Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(42): e2305837120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37819981

RESUMO

Bacteria possess various receptors that sense different signals and transmit information to enable an optimal adaptation to the environment. A major limitation in microbiology is the lack of information on the signal molecules that activate receptors. Signals recognized by sensor domains are poorly reflected in overall sequence identity, and therefore, the identification of signals from the amino acid sequence of the sensor alone presents a challenge. Biogenic amines are of great physiological importance for microorganisms and humans. They serve as substrates for aerobic and anaerobic growth and play a role of neurotransmitters and osmoprotectants. Here, we report the identification of a sequence motif that is specific for amine-sensing sensor domains that belong to the Cache superfamily of the most abundant extracellular sensors in prokaryotes. We identified approximately 13,000 sensor histidine kinases, chemoreceptors, receptors involved in second messenger homeostasis and Ser/Thr phosphatases from 8,000 bacterial and archaeal species that contain the amine-recognizing motif. The screening of compound libraries and microcalorimetric titrations of selected sensor domains confirmed their ability to specifically bind biogenic amines. Mutants in the amine-binding motif or domains that contain a single mismatch in the binding motif had either no or a largely reduced affinity for amines. We demonstrate that the amine-recognizing domain originated from the universal amino acid-sensing Cache domain, thus providing insight into receptor evolution. Our approach enables precise "wet"-lab experiments to define the function of regulatory systems and therefore holds a strong promise to enable the identification of signals stimulating numerous receptors.


Assuntos
Aminoácidos , Archaea , Humanos , Archaea/genética , Archaea/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Bactérias/genética , Bactérias/metabolismo , Aminas Biogênicas/metabolismo
2.
J Biol Chem ; 300(5): 107265, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582452

RESUMO

Histidine kinases are key bacterial sensors that recognize diverse environmental stimuli. While mechanisms of phosphorylation and phosphotransfer by cytoplasmic kinase domains are relatively well-characterized, the ways in which extracytoplasmic sensor domains regulate activation remain mysterious. The Cpx envelope stress response is a conserved Gram-negative two-component system which is controlled by the sensor kinase CpxA. We report the structure of the Escherichia coli CpxA sensor domain (CpxA-SD) as a globular Per-ARNT-Sim (PAS)-like fold highly similar to that of Vibrio parahaemolyticus CpxA as determined by X-ray crystallography. Because sensor kinase dimerization is important for signaling, we used AlphaFold2 to model CpxA-SD in the context of its connected transmembrane domains, which yielded a novel dimer of PAS domains possessing a distinct dimer organization compared to previously characterized sensor domains. Gain of function cpxA∗ alleles map to the dimer interface, and mutation of other residues in this region also leads to constitutive activation. CpxA activation can be suppressed by mutations that restore inter-monomer interactions, suggesting that inhibitory interactions between CpxA-SD monomers are the major point of control for CpxA activation and signaling. Searching through hundreds of structural homologs revealed the sensor domain of Pseudomonas aeruginosa sensor kinase PfeS as the only PAS structure in the same novel dimer orientation as CpxA, suggesting that our dimer orientation may be utilized by other extracytoplasmic PAS domains. Overall, our findings provide insight into the diversity of the organization of PAS sensory domains and how they regulate sensor kinase activation.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Histidina Quinase , Domínios Proteicos , Multimerização Proteica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Histidina Quinase/metabolismo , Histidina Quinase/química , Histidina Quinase/genética , Modelos Moleculares , Transdução de Sinais , Vibrio parahaemolyticus/enzimologia , Vibrio parahaemolyticus/genética
3.
J Biol Chem ; 300(5): 107287, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636658

RESUMO

Mycobacterial genomes encode multiple adenylyl cyclases and cAMP effector proteins, underscoring the diverse ways these bacteria utilize cAMP. We identified universal stress proteins, Rv1636 and MSMEG_3811 in Mycobacterium tuberculosis and Mycobacterium smegmatis, respectively, as abundantly expressed, novel cAMP-binding proteins. Rv1636 is secreted via the SecA2 secretion system in M. tuberculosis but is not directly responsible for the efflux of cAMP from the cell. In slow-growing mycobacteria, intrabacterial concentrations of Rv1636 were equivalent to the concentrations of cAMP present in the cell. In contrast, levels of intrabacterial MSMEG_3811 in M. smegmatis were lower than that of cAMP and therefore, overexpression of Rv1636 increased levels of "bound" cAMP. While msmeg_3811 could be readily deleted from the genome of M. smegmatis, we found that the rv1636 gene is essential for the viability of M. tuberculosis and is dependent on the cAMP-binding ability of Rv1636. Therefore, Rv1636 may function to regulate cAMP signaling by direct sequestration of the second messenger. This is the first evidence of a "sponge" for any second messenger in bacterial signaling that would allow mycobacterial cells to regulate the available intrabacterial "free" pool of cAMP.


Assuntos
Proteínas de Bactérias , AMP Cíclico , Mycobacterium tuberculosis , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , AMP Cíclico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Viabilidade Microbiana , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Ligação Proteica
4.
J Biol Chem ; 299(8): 104934, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37331599

RESUMO

Integral to the protein structure/function paradigm, oligomeric state is typically conserved along with function across evolution. However, notable exceptions such as the hemoglobins show how evolution can alter oligomerization to enable new regulatory mechanisms. Here, we examine this linkage in histidine kinases (HKs), a large class of widely distributed prokaryotic environmental sensors. While the majority of HKs are transmembrane homodimers, members of the HWE/HisKA2 family can deviate from this architecture as exemplified by our finding of a monomeric soluble HWE/HisKA2 HK (EL346, a photosensing light-oxygen-voltage [LOV]-HK). To further explore the diversity of oligomerization states and regulation within this family, we biophysically and biochemically characterized multiple EL346 homologs and found a range of HK oligomeric states and functions. Three LOV-HK homologs are primarily dimeric with differing structural and functional responses to light, while two Per-ARNT-Sim-HKs interconvert between differentially active monomers and dimers, suggesting dimerization might control enzymatic activity for these proteins. Finally, we examined putative interfaces in a dimeric LOV-HK, finding that multiple regions contribute to dimerization. Our findings suggest the potential for novel regulatory modes and oligomeric states beyond those traditionally defined for this important family of environmental sensors.


Assuntos
Proteínas de Bactérias , Histidina Quinase , Multimerização Proteica , Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Ativação Enzimática
5.
Mol Microbiol ; 119(6): 739-751, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37186477

RESUMO

Bacterial signal transduction systems are typically activated by the binding of signal molecules to receptor ligand binding domains (LBDs), such as the NIT LBD. We report here the identification of the NIT domain in more than 15,000 receptors that were present in 30 bacterial phyla, but also in 19 eukaryotic phyla, expanding its known phylogenetic distribution. The NIT domain formed part of seven receptor families that either control transcription, mediate chemotaxis or regulate second messenger levels. We have produced the NIT domains from chemoreceptors of the bacterial phytopathogens Pectobacterium atrosepticum (PacN) and Pseudomonas savastanoi (PscN) as individual purified proteins. High-throughput ligand screening using compound libraries revealed a specificity for nitrate and nitrite binding. Isothermal titration calorimetry experiments showed that PacN-LBD bound preferentially nitrate ( K D = 1.9 µM), whereas the affinity of PscN-LBD for nitrite ( K D = 2.1 µM) was 22 times higher than that for nitrate. Analytical ultracentrifugation experiments indicated that PscN-LBD is monomeric in the presence and absence of ligands. The R182A mutant of PscN did not bind nitrate or nitrite. This residue is not conserved in the NIT domain of the Pseudomonas aeruginosa chemoreceptor PA4520, which may be related to its failure to bind nitrate/nitrite. The magnitude of P. atrosepticum chemotaxis towards nitrate was significantly greater than that of nitrite and pacN deletion almost abolished responses to both compounds. This study highlights the important role of nitrate and nitrite as signal molecules in life and advances our knowledge on the NIT domain as universal nitrate/nitrite sensor module.


Assuntos
Proteínas de Bactérias , Nitratos , Proteínas de Bactérias/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Eucariotos/metabolismo , Ligantes , Filogenia , Quimiotaxia , Bactérias/metabolismo
6.
J Bacteriol ; 204(11): e0030022, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36197090

RESUMO

Photoactive yellow protein (PYP) is a model photoreceptor. It binds a p-coumaric acid as a chromophore, thus enabling blue light sensing. The first discovered single-domain PYP from Halorhodospira halophila has been studied thoroughly in terms of its structural dynamics and photochemical properties. However, the evolutionary origins and biological role of PYP homologs are not well understood. Here, we show that PYP is an evolutionarily novel domain family of the ubiquitous PAS (Per-Arnt-Sim) superfamily. It likely originated from the phylum Myxococcota and was then horizontally transferred to representatives of a few other bacterial phyla. We show that PYP is associated with signal transduction either by domain fusion or by genome context. Key cellular functions modulated by PYP-initiated signal transduction pathways likely involve gene expression, motility, and biofilm formation. We identified three clades of the PYP family, one of which is poorly understood and potentially has novel functional properties. The Tyr42, Glu46, and Cys69 residues that are involved in p-coumaric acid binding in the model PYP from H. halophila are well conserved in the PYP family. However, we also identified cases where substitutions in these residues might have led to neofunctionalization, such as the proposed transition from light to redox sensing. Overall, this study provides definition, a newly built hidden Markov model, and the current genomic landscape of the PYP family and sets the stage for the future exploration of its signaling mechanisms and functional diversity. IMPORTANCE Photoactive yellow protein is a model bacterial photoreceptor. For many years, it was considered a prototypical model of the ubiquitous PAS domain superfamily. Here, we show that, in fact, the PYP family is evolutionarily novel, restricted to a few bacterial phyla and distinct from other PAS domains. We also reveal the diversity of PYP-containing signal transduction proteins and their potential mechanisms.


Assuntos
Fotorreceptores Microbianos , Fotorreceptores Microbianos/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos Cumáricos/química , Luz , Bactérias/metabolismo
7.
J Biol Chem ; 296: 100771, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33989637

RESUMO

The KdpDE two-component system regulates potassium homeostasis and virulence in various bacterial species. The KdpD histidine kinases (HK) of this system contain a universal stress protein (USP) domain which binds to the second messenger cyclic-di-adenosine monophosphate (c-di-AMP) for regulating transcriptional output from this two-component system in Firmicutes such as Staphylococcus aureus. However, the structural basis of c-di-AMP specificity within the KdpD-USP domain is not well understood. Here, we resolved a 2.3 Å crystal structure of the S. aureus KdpD-USP domain (USPSa) complexed with c-di-AMP. Binding affinity analyses of USPSa mutants targeting the observed USPSa:c-di-AMP structural interface enabled the identification of the sequence residues that are required for c-di-AMP specificity. Based on the conservation of these residues in other Firmicutes, we identified the binding motif, (A/G/C)XSXSX2N(Y/F), which allowed us to predict c-di-AMP binding in other KdpD HKs. Furthermore, we found that the USPSa domain contains structural features distinct from the canonical standalone USPs that bind ATP as a preferred ligand. These features include inward-facing conformations of its ß1-α1 and ß4-α4 loops, a short α2 helix, the absence of a triphosphate-binding Walker A motif, and a unique dual phospho-ligand binding mode. It is therefore likely that USPSa-like domains in KdpD HKs represent a novel subfamily of the USPs.


Assuntos
Proteínas de Bactérias/metabolismo , AMP Cíclico/metabolismo , Histidina Quinase/metabolismo , Proteínas Quinases/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Histidina Quinase/química , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Proteínas Quinases/química , Sistemas do Segundo Mensageiro , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/química
8.
J Biol Chem ; 296: 100673, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33865858

RESUMO

Escherichia coli RseP, a member of the site-2 protease family of intramembrane proteases, is involved in the activation of the σE extracytoplasmic stress response and elimination of signal peptides from the cytoplasmic membrane. However, whether RseP has additional cellular functions is unclear. In this study, we used mass spectrometry-based quantitative proteomic analysis to search for new substrates that might reveal unknown physiological roles for RseP. Our data showed that the levels of several Fec system proteins encoded by the fecABCDE operon (fec operon) were significantly decreased in an RseP-deficient strain. The Fec system is responsible for the uptake of ferric citrate, and the transcription of the fec operon is controlled by FecI, an alternative sigma factor, and its regulator FecR, a single-pass transmembrane protein. Assays with a fec operon expression reporter demonstrated that the proteolytic activity of RseP is essential for the ferric citrate-dependent upregulation of the fec operon. Analysis using the FecR protein and FecR-derived model proteins showed that FecR undergoes sequential processing at the membrane and that RseP participates in the last step of this sequential processing to generate the N-terminal cytoplasmic fragment of FecR that participates in the transcription of the fec operon with FecI. A shortened FecR construct was not dependent on RseP for activation, confirming this cleavage step is the essential and sufficient role of RseP. Our study unveiled that E. coli RseP performs the intramembrane proteolysis of FecR, a novel physiological role that is essential for regulating iron uptake by the ferric citrate transport system.


Assuntos
Membrana Celular/metabolismo , Endopeptidases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Compostos Férricos/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fator sigma/metabolismo , Transporte Biológico , Endopeptidases/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Fator sigma/genética
9.
J Biol Chem ; 297(4): 101193, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34529974

RESUMO

Bacterial signaling histidine kinases (HKs) have long been postulated to function exclusively through linear signal transduction chains. However, several HKs have recently been shown to form complex multikinase networks (MKNs). The most prominent MKN, involving the enzymes RetS and GacS, controls the switch between the motile and biofilm lifestyles in the pathogenic bacterium Pseudomonas aeruginosa. While GacS promotes biofilm formation, RetS counteracts GacS using three distinct mechanisms. Two are dephosphorylating mechanisms. The third, a direct binding between the RetS and GacS HK regions, blocks GacS autophosphorylation. Focusing on the third mechanism, we determined the crystal structure of a cocomplex between the HK region of RetS and the dimerization and histidine phosphotransfer (DHp) domain of GacS. This is the first reported structure of a complex between two distinct bacterial signaling HKs. In the complex, the canonical HK homodimerization interface is replaced by a strikingly similar heterodimeric interface between RetS and GacS. We further demonstrate that GacS autophosphorylates in trans, thus explaining why the formation of a RetS-GacS complex inhibits GacS autophosphorylation. Using mutational analysis in conjunction with bacterial two-hybrid and biofilm assays, we not only corroborate the biological role of the observed RetS-GacS interactions, but also identify a residue critical for the equilibrium between the RetS-GacS complex and the respective RetS and GacS homodimers. Collectively, our findings suggest that RetS and GacS form a domain-swapped hetero-oligomer during the planktonic growth phase of P. aeruginosa before unknown signals cause its dissociation and a relief of GacS inhibition to promote biofilm formation.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Histidina Quinase/metabolismo , Multimerização Proteica , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Histidina Quinase/genética , Fosforilação
10.
J Biol Chem ; 296: 100518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33684446

RESUMO

Reversible phosphorylation relies on highly regulated kinases and phosphatases that target specific substrates to control diverse cellular processes. Here, we address how protein phosphatase activity is directed to the correct substrates under the correct conditions. The serine/threonine phosphatase SpoIIE from Bacillus subtilis, a member of the widespread protein phosphatase 2C (PP2C) family of phosphatases, is activated by movement of a conserved α-helical element in the phosphatase domain to create the binding site for the metal cofactor. We hypothesized that this conformational switch could provide a general mechanism for control of diverse members of the PP2C family of phosphatases. The B. subtilis phosphatase RsbU responds to different signals, acts on a different substrates, and produces a more graded response than SpoIIE. Using an unbiased genetic screen, we isolated mutants in the α-helical switch region of RsbU that are constitutively active, indicating conservation of the switch mechanism. Using phosphatase activity assays with phosphoprotein substrates, we found that both phosphatases integrate substrate recognition with activating signals to control metal-cofactor binding and substrate dephosphorylation. This integrated control provides a mechanism for PP2C family of phosphatases to produce specific responses by acting on the correct substrates, under the appropriate conditions.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Proteína Fosfatase 2C/metabolismo , Regulação Alostérica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Fosfoproteínas , Fosforilação , Conformação Proteica , Proteína Fosfatase 2C/química , Proteína Fosfatase 2C/genética , Transdução de Sinais , Especificidade por Substrato
11.
J Biol Chem ; 295(23): 8106-8117, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32094228

RESUMO

Histidine protein kinases (HKs) are prevalent prokaryotic sensor kinases that are central to phosphotransfer in two-component signal transduction systems, regulating phosphorylation of response regulator proteins that determine the output responses. HKs typically exist as dimers and can potentially autophosphorylate at each conserved histidine residue in the individual protomers, leading to diphosphorylation. However, analyses of HK phosphorylation in biochemical assays in vitro suggest negative cooperativity, whereby phosphorylation in one protomer of the dimer inhibits phosphorylation in the second protomer, leading to ∼50% phosphorylation of the available sites in dimers. This negative cooperativity is often correlated with an asymmetric domain arrangement, a common structural characteristic of autophosphorylation states in many HK structures. In this study, we engineered covalent dimers of the cytoplasmic domains of Escherichia coli CpxA, enabling us to quantify individual species: unphosphorylated, monophosphorylated, and diphosphorylated dimers. Together with mathematical modeling, we unambiguously demonstrate no cooperativity in autophosphorylation of CpxA despite its asymmetric structures, indicating that these asymmetric domain arrangements are not linked to negative cooperativity and hemiphosphorylation. Furthermore, the modeling indicated that many parameters, most notably minor amounts of ADP generated during autophosphorylation reactions or present in ATP preparations, can produce ∼50% total phosphorylation that may be mistakenly attributed to negative cooperativity. This study also establishes that the engineered covalent heterodimer provides a robust experimental system for investigating cooperativity in HK autophosphorylation and offers a useful tool for testing how symmetric or asymmetric structural features influence HK functions.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Difosfato de Adenosina/análise , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/metabolismo , Modelos Moleculares , Fosforilação , Conformação Proteica
12.
J Biol Chem ; 295(34): 11984-11994, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32487747

RESUMO

The cell envelope of Gram-negative bacteria is a multilayered structure essential for bacterial viability; the peptidoglycan cell wall provides shape and osmotic protection to the cell, and the outer membrane serves as a permeability barrier against noxious compounds in the external environment. Assembling the envelope properly and maintaining its integrity are matters of life and death for bacteria. Our understanding of the mechanisms of envelope assembly and maintenance has increased tremendously over the past two decades. Here, we review the major achievements made during this time, giving central stage to the amino acid cysteine, one of the least abundant amino acid residues in proteins, whose unique chemical and physical properties often critically support biological processes. First, we review how cysteines contribute to envelope homeostasis by forming stabilizing disulfides in crucial bacterial assembly factors (LptD, BamA, and FtsN) and stress sensors (RcsF and NlpE). Second, we highlight the emerging role of enzymes that use cysteine residues to catalyze reactions that are necessary for proper envelope assembly, and we also explain how these enzymes are protected from oxidative inactivation. Finally, we suggest future areas of investigation, including a discussion of how cysteine residues could contribute to envelope homeostasis by functioning as redox switches. By highlighting the redox pathways that are active in the envelope of Escherichia coli, we provide a timely overview of the assembly of a cellular compartment that is the hallmark of Gram-negative bacteria.


Assuntos
Parede Celular/enzimologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Parede Celular/genética , Cisteína/genética , Cisteína/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética
13.
J Biol Chem ; 295(17): 5795-5806, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32107313

RESUMO

Cell-surface signaling (CSS) in Gram-negative bacteria involves highly conserved regulatory pathways that optimize gene expression by transducing extracellular environmental signals to the cytoplasm via inner-membrane sigma regulators. The molecular details of ferric siderophore-mediated activation of the iron import machinery through a sigma regulator are unclear. Here, we present the 1.56 Å resolution structure of the periplasmic complex of the C-terminal CSS domain (CCSSD) of PupR, the sigma regulator in the Pseudomonas capeferrum pseudobactin BN7/8 transport system, and the N-terminal signaling domain (NTSD) of PupB, an outer-membrane TonB-dependent transducer. The structure revealed that the CCSSD consists of two subdomains: a juxta-membrane subdomain, which has a novel all-ß-fold, followed by a secretin/TonB, short N-terminal subdomain at the C terminus of the CCSSD, a previously unobserved topological arrangement of this domain. Using affinity pulldown assays, isothermal titration calorimetry, and thermal denaturation CD spectroscopy, we show that both subdomains are required for binding the NTSD with micromolar affinity and that NTSD binding improves CCSSD stability. Our findings prompt us to present a revised model of CSS wherein the CCSSD:NTSD complex forms prior to ferric-siderophore binding. Upon siderophore binding, conformational changes in the CCSSD enable regulated intramembrane proteolysis of the sigma regulator, ultimately resulting in transcriptional regulation.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Pseudomonas/metabolismo , Transdução de Sinais , Proteínas da Membrana Bacteriana Externa/química , Cristalografia por Raios X , Modelos Moleculares , Periplasma/metabolismo , Conformação Proteica , Domínios Proteicos , Mapas de Interação de Proteínas , Pseudomonas/química , Sideróforos/metabolismo
14.
J Biol Chem ; 295(30): 10456-10467, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32522817

RESUMO

Pseudomonas aeruginosa exhibits a high requirement for iron, which it can acquire via several mechanisms, including the acquisition and utilization of heme. The P. aeruginosa genome encodes two heme uptake systems, the heme assimilation system (Has) and the Pseudomonas heme utilization (Phu) system. Extracellular heme is sensed via the Has system, which encodes an extracytoplasmic function (ECF) σ factor system. Previous studies have shown that the transfer of heme from the extracellular hemophore HasAp to the outer membrane receptor HasR is required for activation of the σ factor HasI and upregulation of has operon expression. Here, employing site-directed mutagenesis, allelic exchange, quantitative PCR analyses, immunoblotting, and 13C-heme uptake experiments, we delineated the differential contributions of the extracellular FRAP/PNPNL loop residue His-624 in HasR and of His-221 in its N-terminal plug domain required for heme capture to heme transport and signaling, respectively. Specifically, we show that substitution of the N-terminal plug His-221 disrupts both signaling and transport, leading to dysregulation of both the Has and Phu uptake systems. Our results are consistent with a model wherein heme release from HasAp to the N-terminal plug of HasR is required to initiate signaling, whereas His-624 is required for simultaneously closing off the heme transport channel from the extracellular medium and triggering heme transport. Our results provide critical insight into heme release, signaling, and transport in P. aeruginosa and suggest a functional link between the ECF σ factor and Phu heme uptake system.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Heme/metabolismo , Pseudomonas aeruginosa/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico Ativo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Heme/genética , Mutagênese Sítio-Dirigida , Óperon/fisiologia , Pseudomonas aeruginosa/genética , Receptores de Superfície Celular/genética , Fator sigma/genética , Fator sigma/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-33468473

RESUMO

Eradication of tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), has been a challenge due to its uncanny ability to survive in a dormant state inside host granulomas for decades. Mtb rewires its metabolic and redox regulatory networks to survive in the hostile hypoxic and nutrient-limiting environment, facilitating the formation of drug-tolerant persisters. Previously, we showed that protein kinase G (PknG), a virulence factor required for lysosomal escape, aids in metabolic adaptation, thereby promoting the survival of nonreplicating mycobacteria. Here, we sought to investigate the therapeutic potential of PknG against latent mycobacterium. We show that inhibition of PknG by AX20017 reduces mycobacterial survival in in vitro latency models such as hypoxia, persisters, and nutrient starvation. Targeting PknG enhances the bactericidal activity of the frontline anti-TB drugs in peritoneal macrophages. Deletion of pknG resulted in 5- to 15-fold-reduced survival of Mtb in chronically infected mice treated with anti-TB drugs. Importantly, in the Cornell mouse model of latent TB, the deletion of pknG drastically attenuated Mtb's ability to resuscitate after antibiotic treatment compared with wild-type and complemented strains. This is the first study to investigate the sterilizing activity of pknG deletion and inhibition for adjunct therapy against latent TB in a preclinical model. Collectively, these results suggest that PknG may be a promising drug target for adjunct therapy to shorten the treatment duration and reduce disease relapse.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/farmacologia , Tuberculose Latente/tratamento farmacológico , Camundongos , Mycobacterium tuberculosis/genética , Temefós , Tuberculose/tratamento farmacológico
16.
J Biol Chem ; 294(52): 19862-19876, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31653701

RESUMO

Paired two-component systems (TCSs), having a sensor kinase (SK) and a cognate response regulator (RR), enable the human pathogen Mycobacterium tuberculosis to respond to the external environment and to persist within its host. Here, we inactivated the SK gene of the TCS MtrAB, mtrB, generating the strain ΔmtrB We show that mtrB loss reduces the bacterium's ability to survive in macrophages and increases its association with autophagosomes and autolysosomes. Notably, the ΔmtrB strain was markedly defective in establishing lung infection in mice, with no detectable lung pathology following aerosol challenge. ΔmtrB was less able to withstand hypoxic and acid stresses and to form biofilms and had decreased viability under hypoxia. Transcriptional profiling of ΔmtrB by gene microarray analysis, validated by quantitative RT-PCR, indicated down-regulation of the hypoxia-associated dosR regulon, as well as genes associated with other pathways linked to adaptation of M. tuberculosis to the host environment. Using in vitro biochemical assays, we demonstrate that MtrB interacts with DosR (a noncognate RR) in a phosphorylation-independent manner. Electrophoretic mobility shift assays revealed that MtrB enhances the binding of DosR to the hspX promoter, suggesting an unexpected role of MtrB in DosR-regulated gene expression in M. tuberculosis Taken together, these findings indicate that MtrB functions as a regulator of DosR-dependent gene expression and in the adaptation of M. tuberculosis to hypoxia and the host environment. We propose that MtrB may be exploited as a chemotherapeutic target against tuberculosis.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/fisiologia , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Autofagossomos/metabolismo , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Citocinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Humanos , Pneumopatias/microbiologia , Pneumopatias/patologia , Pneumopatias/veterinária , Lisossomos/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética
17.
J Biol Chem ; 294(42): 15544-15556, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31492755

RESUMO

The Escherichia coli cAMP receptor protein, CRP, is a homodimeric global transcription activator that employs multiple mechanisms to modulate the expression of hundreds of genes. These mechanisms require different interfacial interactions among CRP, RNA, and DNA of varying sequences. The involvement of such a multiplicity of interfaces requires a tight control to ensure the desired phenotype. CRP-dependent promoters can be grouped into three classes. For decades scientists in the field have been puzzled over the differences in mechanisms between class I and II promoters. Using a new crystal structure, IR spectroscopy, and computational analysis, we defined the energy landscapes of WT and 14 mutated CRPs to determine how a homodimeric protein can distinguish nonpalindromic DNA sequences and facilitate communication between residues located in three different activation regions (AR) in CRP that are ∼30 Šapart. We showed that each mutation imparts differential effects on stability among the subunits and domains in CRP. Consequently, the energetic landscapes of subunits and domains are different, and CRP is asymmetric. Hence, the same mutation can exert different effects on ARs in class I or II promoters. The effect of a mutation is transmitted through a network by long-distance communication not necessarily relying on physical contacts between adjacent residues. The mechanism is simply the sum of the consequences of modulating the synchrony of dynamic motions of residues at a distance, leading to differential effects on ARs in different subunits. The computational analysis is applicable to any system and potentially with predictive capability.


Assuntos
Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regiões Promotoras Genéticas , Sítios de Ligação , Proteína Receptora de AMP Cíclico/química , Proteína Receptora de AMP Cíclico/genética , Dimerização , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
18.
J Biol Chem ; 294(44): 16062-16079, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31506298

RESUMO

Bacterial chemotaxis receptors form extended hexagonal arrays that integrate and amplify signals to control swimming behavior. Transmembrane signaling begins with a 2-Å ligand-induced displacement of an α helix in the periplasmic and transmembrane domains, but it is unknown how the cytoplasmic domain propagates the signal an additional 200 Å to control the kinase CheA bound to the membrane-distal tip of the receptor. The receptor cytoplasmic domain has previously been shown to be highly dynamic as both a cytoplasmic fragment (CF) and within the intact chemoreceptor; modulation of its dynamics is thought to play a key role in signal propagation. This hydrogen deuterium exchange-MS (HDX-MS) study of functional complexes of CF, CheA, and CheW bound to vesicles in native-like arrays reveals that the CF is well-ordered only in its protein interaction region where it binds CheA and CheW. We observe rapid exchange throughout the rest of the CF, with both uncorrelated (EX2) and correlated (EX1) exchange patterns, suggesting the receptor cytoplasmic domain retains disorder even within functional complexes. HDX rates are increased by inputs that favor the kinase-off state. We propose that chemoreceptors achieve long-range allosteric control of the kinase through a coupled equilibrium: CheA binding in a kinase-on conformation stabilizes the cytoplasmic domain, and signaling inputs that destabilize this domain (ligand binding and demethylation) disfavor CheA binding such that it loses key contacts and reverts to a kinase-off state. This study reveals the mechanistic role of an intrinsically disordered region of a transmembrane receptor in long-range allostery.


Assuntos
Sítio Alostérico , Proteínas de Escherichia coli/química , Histidina Quinase/química , Proteínas Quimiotáticas Aceptoras de Metil/química , Regulação Alostérica , Medição da Troca de Deutério , Proteínas de Escherichia coli/metabolismo , Histidina Quinase/metabolismo , Lipossomos/química , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Estabilidade Proteica , Transdução de Sinais
19.
J Biol Chem ; 294(8): 2771-2785, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30593511

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that utilizes heme as a primary iron source within the host. Extracellular heme is sensed via a heme assimilation system (has) that encodes an extracytoplasmic function (ECF) σ factor system. Herein, using has deletion mutants, quantitative PCR analyses, and immunoblotting, we show that the activation of the σ factor HasI requires heme release from the hemophore HasAp to the outer-membrane receptor HasR. Using RT-PCR and 5'-RACE, we observed that following transcriptional activation of the co-transcribed hasRAp, it is further processed into specific mRNAs varying in stability. We noted that the processing and variation in stability of the hasAp and hasR mRNAs in response to heme provide a mechanism for differential expression from co-transcribed genes. The multiple layers of post-transcriptional regulation of the ECF signaling cascade, including the previously reported post-transcriptional regulation of HasAp by the heme metabolites biliverdin IXß and IXδ, allow fine-tuning of the cell-surface signaling system in response to extracellular heme levels. We hypothesize that the complex post-transcriptional regulation of the Has system provides P. aeruginosa an advantage in colonizing a variety of physiological niches in the host.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Heme/metabolismo , Pseudomonas aeruginosa/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , Proteínas de Bactérias/química , Cristalografia por Raios X , Heme/química , Ferro/metabolismo , Conformação Proteica , RNA Mensageiro/metabolismo
20.
J Biol Chem ; 294(33): 12281-12292, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31256002

RESUMO

Mechanosensitive channels play an important role in the adaptation of cells to hypo-osmotic shock. Among members of this channel family in Escherichia coli, the exact function and physiological role of the mechanosensitive channel homolog YbdG remain unclear. Characterization of YbdG's physiological role has been hampered by its lack of measurable transport activity. Using a nitrosoguanidine mutagenesis-aided screen in combination with next-generation sequencing, here we isolated a mutant with a point mutation in ybdG This mutation (resulting in a I167T change) conferred sensitivity to high osmotic stress, and the mutant cells differed from WT cells in morphology during hyperosmotic stress at alkaline pH. Interestingly, unlike the cells containing the I167T variant, a null-ybdG mutant did not exhibit this sensitivity and phenotype. Although I167T was located near the putative ion-conducting pore in a transmembrane region of YbdG, no change in ion channel activities of YbdG-I167T was detected. Of note, introduction of the WT C-terminal cytosolic region of YbdG into the I167T variant complemented the osmo-sensitive phenotype. Co-precipitation of proteins interacting with the C-terminal YbdG region led to the isolation of HldD and FbaA, whose overexpression in cells containing the YbdG-I167T variant partially rescued the osmo-sensitive phenotype. This study indicates that YbdG functions as a component of a mechanosensing system that transmits signals triggered by external osmotic changes to intracellular factors. The cellular role of YbdG uncovered here goes beyond its predicted function as an ion or solute transport protein.


Assuntos
Adaptação Fisiológica , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Pressão Osmótica , Substituição de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Canais Iônicos/genética , Mutação de Sentido Incorreto , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA