Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biochemistry (Mosc) ; 89(8): 1509-1518, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39245458

RESUMO

A large body of evidence implies the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of autism spectrum disorders (ASDs). A deficiency of BDNF in the hippocampus and frontal cortex of BTBR mice (a model of autism) has been noted in a number of studies. Earlier, we showed that induction of BDNF overexpression in the hippocampus of BTBR mice reduced anxiety and severity of stereotyped behavior, but did not affect social interest. Here, we induced BDNF overexpression in the frontal cortex neurons of BTBR mice using an adeno-associated viral vector, which resulted in a significant increase in the social interest in the three-chamber social test. At the same time, the stereotypy, exploratory behavior, anxiety-like behavior, and novel object recognition were not affected. Therefore, we have shown for the first time that the presence of BDNF in the frontal cortex is critical for the expression of social interest in BTBR mice, since compensation for its deficiency in this structure eliminated the autism-like deficiencies in the social behavior characteristic for these animals.


Assuntos
Transtorno Autístico , Fator Neurotrófico Derivado do Encéfalo , Modelos Animais de Doenças , Lobo Frontal , Comportamento Social , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Lobo Frontal/metabolismo , Camundongos , Transtorno Autístico/metabolismo , Transtorno Autístico/genética , Masculino , Comportamento Animal , Camundongos Endogâmicos C57BL
2.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000309

RESUMO

Autoreactivity of the complement system may escalate the development of diabetic nephropathy. We used the BTBR OB mouse model of type 2 diabetes to investigate the role of the complement factor mannan-binding lectin (MBL) in diabetic nephropathy. Female BTBR OB mice (n = 30) and BTBR non-diabetic WT mice (n = 30) were included. Plasma samples (weeks 12 and 21) and urine samples (week 19) were analyzed for MBL, C3, C3-fragments, SAA3, and markers for renal function. Renal tissue sections were analyzed for fibrosis, inflammation, and complement deposition. The renal cortex was analyzed for gene expression (complement, inflammation, and fibrosis), and isolated glomerular cells were investigated for MBL protein. Human vascular endothelial cells cultured under normo- and hyperglycemic conditions were analyzed by flow cytometry. We found that the OB mice had elevated plasma and urine concentrations of MBL-C (p < 0.0001 and p < 0.001, respectively) and higher plasma C3 levels (p < 0.001) compared to WT mice. Renal cryosections from OB mice showed increased MBL-C and C4 deposition in the glomeruli and increased macrophage infiltration (p = 0.002). Isolated glomeruli revealed significantly higher MBL protein levels (p < 0.001) compared to the OB and WT mice, and no renal MBL expression was detected. We report that chronic inflammation plays an important role in the development of DN through the binding of MBL to hyperglycemia-exposed renal cells.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Modelos Animais de Doenças , Inflamação , Lectina de Ligação a Manose , Animais , Lectina de Ligação a Manose/metabolismo , Lectina de Ligação a Manose/genética , Lectina de Ligação a Manose/sangue , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Inflamação/metabolismo , Inflamação/patologia , Feminino , Humanos , Rim/metabolismo , Rim/patologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-37914900

RESUMO

BACKGROUND: Dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, is approved for the treatment of type 2 diabetes, heart failure, and chronic kidney disease. DAPA-HF and DELIVER trial results demonstrate that the cardiovascular protective effect of dapagliflozin extends to non-diabetic patients. Hence, the mechanism-of-action may extend beyond glucose-lowering and is not completely elucidated. We have previously shown that dapagliflozin reduces cardiac hypertrophy, inflammation, fibrosis, and apoptosis and increases ejection fraction in BTBR mice with type 2 diabetes. METHODS: We conducted a follow-up RNA-sequencing study on the heart tissue of these animals and performed differential expression and Ingenuity Pathway analysis. Selected markers were confirmed by RT-PCR and Western blot. RESULTS: SGLT2 had negligible expression in heart tissue. Dapagliflozin improved cardiac metabolism by decreasing glycolysis and pyruvate utilization enzymes, induced antioxidant enzymes, and decreased expression of hypoxia markers. Expression of inflammation, apoptosis, and hypertrophy pathways was decreased. These observations corresponded to the effects of dapagliflozin in the clinical trials.

4.
Cell Biochem Funct ; 41(5): 553-563, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37218093

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, and the etiology is unknown. Metabolic dysfunction is present in patients with ASD. In the current study, untargeted metabolomics was employed to screen the differential metabolites in the liver of BTBR mouse model of autism, and MetaboAnalyst 4.0 was used for metabolic pathway analysis. Mice were killed, and liver samples were collected for untargeted metabolomics analysis and examination of histopathology. Finally, 12 differential metabolites were identified. The intensities of phenylethylamine, 4-Guanidinobutanoic acid, leukotrieneD4, and SM(d18:1/24:1(15Z)) were significantly upregulated (p < .01), and the intensities of estradiol, CMP-N-glycoloylneuraminate, retinoyl ß-glucuronide,4-phosphopantothenoylcysteine, aldophosphamide, taurochenodesoxycholic acid, taurocholic acid, and dephospho-CoA were significantly downregulated (p < .01) in the BTBR group compared with C57 control group, indicating that differences between BTBR and C57 groups were observed in metabolic patterns. Disturbed pathways of the BTBR mice involved lipid metabolism, retinol metabolism, and amino acid and energy metabolism, revealing that bile acid-mediated activation of LXRα might contribute to metabolic dysfunction of lipid and leukotriene D4 produced by the activation of 5-LOX led to hepatic inflammation. Pathological changes in the liver tissue, such as hepatocyte vacuolization, and small amounts of inflammatory and cell necrosis, further supported metabolomic results. Moreover, Spearman's rank correlation revealed that there is a strong relationship between metabolites across liver and cortex, suggesting liver may exert action by connecting peripheral and neural systems. These findings were likely to be of pathological importance or a cause/consequence of autism, and may provide insight into key metabolic dysfunction to target potential therapeutic strategies relating to ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Transtorno do Espectro Autista/metabolismo , Camundongos Endogâmicos , Fígado/metabolismo , Metabolômica , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047547

RESUMO

Autism spectrum disorders (ASD) are neurobehavioral disabilities characterized by impaired social interactions, poor communication skills, and restrictive/repetitive behaviors. Cadmium is a common heavy metal implicated in ASD. In this study, we investigated the effects of Cd exposure on BTBR T+ Itpr3tf/J (BTBR) mice, an ASD model. We looked for changes in repetitive behaviors and sociability through experiments. We also explored the molecular mechanisms underlying the effects of Cd exposure, focusing on proinflammatory cytokines and pathways. Flow cytometry measured IL-17A-, IL-17F-, IL-21-, TNF-α-, STAT3-, and RORγt-expressing CD4+ T cells from the spleens of experimental mice. We then used RT-PCR to analyze IL-17A, IL-17F, IL-21, TNF-α, STAT3, and RORγ mRNA expression in the brain. The results of behavioral experiments showed that Cd exposure significantly increased self-grooming and marble-burying in BTBR mice while decreasing social interactions. Cd exposure also significantly increased the number of CD4+IL-17A+, CD4+IL-17F+, CD4+IL-21+, CD4+TNF-α+, CD4+STAT3+, and CD4+RORγt+ cells, while upregulating the mRNA expression of the six molecules in the brain. Overall, our results suggest that oral exposure to Cd aggravates behavioral and immune abnormalities in an ASD animal model. These findings have important implications for ASD etiology and provide further evidence of heavy metals contributing to neurodevelopmental disorders through proinflammatory effects.


Assuntos
Transtorno do Espectro Autista , Interleucina-17 , Camundongos , Animais , Interleucina-17/metabolismo , Cádmio/toxicidade , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fator de Necrose Tumoral alfa/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Transtorno do Espectro Autista/metabolismo , RNA Mensageiro/metabolismo , Modelos Animais de Doenças
6.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003408

RESUMO

Autism spectrum disorder (ASD) is a common neurodevelopmental illness characterized by abnormal social interactions, communication difficulties, and repetitive and limited behaviors or interests. The BTBR T+ Itpr3tf/J (BTBR) mice have been used extensively to research the ASD-like phenotype. Lead (Pb) is a hazardous chemical linked to organ damage in the human body. It is regarded as one of the most common metal exposure sources and has been connected to the development of neurological abnormalities. We used flow cytometry to investigate the molecular mechanism behind the effect of Pb exposure on subsets of CD4+ T cells in the spleen expressing IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Furthermore, using RT-PCR, we studied the effect of Pb on the expression of numerous genes in brain tissue, including IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Pb exposure increased the population of CD4+IFN-γ+, CD4+T-bet+, CD4+STAT1+, CD4+STAT4+, CD4+IL-9+, CD4+IRF4+, CD4+IL-22+, and CD4+AhR+ cells in BTBR mice. In contrast, CD4+IL-10+ and CD4+Foxp3+ cells were downregulated in the spleen cells of Pb-exposed BTBR mice compared to those treated with vehicle. Furthermore, Pb exposure led to a significant increase in IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, and AhR mRNA expression in BTBR mice. In contrast, IL-10 and Foxp3 mRNA expression was significantly lower in those treated with the vehicle. Our data suggest that Pb exposure exacerbates immunological dysfunctions associated with ASD. These data imply that Pb exposure may increase the risk of ASD.


Assuntos
Transtorno do Espectro Autista , Interleucina-10 , Humanos , Camundongos , Animais , Interleucina-10/farmacologia , Chumbo/toxicidade , Transtorno do Espectro Autista/induzido quimicamente , Interleucina-9/farmacologia , Transdução de Sinais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , RNA Mensageiro , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
7.
Cell Biochem Funct ; 40(2): 150-162, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34978084

RESUMO

Gene and protein expression of BTBR T+ Itpr3tf /J (BTBR) mice with autistic-like behaviours were compared with the C57BL/6J strain, which is considered to have normal immunity and behaviour. Notch signalling pathway was constitutively activated in the immune system and liver of BTBR T+ Itpr3tf /J (BTBR) mice. Notch ligand 4 (Dll4), Notch receptors (Notch1 Notch2 and Notch3) and recombination signal binding protein for immunoglobulin κ j region (RBPJ) were increased both at gene and protein levels in BTBR spleens and thymi. Notch downstream transcriptional factors, Tbx21, Gata3, Rorc and FoxP3 were increased in BTBR spleens, Gata3 and FoxP3 were increased in BTBR thymi and BTBR mice have a high blood CD4/CD8 T cell ratio. Reduced nucleotide excision repair ability in BTBR spleens was associated with increased 8-oxoguanine, Ogg1 inhibition, an enhanced level of apoptotic thymocytes and higher expression of GATA-3. Ogg1 inhibition and enhanced GATA-3 expression also were detected in BTBR brain. Notch signal promoted mitochondrial dynamics switching to enhanced fission with an increased number and mass of mitochondria in immune cells of BTBR mice, but not in livers and brains. Constitutive influences on mitochondria exist in this mouse model of autism spectrum disorder; similar outcomes from environmental exposures might occur perinatally in susceptible individuals to affect the development of autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/metabolismo
8.
Biochemistry (Mosc) ; 87(10): 1206-1218, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36273889

RESUMO

The mechanisms of autism are of extreme interest due to the high prevalence of this disorder in the human population. In this regard, special attention is given to the transcription factor Freud-1 (encoded by the Cc2d1a gene), which regulates numerous intracellular signaling pathways and acts as a silencer for 5-HT1A serotonin and D2 dopamine receptors. Disruption of the Freud-1 functions leads to the development of various psychopathologies. In this study, we found an increase in the expression of the Cc2d1a/Freud-1 gene in the hippocampus of BTBR mice (model of autistic-like behavior) in comparison with C57Bl/6J mice and examined how restoration of the Cc2d1a/Freud-1 expression in the hippocampus of BTBR mice affects their behavior, expression of 5-HT1A serotonin and D2 dopamine receptors, and CREB and NF-κB intracellular signaling pathways in these animals. Five weeks after administration of the adeno-associated viral vector (AAV) carrying the pAAV_H1-2_shRNA-Freud-1_Syn_EGFP plasmid encoding a small hairpin RNA (shRNA) that suppressed expression of the Cc2d1a/Freud-1 gene, we observed an elevation in the anxiety levels, as well as the increase in the escape latency and path length to the platform in the Morris water maze test, which was probably associated with a strengthening of the active stress avoidance strategy. However, the Cc2d1a/Freud-1 knockdown did not affect the spatial memory and phosphorylation of the CREB transcription factor, although such effect was found in C57Bl/6J mice in our previous study. These results suggest the impairments in the CREB-dependent effector pathway in BTBR mice, which may play an important role in the development of the autistic-like phenotype. The knockdown of Cc2d1a/Freud-1 in the hippocampus of BTBR mice did not affect expression of the 5-HT1A serotonin and D2 dopamine receptors and key NF-κB signaling genes (Nfkb1 and Rela). Our data suggest that the transcription factor Freud-1 plays a significant role in the pathogenesis of anxiety and active stress avoidance in autism.


Assuntos
Transtorno Autístico , Hipocampo , Animais , Humanos , Camundongos , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Modelos Animais de Doenças , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Serotonina/genética , Serotonina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
9.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955865

RESUMO

Autism spectrum disorder (ASD) identifies a neurodevelopmental disease defined by social impairments and repetitive or stereotyped behaviors. The etiology of ASD remains unclear; it primarily affects the brain, but a link between gastrointestinal (GI) diseases, inflammatory mucosal pathology and this disorder has been suggested. In particular, a central role seems to be played by an imbalance in pro-and anti-inflammatory cytokines, oxidative stress, and apoptosis. Toll-like receptor 4 (TLR4) is a protein of innate immunity responsible for the regulation and maintenance of intestinal homeostasis. Through histochemical and immunohistochemical evaluations we analyzed the intestinal morphology and the immunopositivity of TLR4 and of other pro-inflammatory and apoptotic proteins in BTBR T+Itpr3tf/J mice. Morphological data showed that the mucosal tunica presented longer intestinal villi. The length of the villi and the epithelial surface determine the exchanges of the intestinal mucosa with luminal contents, modifying the microbiota composition. The biochemical and immunohistochemical results indicated a close relationship among the increase of TLR4 and the activation of NF-kB subunits (p65 and p50) and pro-inflammatory and apoptotic proteins, such as cyclooxygenase-2, interleukin-1ß, inducible nitric oxide synthase, tumor nuclear factor-alpha, caspase-3, caspase-8. These preliminary results require more in-depth study but they suggest the TLR4 signaling pathway as a possible target for therapeutic approaches to reduce GI disorders in ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Receptor 4 Toll-Like/uso terapêutico
10.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613969

RESUMO

Dysregulation in brain neurotransmitters underlies several neuropsychiatric disorders, e.g., autism spectrum disorder (ASD). Also, abnormalities in the extracellular-signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway pave the way for neuroinflammation, neurodegeneration, and altered learning phenotype in ASD. Therefore, the effects of chronic systemic administration of the multiple-targeting antagonist ST-713 at the histamine H3 receptor (H3R) and dopamine D2/D3 receptors (D2/D3R) on repetitive self-grooming, aggressive behaviors, and abnormalities in the MAPK pathway in BTBR T + Itpr3tf/J (BTBR) mice were assessed. The results showed that ST-713 (2.5, 5, and 10 mg/kg, i.p.) mitigated repetitive self-grooming and aggression in BTBR mice (all p < 0.05), and the ameliorative effects of the most promising dose of ST-713 (5 mg/kg, i.p.) on behaviors were completely abrogated by co-administration of the H3R agonist (R)-α-methylhistamine or the anticholinergic drug scopolamine. Moreover, the elevated levels of several MAPK pathway proteins and induced proinflammatory markers such as tumor necrosis factor (TNF-α), interleukin-1ß (IL-1ß), and IL-6 were significantly suppressed following chronic administration of ST-713 (5 mg/kg, i.p.) (all p < 0.01). Furthermore, ST-713 significantly increased the levels of histamine and dopamine in hippocampal tissue of treated BTBR mice (all p < 0.01). The current observations signify the potential role of such multiple-targeting compounds, e.g., ST-713, in multifactorial neurodevelopmental disorders such as ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Receptores Histamínicos H3 , Camundongos , Animais , Transtorno Autístico/genética , Transtorno do Espectro Autista/tratamento farmacológico , Receptores Histamínicos H3/metabolismo , Asseio Animal , Dopamina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , MAP Quinases Reguladas por Sinal Extracelular , Agressão , Modelos Animais de Doenças
11.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298871

RESUMO

Autistic spectrum disorder (ASD) refers to a group of neurodevelopmental disorders characterized by impaired social interaction and cognitive deficit, restricted repetitive behaviors, altered immune responses, and imbalanced oxidative stress status. In recent years, there has been a growing interest in studying the role of nicotinic acetylcholine receptors (nAChRs), specifically α7-nAChRs, in the CNS. Influence of agonists for α7-nAChRs on the cognitive behavior, learning, and memory formation has been demonstrated in neuro-pathological condition such as ASD and attention-deficit hyperactivity disorder (ADHD). Curcumin (CUR), the active compound of the spice turmeric, has been shown to act as a positive allosteric modulator of α7-nAChRs. Here we hypothesize that CUR, acting through α7-nAChRs, influences the neuropathology of ASD. In patch clamp studies, fast inward currents activated by choline, a selective agonist of α7-nAChRs, were significantly potentiated by CUR. Moreover, choline induced enhancement of spontaneous inhibitory postsynaptic currents was markedly increased in the presence of CUR. Furthermore, CUR (25, 50, and 100 mg/kg, i.p.) ameliorated dose-dependent social deficits without affecting locomotor activity or anxiety-like behaviors of tested male Black and Tan BRachyury (BTBR) mice. In addition, CUR (50 and 100 mg/kg, i.p.) mitigated oxidative stress status by restoring the decreased levels of superoxide dismutase (SOD) and catalase (CAT) in the hippocampus and the cerebellum of treated mice. Collectively, the observed results indicate that CUR potentiates α7-nAChRs in native central nervous system neurons, mitigates disturbed oxidative stress, and alleviates ASD-like features in BTBR mice used as an idiopathic rodent model of ASD, and may represent a promising novel pharmacological strategy for ASD treatment.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/tratamento farmacológico , Curcumina/farmacologia , Hipocampo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Transtorno Autístico/metabolismo , Colina/farmacologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Agonistas Nicotínicos/farmacologia , Comportamento Social
12.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669336

RESUMO

Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder characterized by social and communicative impairments, as well as repetitive and restricted behaviors (RRBs). With the limited effectiveness of current pharmacotherapies in treating repetitive behaviors, the present study determined the effects of acute systemic treatment of the novel multi-targeting ligand ST-2223, with incorporated histamine H3 receptor (H3R) and dopamine D2/D3 receptor affinity properties, on ASD-related RRBs in a male Black and Tan BRachyury (BTBR) mouse model of ASD. ST-2223 (2.5, 5, and 10 mg/kg, i.p.) significantly mitigated the increase in marble burying and self-grooming, and improved reduced spontaneous alternation in BTBR mice (all p < 0.05). Similarly, reference drugs memantine (MEM, 5 mg/kg, i.p.) and aripiprazole (ARP, 1 mg/kg, i.p.), reversed abnormally high levels of several RRBs in BTBR (p < 0.05). Moreover, ST-2223 palliated the disturbed anxiety levels observed in an open field test (all p < 0.05), but did not restore the hyperactivity parameters, whereas MEM failed to restore mouse anxiety and hyperactivity. In addition, ST-2223 (5 mg/kg, i.p.) mitigated oxidative stress status by decreasing the elevated levels of malondialdehyde (MDA), and increasing the levels of decreased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) in different brain parts of treated BTBR mice (all p < 0.05). These preliminary in vivo findings demonstrate the ameliorative effects of ST-2223 on RRBs in a mouse model of ASD, suggesting its pharmacological prospective to rescue core ASD-related behaviors. Further confirmatory investigations on its effects on various brain neurotransmitters, e.g., dopamine and histamine, in different brain regions are still warranted to corroborate and expand these initial data.


Assuntos
Transtorno do Espectro Autista/tratamento farmacológico , Encéfalo/metabolismo , Antagonistas dos Receptores de Dopamina D2/administração & dosagem , Asseio Animal/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos H3/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Receptores de Dopamina D3/antagonistas & inibidores , Animais , Ansiedade/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Antagonistas dos Receptores de Dopamina D2/metabolismo , Células HEK293 , Antagonistas dos Receptores Histamínicos H3/metabolismo , Humanos , Ligantes , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Receptores Histamínicos H3/metabolismo
13.
J Neuroinflammation ; 13(1): 149, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27301868

RESUMO

BACKGROUND: Autism spectrum disorders (ASD) are emerging as polygenic and multifactorial disorders in which complex interactions between defective genes and early exposure to environmental stressors impact on the correct neurodevelopment and brain processes. Organophosphate insecticides, among which chlorpyrifos (CPF), are widely diffused environmental toxicants associated with neurobehavioral deficits and increased risk of ASD occurrence in children. Oxidative stress and dysregulated immune responses are implicated in both organophosphate neurodevelopmental effects and ASD etiopathogenesis. BTBR T+tf/J mice, a well-studied model of idiopathic autism, show several behavioral and immunological alterations found in ASD children, and we recently showed that CPF gestational exposure strengthened some of these autistic-like traits. In the present study, we aimed at investigating whether the behavioral effects of gestational CPF administration are associated with brain increased oxidative stress and altered lipid mediator profile. METHODS: Brain levels of F2-isoprostanes (15-F2t-IsoP), as index of in vivo oxidative stress, and prostaglandin E2 (PGE2), a major arachidonic acid metabolite released by immune cells and by specific glutamatergic neuron populations mainly in cortex and hippocampus, were assessed by specific enzyme-immuno assays in brain homogenates from BTBR T+tf/J and C57Bl6/J mice, exposed during gestation to either vehicle or CPF. Measures were performed in mice of both sexes, at different postnatal stages (PNDs 1, 21, and 70). RESULTS: At birth, BTBR T+tf/J mice exhibited higher baseline 15-F2t-IsoP levels as compared to C57Bl6/J mice, suggestive of greater oxidative stress processes. Gestational treatment with CPF-enhanced 15-F2t-IsoP and PGE2 levels in strain- and age-dependent manner, with 15-F2t-IsoP increased in BTBR T+tf/J mice at PNDs 1 and 21, and PGE2 elevated in BTBR T+tf/J mice at PNDs 21 and 70. At PND 21, CPF effects were sex-dependent being the increase of the two metabolites mainly associated with male mice. CPF treatment also induced a reduction of somatic growth, which reached statistical significance at PND 21. CONCLUSIONS: These findings indicate that the autistic-like BTBR T+tf/J strain is highly vulnerable to environmental stressors during gestational period. The results further support the hypothesis that oxidative stress might be the link between environmental neurotoxicants such as CPF and ASD. The increased levels of oxidative stress during early postnatal life could result in delayed and long-lasting alterations in specific pathways relevant to ASD, of which PGE2 signaling represents an important one.


Assuntos
Transtorno Autístico/etiologia , Encéfalo/metabolismo , Clorpirifos/toxicidade , Inibidores da Colinesterase/toxicidade , Dinoprostona/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Animais , Animais Recém-Nascidos , Transtorno Autístico/patologia , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Proteínas Fetais/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Estresse Oxidativo/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Proteínas com Domínio T/genética
14.
Physiol Behav ; 280: 114550, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614416

RESUMO

Neuroinflammation in the early postnatal period can disturb trajectories of the completion of normal brain development and can lead to mental illnesses, such as depression, anxiety disorders, and personality disorders later in life. In our study, we focused on evaluating short- and long-term effects of neonatal inflammation induced by lipopolysaccharide, poly(I:C), or their combination in female and male C57BL/6 and BTBR mice. We chose the BTBR strain as potentially more susceptible to neonatal inflammation because these mice have behavioral, neuroanatomical, and physiological features of autism spectrum disorders, an abnormal immune response, and several structural aberrations in the brain. Our results indicated that BTBR mice are more sensitive to the influence of the neonatal immune activation (NIA) on the formation of neonatal reflexes than C57BL/6 mice are. In these experiments, the injection of lipopolysaccharide had an effect on the formation of the cliff aversion reflex in female BTBR mice. Nonetheless, NIA had no delayed effects on either social behavior or anxiety-like behavior in juvenile and adolescent BTBR and C57BL/6 mice. Altogether, our data show that NIA has mimetic-, age-, and strain-dependent effects on the development of neonatal reflexes and on exploratory activity in BTBR and C57BL/6 mice.


Assuntos
Animais Recém-Nascidos , Inflamação , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Poli I-C , Animais , Feminino , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Inflamação/induzido quimicamente , Poli I-C/farmacologia , Ansiedade/induzido quimicamente , Comportamento Social , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Reflexo/fisiologia , Reflexo/efeitos dos fármacos
15.
J Neuroimmunol ; 391: 578365, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723577

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficiencies in communication, repetitive and stereotyped behavioral patterns, and difficulties in reciprocal social engagement. The presence of immunological dysfunction in ASD has been well established. Aflatoxin B1 (AFB1) is a prevalent mycotoxin found in food and feed, causing immune toxicity and hepatotoxicity. AFB1 is significantly elevated in several regions around the globe. Existing research indicates that prolonged exposure to AFB1 results in neurological problems. The BTBR T+ Itpr3tf/J (BTBR) mice, which were used as an autism model, exhibit the primary behavioral traits that define ASD, such as repeated, stereotyped behaviors and impaired social interactions. The main objective of this work was to assess the toxic impact of AFB1 in BTBR mice. This work aimed to examine the effects of AFB1 on the expression of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 by CD19+ B cells in the spleen of the BTBR using flow cytometry. We also verified the impact of AFB1 exposure on the mRNA expression levels of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 in the brain of BTBR mice using real-time PCR. The findings of our study showed that the mice treated with AFB1 in the BTBR group exhibited a substantial increase in the presence of CD19+Notch-1+, CD19+IL-6+, CD19+MCP-1+, CD19+iNOS+, CD19+GM-CSF+, and CD19+NF-κB p65+ compared to the mice in the BTBR group that were treated with saline. Our findings also confirmed that administering AFB1 to BTBR mice leads to elevated mRNA expression levels of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 in the brain, in comparison to BTBR mice treated with saline. The data highlight that exposure to AFB1 worsens immunological abnormalities by increasing the expression of inflammatory mediators in BTBR mice.


Assuntos
Aflatoxina B1 , Antígenos CD19 , Modelos Animais de Doenças , Animais , Camundongos , Aflatoxina B1/toxicidade , Antígenos CD19/metabolismo , Masculino , Mediadores da Inflamação/metabolismo , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/imunologia , Transtorno Autístico/metabolismo , Camundongos Transgênicos
16.
Reprod Toxicol ; 126: 108599, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38679149

RESUMO

OBJECTIVE: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant difficulties in social interaction, communication, and repeated stereotypic behaviour. Aflatoxin B1 (AFB1) is the most potent and well-known mycotoxin in various food sources. Despite its propensity to generate significant biochemical and structural changes in human and animal tissues, the influence of AFB1 on ASD has yet to be thoroughly studied. Mounting evidence indicates that chemokine receptors play a crucial function in the central nervous system and are implicated in developing several neuroinflammatory disorders. Chemokine receptors in individuals with ASD were elevated in the anterior cingulate gyrus astrocytes, cerebellum, and brain. METHODS: The BTBR T+Itpr3tf/J (BTBR) mice are inbred strains that exhibit strong and consistently observed deficits in social interactions, characterized by excessive self-grooming and limited vocalization in social contexts. We examined the impact of AFB1 on CCR3-, CCR7-, CCR9-, CXCR3-, CXCR4-, and CXCR6-expressing I-A/I-E+ cells in the spleen of the BTBR mouse model of autism. We evaluated the mRNA levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 chemokine receptors in the brain. RESULTS: The exposure to AFB1 in BTBR mice resulted in a significant rise in the number of I-A/I-E+CCR3+, I-A/I-E+CCR7+, I-A/I-E+CCR9+, I-A/I-E+CXCR3+, I-A/I-E+CXCR4+, and I-A/I-E+CXCR6+ cells. Furthermore, exposure to AFB1 increased mRNA expression levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 in the brain. CONCLUSIONS: These findings highlight that AFB1 exposure increases the expression of chemokine receptors in BTBR mice, indicating the necessity for further research into AFB1's role in the development of ASD.


Assuntos
Aflatoxina B1 , Transtorno do Espectro Autista , Encéfalo , Modelos Animais de Doenças , Baço , Animais , Transtorno do Espectro Autista/induzido quimicamente , Aflatoxina B1/toxicidade , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/metabolismo , Masculino , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Camundongos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo
17.
Pharmaceuticals (Basel) ; 17(10)2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39458934

RESUMO

BACKGROUND/OBJECTIVES: Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by social interaction difficulties, repetitive behaviors, and immune dysregulation with elevated pro-inflammatory markers. Autophagic deficiency also contributes to social behavior deficits in ASD. Histamine H3 receptor (H3R) antagonism is a potential treatment strategy for brain disorders with features overlapping ASD, such as schizophrenia and Alzheimer's disease. METHODS: This study investigated the effects of sub-chronic systemic treatment with the H3R antagonist E159 on social deficits, repetitive behaviors, neuroinflammation, and autophagic disruption in male BTBR mice. RESULTS: E159 (2.5, 5, and 10 mg/kg, i.p.) improved stereotypic repetitive behavior by reducing self-grooming time and enhancing spontaneous alternation in addition to attenuating social deficits. It also decreased pro-inflammatory cytokines in the cerebellum and hippocampus of treated BTBR mice. In BTBR mice, reduced expression of autophagy-related proteins LC3A/B and Beclin 1 was observed, which was elevated following treatment with E159, attenuating the disruption in autophagy. The co-administration with the H3R agonist MHA (10 mg/kg, i.p.) reversed these effects, highlighting the role of histaminergic neurotransmission in observed behavioral improvements. CONCLUSIONS: These preliminary findings suggest the therapeutic potential of H3R antagonists in targeting neuroinflammation and autophagic disruption to improve ASD-like behaviors.

18.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675442

RESUMO

Studying the involvement of nicotinic acetylcholine receptors (nAChRs), specifically α7-nAChRs, in neuropsychiatric brain disorders such as autism spectrum disorder (ASD) has gained a growing interest. The flavonoid apigenin (APG) has been confirmed in its pharmacological action as a positive allosteric modulator of α7-nAChRs. However, there is no research describing the pharmacological potential of APG in ASD. The aim of this study was to evaluate the effects of the subchronic systemic treatment of APG (10-30 mg/kg) on ASD-like repetitive and compulsive-like behaviors and oxidative stress status in the hippocampus and cerebellum in BTBR mice, utilizing the reference drug aripiprazole (ARP, 1 mg/kg, i.p.). BTBR mice pretreated with APG (20 mg/kg) or ARP (1 mg/g, i.p.) displayed significant improvements in the marble-burying test (MBT), cotton-shredding test (CST), and self-grooming test (SGT) (all p < 0.05). However, a lower dose of APG (10 mg/kg, i.p.) failed to modulate behaviors in the MBT or SGT, but significantly attenuated the increased shredding behaviors in the CST of tested mice. Moreover, APG (10-30 mg/kg, i.p.) and ARP (1 mg/kg) moderated the disturbed levels of oxidative stress by mitigating the levels of catalase (CAT) and superoxide dismutase (SOD) in the hippocampus and cerebellum of treated BTBR mice. In patch clamp studies in hippocampal slices, the potency of choline (a selective agonist of α7-nAChRs) in activating fast inward currents was significantly potentiated following incubation with APG. Moreover, APG markedly potentiated the choline-induced enhancement of spontaneous inhibitory postsynaptic currents. The observed results propose the potential therapeutic use of APG in the management of ASD. However, further preclinical investigations in additional models and different rodent species are still needed to confirm the potential relevance of the therapeutic use of APG in ASD.

19.
Brain Sci ; 13(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38002479

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by impaired communication, reciprocal social interactions, restricted sociability deficits, and stereotyped behavioral patterns. Environmental factors and genetic susceptibility have been implicated in an increased risk of ASD. Aflatoxin B1 (AFB1) is a typical contaminant of food and feed that causes severe immune dysfunction in humans and animals. Nevertheless, the impact of ASD on behavioral and immunological responses has not been thoroughly examined. To investigate this phenomenon, we subjected BTBR T+Itpr3tf/J (BTBR) mice to AFB1 and evaluated their marble-burying and self-grooming behaviors and their sociability. The exposure to AFB1 resulted in a notable escalation in marble-burying and self-grooming activities while concurrently leading to a decline in social contacts. In addition, we investigated the potential molecular mechanisms that underlie the impact of AFB1 on the production of Th1 (IFN-γ, STAT1, and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A, IL-21, RORγT, and STAT3), Th22 (IL-22, AhR, and TNF-α), and T regulatory (Treg) (IL-10, TGF-ß1, and FoxP3) cells in the spleen. This was achieved using RT-PCR and Western blot analyses to assess mRNA and protein expression in brain tissue. The exposure to AFB1 resulted in a significant upregulation of various immune-related factors, including IFN-γ, STAT1, T-bet, IL-9, IRF4, IL-17A, IL-21, RORγ, STAT3, IL-22, AhR, and TNF-α in BTBR mice. Conversely, the production of IL-10, TGF-ß1, and FoxP3 by CD4+ T cells was observed to be downregulated. Exposure to AFB1 demonstrated a notable rise in Th1/Th9/Th22/Th17 levels and a decrease in mRNA and protein expression of Treg. The results above underscore the significance of AFB1 exposure in intensifying neurobehavioral and immunological abnormalities in BTBR mice, hence indicating the necessity for a more comprehensive investigation into the contribution of AFB1 to the development of ASD.

20.
Biomedicines ; 11(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37239153

RESUMO

Disturbances in neuroplasticity undoubtedly play an important role in the development of autism spectrum disorders (ASDs). Brain neurotransmitters and brain-derived neurotrophic factor (BDNF) are known as crucial players in cerebral and behavioral plasticity. Such an important neurotransmitter as dopamine (DA) is involved in the behavioral inflexibility of ASD. Additionally, much evidence from human and animal studies implicates BDNF in ASD pathogenesis. Nonetheless, crosstalk between BDNF and the DA system has not been studied in the context of an autistic-like phenotype. For this reason, the aim of our study was to compare the effects of either the acute intracerebroventricular administration of a recombinant BDNF protein or hippocampal adeno-associated-virus-mediated BDNF overexpression on autistic-like behavior and expression of key DA-related and BDNF-related genes in BTBR mice (a widely recognized model of autism). The BDNF administration failed to affect autistic-like behavior but downregulated Comt mRNA in the frontal cortex and hippocampus; however, COMT protein downregulation in the hippocampus and upregulation in the striatum were insignificant. BDNF administration also reduced the receptor TrkB level in the frontal cortex and midbrain and the BDNF/proBDNF ratio in the striatum. In contrast, hippocampal BDNF overexpression significantly diminished stereotypical behavior and anxiety; these alterations were accompanied only by higher hippocampal DA receptor D1 mRNA levels. The results indicate an important role of BDNF in mechanisms underlying anxiety and repetitive behavior in ASDs and implicates BDNF-DA crosstalk in the autistic-like phenotype of BTBR mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA