Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 100: 317-327, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33279045

RESUMO

The biodegradation was considered as the prime mechanism of crude oil degradation. To validate the efficacy and survival of the crude oil-degrading strain in a bioremediation process, the enhanced green fluorescent protein gene (egfp) was introduced into Acinetobacter sp. HC8-3S. In this study, an oil-contaminated sediment microcosm was conducted to investigate the temporal dynamics of the physicochemical characterization and microbial community in response to bacterium amendment. The introduced strains were able to survive, flourish and degrade crude oil quickly in the early stage of the bioremediation. However, the high abundance cannot be maintained due to the ammonium (NH4+-N) and phosphorus (PO43--P) contents decreased rapidly after 15 days of remediation. The sediment microbial community changed considerably and reached relatively stable after nutrient depletion. Therefore, the addition of crude oil and degrading cells did not show a long-time impact on the original microbial communities, and sufficient nitrogen and phosphorus nutrients ensures the survive and activity of degrader. Our studies expand the understanding of the crude oil degradative processes, which will help to develop more rational bioremediation strategies.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes do Solo , Bactérias , Biodegradação Ambiental , Hidrocarbonetos , Nutrientes , Microbiologia do Solo
2.
Environ Pollut ; 257: 113575, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31733970

RESUMO

This study systematically explored the distribution of perfluoroalkyl substances (PFASs) through soil adsorption and plant bioaccumulation in aquatic plant-based systems, derived from a surface flow constructed wetland (CW) planted with Typha angustifolia. The water-soil-plant systems were fortified with eight perfluoroalkyl subsntances (PFASs) at different concentrations. The potential for individual PFAS adsorption onto soil substrate and bioaccumulation in the plants increased with the increasing PFAS initial concentrations. Longer-chain PFASs exhibited higher affinity to soil substrate compared to shorter-chain PFASs. The highest concentration in the soil was observed for PFOS (51.3 ng g-1), followed by PFHxS (9.39 ng g-1), and PFOA (5.53 ng g-1) at low PFAS level. The perfluoroalkyl chain length dependent trend was also seen in the roots with the highest individual PFAS concentration for PFOS (68.9 ng g-1), followed by PFOA (18.5 ng g-1) and PFHxS (13.4 ng g-1). By contrast, shorter-chain PFASs were preferentially translocated from roots to shoots in Typha angustifolia. A significant (p < 0.05) positive correlation between bioaccumulation factor (BAFplant/water) (whole plant) and perfluoroalkyl chain length was observed. PFASs content in the plant compartments increased with increasing PFAS concentrations in the soil. Mass balance analysis indicates that approximately 40.7-99.6% of PFAS mass added to the system was adsorbed onto the soil and bioaccumulated in the plant tissues of T. angustifolia. Soil adsorption played a vital role in PFAS mass distribution. The results of Illumina high-throughput sequencing show that the bacterial diversity decreased upon PFAS exposure. The most predominant phyla retrieved were Proteobacteria (24.7-39.3%), followed by Actinobacteria (4.2-41.1%), Verrucomicrobia (7.9-25.1%), Bacteroidetes (10.2-20.4%), Cyanobacteria (0.4-16.5%), and Firmicutes (1.1-6.4%). The PFAS enrichment caused the changes (p > 0.05) in the structure and composition of bacterial community. This study helps to gain insight into a better understanding of the potential for PFASs distribution in an aquatic plant-based system and the impact on dynamic of microbial community exposed to PFASs.


Assuntos
Ácidos Alcanossulfônicos/análise , Fluorocarbonos/análise , Microbiota , Poluentes Químicos da Água/análise , Adsorção , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Plantas , Solo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA