAness. Patients with brain metastases with BRCAness had shorter overall survival compared to those without BRCAness (BRCAness, median 15 months (95% CI 2-30) vs. non-BRCAness, median 28.5 months (95% CI 10-60); P = 0.013). CONCLUSION: In this study, we evaluated BRCAness in brain metastases of breast cancer with the MLPA method, and found that about one-third of patients had BRCAness-positive tumors. The analysis of BRCAness using MLPA has the potential for practical clinical use.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Estudos Retrospectivos , Proteína BRCA2/genética , Mutação , Neoplasias Encefálicas/genética , Encéfalo/metabolismo
6.
Curr Top Microbiol Immunol ; 444: 239-257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38231221

RESUMO

Helicobacter pylori CagA is the first and only bacterial oncoprotein etiologically associated with human cancer. Upon delivery into gastric epithelial cells via bacterial type IV secretion, CagA acts as a pathogenic/pro-oncogenic scaffold that interacts with and functionally perturbs multiple host proteins such as pro-oncogenic SHP2 phosphatase and polarity-regulating kinase PAR1b/MARK2. Although H. pylori infection is established during early childhood, gastric cancer generally develops in elderly individuals, indicating that oncogenic CagA activity is effectively counteracted at a younger age. Moreover, the eradication of cagA-positive H. pylori cannot cure established gastric cancer, indicating that H. pylori CagA-triggered gastric carcinogenesis proceeds via a hit-and-run mechanism. In addition to its direct oncogenic action, CagA induces BRCAness, a cellular status characterized by replication fork destabilization and loss of error-free homologous recombination-mediated DNA double-strand breaks (DSBs) by inhibiting cytoplasmic-to-nuclear localization of the BRCA1 tumor suppressor. This causes genomic instability that leads to the accumulation of excess mutations in the host cell genome, which may underlie hit-and-run gastric carcinogenesis. The close connection between CagA and BRCAness was corroborated by a recent large-scale case-control study that revealed that the risk of gastric cancer in individuals carrying pathogenic variants of genes that induce BRCAness (such as BRCA1 and BRCA2) dramatically increases upon infection with cagA-positive H. pylori. Accordingly, CagA-mediated BRCAness plays a crucial role in the development of gastric cancer in conjunction with the direct oncogenic action of CagA.


Assuntos
Helicobacter pylori , Neoplasias Gástricas , Pré-Escolar , Idoso , Humanos , Neoplasias Gástricas/genética , Helicobacter pylori/genética , Estudos de Casos e Controles , Proteínas Oncogênicas , Carcinogênese/genética
7.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 576-585, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38433576

RESUMO

Poly ADP-ribose polymerase (PARP) inhibitor monotherapies are selectively effective in patients with pancreatic, breast, prostate, and ovarian cancers with BRCA1 mutations. Cancer patients with more frequent wild-type BRCA show poor responses to PARP inhibitors. Moreover, patients who are initially sensitive to these inhibitors eventually respond poorly to drugs. In the present study, we discover that abrogation of Kruppel-like factor 5 (KLF5) significantly inhibits homologous recombination, which is the main mechanism for DNA double-stranded repair. Furthermore, the downregulation of KLF5 expression promotes the DNA damage induced by olaparib and significantly reduces the IC 50 of the RARP inhibitor in pancreatic cancer cells. Overexpression of BRCA1 reverses the above effects caused by silencing of KLF5. Olaparib combined with a KLF5 inhibitor has an enhanced cytotoxic effect. Mechanistically, we identify BRCA1 as a KLF5 target gene. BRCA1 is positively correlated with KLF5 in PDAC tissue. Our results indicate that inhibition of KLF5 may induce BRCAness in a larger pancreatic cancer subset with proficient BRCA. The combination of KLF5 inhibitors and PARP inhibitors provides a novel treatment strategy to enhance the sensitivity of BRCA1-proficient pancreatic cancer to PARP inhibitors.


Assuntos
Antineoplásicos , Fatores de Transcrição Kruppel-Like , Neoplasias Pancreáticas , Humanos , Antineoplásicos/uso terapêutico , Proteína BRCA1/genética , Linhagem Celular Tumoral , Reparo do DNA , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Ovarianas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
8.
Breast Cancer Res ; 25(1): 69, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316882

RESUMO

BACKGROUND: Familial breast cancer is in most cases unexplained due to the lack of identifiable pathogenic variants in the BRCA1 and BRCA2 genes. The somatic mutational landscape and in particular the extent of BRCA-like tumour features (BRCAness) in these familial breast cancers where germline BRCA1 or BRCA2 mutations have not been identified is to a large extent unknown. METHODS: We performed whole-genome sequencing on matched tumour and normal samples from high-risk non-BRCA1/BRCA2 breast cancer families to understand the germline and somatic mutational landscape and mutational signatures. We measured BRCAness using HRDetect. As a comparator, we also analysed samples from BRCA1 and BRCA2 germline mutation carriers. RESULTS: We noted for non-BRCA1/BRCA2 tumours, only a small proportion displayed high HRDetect scores and were characterized by concomitant promoter hypermethylation or in one case a RAD51D splice variant previously reported as having unknown significance to potentially explain their BRCAness. Another small proportion showed no features of BRCAness but had mutationally active tumours. The remaining tumours lacked features of BRCAness and were mutationally quiescent. CONCLUSIONS: A limited fraction of high-risk familial non-BRCA1/BRCA2 breast cancer patients is expected to benefit from treatment strategies against homologue repair deficient cancer cells.


Assuntos
Neoplasias da Mama , Genes BRCA2 , Humanos , Feminino , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Prevalência , Mutação , Proteína BRCA2/genética
9.
Cancer Metastasis Rev ; 40(3): 891-908, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403012

RESUMO

Pancreas ductal adenocarcinoma (PDAC) is the third most common cause of cancer death in the USA. While other cancers with historically poor prognoses have benefited from new immunotherapies and targeted agents, the 5-year survival rate for PDAC patients has remained static. The accessibility to genomic testing has improved in recent years, and it is now clear that PDAC is a heterogenous disease, with a subset of patients harboring actionable mutations. There are several targeted therapies approved by the Food and Drug administration (FDA) in PDAC: EGFR inhibitor erlotinib (combined with gemcitabine) in unselected patients, TRK inhibitors larotrectinib and entrectinib for patients with NTRK fusion mutation, the PD-1 inhibitor pembrolizumab for mismatch repair-deficient patients, and the poly-ADP-ribose polymerase (PARP) inhibitor olaparib in patients with germline BRCA mutation as a maintenance therapy. DNA damage repair (DDR) is paramount to genomic integrity and cell survival. The defective repair of DNA damage is one of the hallmarks of cancer, and abnormalities in DDR pathways are closely linked with the development of malignancies and upregulation of these pathways linked with resistance to treatment. The prevalence of somatic and germline mutations in DDR pathways in metastatic PDAC is reported to be approximately 15-25%. Patients with DDR gene alterations benefit from a personalized approach to treatment. Recently, the POLO trial demonstrated a progression-free survival (PFS) benefit in metastatic PDAC patients with a germline BRCA1/2 mutation treated with maintenance olaparib following platinum-based induction chemotherapy. This was the first phase 3 randomized trial to establish a biomarker-driven approach in the treatment of PDAC and establishes a precedent for maintenance therapy in PDAC. The review herein aims to outline the current treatment landscape for PDAC patients with DDR gene-mutated tumors, highlight novel therapeutic approaches focused on surmounting tumor resistance, and explore new strategies which may lead to an expansion in the number of patients who benefit from these targeted treatments.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Dano ao DNA , Reparo do DNA/genética , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
10.
BMC Cancer ; 22(1): 668, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715772

RESUMO

The concept of the 'BRCAness' phenotype implies the properties that some sporadic breast cancers (BC) share with BRCA1/2-mutation carriers with hereditary BC. Breast tumors with BRCAness have deficiencies in homologous recombination repair (HRR), like BRCA1/2-mutation carriers, and consequently could benefit from poly-(ADP)-ribose polymerase (PARP) inhibitors and DNA-damaging chemotherapy. Triple-negative breast cancers (TNBC) show a higher frequency of BRCAness than the other BC subtypes. Therefore, looking for BRCAness-related biomarkers could improve personalized management of TNBC patients. microRNAs (miRNAs) play a pivotal role in onco-transcriptomic profiles of tumor cells besides their suitable features as molecular biomarkers. The current study aims to evaluate the expression level of some critical miRNAs-mRNA axes in HRR pathway in tumors and plasma samples from BC patients. The expression levels of three multi-target miRNAs, including miR-182-5p, miR-146a-5p, and miR-498, as well as six downstream HRR-related protein-coding genes, have been investigated in the breast tumors and paired adjacent normal tissues by Real-time PCR. In the next step, based on the results derived from the previous step, we examined the level of cell-free miR-182-5p in the blood plasma samples from the patients. Our results highlight the difference between TNBC and non-TNBC tumor subgroups regarding the dysregulation of the key miRNA/mRNA axes involved in the HRR pathway. Also, for the first time, we show that the level of cell-free miR-182-5p in plasma samples from BC patients could be a clue for screening BC patients eligible for receiving PARP inhibitors through a personalized manner. Altogether, some sporadic BC patients, especially sporadic TNBC, have epigenetically dysregulated HRR pathway that could be identified and benefit from BRCAness-specific therapeutic agents.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Proteína BRCA1/biossíntese , Proteína BRCA1/genética , Proteína BRCA2/biossíntese , Proteína BRCA2/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
11.
J Pathol ; 254(5): 556-566, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33963544

RESUMO

Osteosarcomas are aggressive primary tumors of bone that are typically detected in locally advanced stages; however, which genetic mutations drive the cancer before its clinical detection remain unknown. To identify these events, we performed longitudinal genome-sequencing analysis of 12 patients with metastatic or refractory osteosarcoma. Phylogenetic and molecular clock analyses were carried out next to identify actionable mutations, and these were validated by integrating data from additional 153 osteosarcomas and pre-existing functional evidence from mouse PDX models. We found that the earliest and thus clinically most promising mutations affect the cell cycle G1 transition, which is guarded by cyclins D3, E1, and cyclin-dependent kinases 2, 4, and 6. Cell cycle G1 alterations originate no more than a year before the primary tumor is clinically detected and occur in >90% and 50% of patients of the discovery and validation cohorts, respectively. In comparison, other cancer driver mutations could be acquired at any evolutionary stage and often do not become pervasive. Consequently, our data support that the repertoire of actionable mutations present in every osteosarcoma cell is largely limited to cell cycle G1 mutations. Since they occur in mutually exclusive combinations favoring either CDK2 or CDK4/6 pathway activation, we propose a new genomically-based algorithm to direct patients to correct clinical trial options. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Algoritmos , Biomarcadores Tumorais/genética , Neoplasias Ósseas/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Osteossarcoma/genética , Neoplasias Ósseas/patologia , Humanos , Mutação , Osteossarcoma/patologia , Filogenia
12.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163134

RESUMO

Multiple myeloma (MM) is a hematological disease marked by abnormal growth of B cells in bone marrow. Inherent chromosomal instability and DNA damage are major hallmarks of MM, which implicates an aberrant DNA repair mechanism. Studies have implicated a role for CDK12 in the control of expression of DNA damage response genes. In this study, we examined the effect of a small molecule inhibitor of CDK12-THZ531 on MM cells. Treatment of MM cells with THZ531 led to heightened cell death accompanied by an extensive effect on gene expression changes. In particular, we observed downregulation of genes involved in DNA repair pathways. With this insight, we extended our study to identify synthetic lethal mechanisms that could be exploited for the treatment of MM cells. Combination of THZ531 with either DNA-PK inhibitor (KU-0060648) or PARP inhibitor (Olaparib) led to synergistic cell death. In addition, combination treatment of THZ531 with Olaparib significantly reduced tumor burden in animal models. Our findings suggest that using a CDK12 inhibitor in combination with other DNA repair inhibitors may establish an effective therapeutic regimen to benefit myeloma patients.


Assuntos
Anilidas/farmacologia , Biomarcadores Tumorais/genética , Reparo do DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Pirimidinas/farmacologia , Mutações Sintéticas Letais , Animais , Apoptose , Proteína BRCA1/genética , Proteína BRCA2/genética , Proliferação de Células , Quimioterapia Combinada , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613648

RESUMO

The concept of BRCAness was developed because of similarities between sporadic and hereditary breast cancer. BRCAness defines the pathogenesis and treatment sensitivity of many types of cancer, as well as the presence of a defect in the homologous recombination repair of tumor cells simulating the loss of BRCA1 or BRCA2, as in the presence of germline mutations. The question of treatment effectiveness for BRCA-like tumors is controversial and open. Thus, the aim of this work was to study the effectiveness of neoadjuvant chemotherapy (NAC) in BRCA-deficient breast cancer patients without germline mutations. The study involved 130 patients with breast cancer in stages IIA-IIIB. The treatment regimen included neoadjuvant chemotherapy, surgery, and adjuvant chemotherapy. The materials used were tumor samples from before and after chemotherapy. DNA and RNA were isolated from the tumor material. RNA was used to assess the expression level of BRCA1, while DNA was used for methyl-sensitive PCR. A microarray analysis was performed on high-density DNA chips from an Affymetrix CytoScanTM HD Array to assess DNA copy number aberration (CNA status) and loss of heterozygosity. A statistical analysis was performed using the Statistica 8.0 application package. It was noted that the existence of copy number aberrations in genes was statistically significantly associated with tumor treatment response and disease prognosis. Patients with partial regression had a statistically significantly higher amount of deletion than patients without an objective response (5/25 patients; 16%), as shown in the general sample of patients (52.9% versus 27.1%, respectively) at p = 0.0001 and in patients treated with anthracycline-containing regimen (p = 0.0001). In addition, it was shown that patients with BRCA1 deletion had higher rates of metastatic-free survival (log rank test, p = 0.009). BRCAness patients had a higher rate of 5-year metastatic survival, but not of treatment efficacy. The prospective study showed the positive effect of assessing the BRCAness phenotype of a tumor before treatment and of prescribing personalized NAC regimens. The objective response rate was statistically significantly more often observed in the group of patients with personalized chemotherapy (85.0% (34/40 patients) versus 62.3% (56/90 patients); p = 0.007). Despite the controversial effectiveness of BRCA-like tumor treatment, our data showed high predictive and prognostic significance of the BRCAness phenotype for the personalization of platinum and taxane regimens.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Terapia Neoadjuvante , Fenótipo , Platina/uso terapêutico , Estudos Prospectivos , Taxoides/uso terapêutico
14.
Genes Chromosomes Cancer ; 60(5): 314-331, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33222322

RESUMO

Different mutational processes leave characteristic patterns of somatic mutations in the genome that can be identified as mutational signatures. Determining the contributions of mutational signatures to cancer genomes allows not only to reconstruct the etiology of somatic mutations, but can also be used for improved tumor classification and support therapeutic decisions. We here present the R package yet another package for signature analysis (YAPSA) to deconvolute the contributions of mutational signatures to tumor genomes. YAPSA provides in-built collections from the COSMIC and PCAWG SNV signature sets as well as the PCAWG Indel signatures and employs signature-specific cutoffs to increase sensitivity and specificity. Furthermore, YAPSA allows to determine 95% confidence intervals for signature exposures, to perform constrained stratified signature analyses to obtain enrichment and depletion patterns of the identified signatures and, when applied to whole exome sequencing data, to correct for the triplet content of individual target capture kits. With this functionality, YAPSA has proved to be a valuable tool for analysis of mutational signatures in molecular tumor boards in a precision oncology context. YAPSA is available at R/Bioconductor (http://bioconductor.org/packages/3.12/bioc/html/YAPSA.html).


Assuntos
Sequenciamento do Exoma/métodos , Mutação , Neoplasias/genética , Software , Animais , Humanos
15.
Cancer Sci ; 112(3): 1310-1319, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33421217

RESUMO

Genes involved in the homologous recombination repair pathway-as exemplified by BRCA1, BRCA2, PALB2, ATM, and CHEK2-are frequently associated with hereditary breast and ovarian cancer syndrome. Germline mutations in the loci of these genes with loss of heterozygosity or additional somatic truncation at the WT allele lead to the development of breast cancers with characteristic clinicopathological features and prominent genomic features of homologous recombination deficiency, otherwise referred to as "BRCAness." Although clinical genetic testing for these and other genes has increased the chances of identifying pathogenic variants, there has also been an increase in the prevalence of variants of uncertain significance, which poses a challenge to patient care because of the difficulties associated with making further clinical decisions. To overcome this challenge, we sought to develop a methodology to reclassify the pathogenicity of these unknown variants using statistical modeling of BRCAness. The model was developed with Lasso logistic regression by comparing 116 genomic attributes derived from 37 BRCA1/2 biallelic mutant and 32 homologous recombination-quiescent breast cancer exomes. The model showed 95.8% and 86.7% accuracies in the training cohort and The Cancer Genome Atlas validation cohort, respectively. Through application of the model for variant reclassification of homologous recombination-associated hereditary breast and ovarian cancer causal genes and further assessment with clinicopathological features, we finally identified one likely pathogenic and five likely benign variants. As such, the BRCAness model developed from the tumor exome was robust and provided a reasonable basis for variant reclassification.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Predisposição Genética para Doença , Recombinação Homóloga , Modelos Genéticos , Adulto , Idoso , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Mama/patologia , Mama/cirurgia , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Quinase do Ponto de Checagem 2/genética , Análise Mutacional de DNA , Conjuntos de Dados como Assunto , Exoma/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Feminino , Testes Genéticos/métodos , Mutação em Linhagem Germinativa , Humanos , Mastectomia , Pessoa de Meia-Idade , Sequenciamento do Exoma
16.
Adv Exp Med Biol ; 1187: 159-179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33983578

RESUMO

Cancer has been defined as a genetic disorder caused by the accumulation of genetic alterations, which result from various internal and external DNA damage that is left unrepaired. One of the main characteristics of cancer is a partial loss of DNA damage repair (DDR) pathway, resulting in increased DNA damage levels and replication stress. DDR inhibitors have been suggested as a new anticancer strategy, under the concept of synthetic lethality. The poly-(ADP-ribose) polymerase (PARP) inhibitor is the first DDR inhibitor to be used in clinical practice. PARP inhibitors have been tested in patients with BRCA1/2 germline mutations (gBRCA1/2mt) and shown robust clinical benefits in breast cancer with gBRCA1/2mt and serous ovarian cancer patients. The concept of synthetic lethality is not limited to gBRCAmt for PARP inhibitor, and discovering homologous recombination deficiency (HRD) markers beyond BRCA1/2 and identifying best candidates for DDR inhibitors are the active research areas. At the same time, various combinations of DDR inhibitors and other anticancer drugs are being tested in both preclinical and clinical studies. In addition, based on recent evidence of the immune-modulatory effect of PARP inhibitors, the combination of DDR inhibitors and immune checkpoint inhibitors is being actively investigated. Acquired resistance mechanism of DDR inhibitors, as well as defining best candidates and best combinations, would be future research topics for DDR inhibitors. Furthermore, it would also be crucial to establish a clinically relevant standardized method to detect HRD for future clinical use.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Dano ao DNA , Reparo do DNA , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
17.
Hered Cancer Clin Pract ; 19(1): 36, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454564

RESUMO

Tumors arising in BRCA1/2 germline mutation carriers usually demonstrate somatic loss of the remaining BRCA1/2 allele and increased sensitivity to platinum compounds, anthracyclines, mitomycin C and poly (ADP-ribose) polymerase inhibitors (PARPi). Exposure to conventional platinum-based therapy or PARPi results in the restoration of BRCA1/2 function and development of resistance to systemic therapy, therefore, there is a need for other treatment options. Some studies suggested that the use of specific drug combinations or administration of high-dose chemotherapy may result in pronounced tumor responses. BRCA1/2-driven tumors are characterized by increased immunogenicity; promising efficacy of immune therapy has been demonstrated in a number of preclinical and clinical investigations. There are outstanding issues, which require further consideration. Platinum compounds and PARPi have very similar mode of antitumor action and are likely to render cross-resistance to each other, so their optimal position in cancer treatment schemes may be a subject of additional studies. Sporadic tumors with somatically acquired inactivation of BRCA1/2 or related genes resemble hereditary neoplasms with regard to the spectrum of drug sensitivity; the development of user-friendly BRCAness tests presents a challenge. Many therapeutic decisions are now based on the BRCA1/2 status, so the significant reduction of the turn-around time for predictive laboratory assays is of particular importance.

18.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008774

RESUMO

Homologous recombination (HR) is a vital process for repairing DNA double-strand breaks. Germline variants in the HR pathway, comprising at least 10 genes, such as BRCA1, BRCA2, ATM, BARD1, BRIP1, CHEK2, NBS1(NBN), PALB2, RAD51C, and RAD51D, lead to inherited susceptibility to specific types of cancers, including those of the breast, ovaries, prostate, and pancreas. The penetrance of germline pathogenic variants of each gene varies, whereas all their associated protein products are indispensable for maintaining a high-fidelity DNA repair system by HR. The present review summarizes the basic molecular mechanisms and components that collectively play a role in maintaining genomic integrity against DNA double-strand damage and their clinical implications on each type of hereditary tumor.


Assuntos
Recombinação Homóloga/genética , Neoplasias/genética , Predisposição Genética para Doença , Testes Genéticos , Mutação em Linhagem Germinativa/genética , Humanos , Neoplasias/diagnóstico , Medicina de Precisão
19.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671579

RESUMO

DNA double-strand breaks (DSBs) are among the most serious forms of DNA damage. In humans, DSBs are repaired mainly by non-homologous end joining (NHEJ) and homologous recombination repair (HRR). Single-strand annealing (SSA), another DSB repair system, uses homologous repeats flanking a DSB to join DNA ends and is error-prone, as it removes DNA fragments between repeats along with one repeat. Many DNA deletions observed in cancer cells display homology at breakpoint junctions, suggesting the involvement of SSA. When multiple DSBs occur in different chromosomes, SSA may result in chromosomal translocations, essential in the pathogenesis of many cancers. Inhibition of RAD52 (RAD52 Homolog, DNA Repair Protein), the master regulator of SSA, results in decreased proliferation of BRCA1/2 (BRCA1/2 DNA Repair Associated)-deficient cells, occurring in many hereditary breast and ovarian cancer cases. Therefore, RAD52 may be targeted in synthetic lethality in cancer. SSA may modulate the response to platinum-based anticancer drugs and radiation. SSA may increase the efficacy of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR associated 9) genome editing and reduce its off-target effect. Several basic problems associated with SSA, including its evolutionary role, interplay with HRR and NHEJ and should be addressed to better understand its role in cancer pathogenesis and therapy.


Assuntos
Reparo do DNA/genética , DNA de Cadeia Simples/genética , Edição de Genes/métodos , Instabilidade Genômica , Neoplasias/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Feminino , Humanos , Neoplasias/terapia
20.
Cancer Sci ; 111(4): 1375-1384, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31958182

RESUMO

BRCAness is considered a predictive biomarker to platinum and poly(ADP-ribose) polymerase (PARP) inhibitors. However, recent trials showed that its predictive value was limited in triple-negative breast cancer (TNBC) treated with platinum. Moreover, tumors with mutations of DNA damage response (DDR) genes, such as homologous recombination (HR) genes, could be sensitive to platinum and PARP inhibitors. Thus, we aim to explore the relationship between mutation status of DDR genes and BRCAness in TNBC. We sequenced 56 DDR genes in 120 TNBC and identified BRCAness by array comparative genomic hybridization. The sequencing results showed that 13, 14, and 14 patients had BRCA, non-BRCA HR, and non-HR DDR gene mutations, respectively. Array comparative genomic hybridization revealed that BRCA-mutated and HR gene-mutated TNBC shared similar BRCAness features, both having higher numbers and longer length of large-scale structural aberration (LSA, >10 Mb) and similar altered chromosomal regions of LSA. These suggested non-BRCA HR gene-mutated TNBC shared similar characteristics with BRCA-mutated TNBC, indicating non-BRCA HR gene-mutated TNBC sensitive to platinum and PARP inhibitors. Among tumors with mutation of non-HR DDR genes, 3 PTEN and 1 MSH6 mutation also contained significant LSAs (BRCAness); however, they had different regions of genomic alteration to BRCA and HR gene-mutated tumors, might explain prior findings that PTEN- and MSH6-mutated cancer cells not sensitive to PARP inhibitors. Therefore, we hypothesize that the heterogeneous genomic background of BRCAness indicates different responsiveness to platinum and PARP inhibitors. Direct sequencing DDR genes in TNBC should be applied to predict their sensitivity toward platinum and PARP inhibitors.


Assuntos
Dano ao DNA/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Recombinação Homóloga/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteína BRCA1/genética , Proteína BRCA2/genética , Dano ao DNA/genética , Feminino , Humanos , Pessoa de Meia-Idade , Mutação/genética , Platina/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Neoplasias de Mama Triplo Negativas/epidemiologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA