Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
BMC Genomics ; 25(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166656

RESUMO

BACKGROUND: TCP proteins are plant specific transcription factors that play important roles in plant growth and development. Despite the known significance of these transcription factors in general plant development, their specific role in fruit growth remains largely uncharted. Therefore, this study explores the potential role of TCP transcription factors in the growth and development of sweet cherry fruits. RESULTS: Thirteen members of the PavTCP family were identified within the sweet cherry plant, with two, PavTCP1 and PavTCP4, found to contain potential target sites for Pav-miR159, Pav-miR139a, and Pav-miR139b-3p. Analyses of cis-acting elements and Arabidopsis homology prediction analyses that the PavTCP family comprises many light-responsive elements. Homologs of PavTCP1 and PavTCP3 in Arabidopsis TCP proteins were found to be crucial to light responses. Shading experiments showed distinct correlation patterns between PavTCP1, 2, and 3 and total anthocyanins, soluble sugars, and soluble solids in sweet cherry fruits. These observations suggest that these genes may contribute significantly to sweet cherry light responses. In particular, PavTCP1 could play a key role, potentially mediated through Pav-miR159, Pav-miR139a, and Pav-miR139b-3p. CONCLUSION: This study is the first to unveil the potential function of TCP transcription factors in the light responses of sweet cherry fruits, paving the way for future investigations into the role of this transcription factor family in plant fruit development.


Assuntos
Arabidopsis , Prunus avium , Prunus avium/genética , Frutas , Arabidopsis/genética , Arabidopsis/metabolismo , Antocianinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
BMC Med Inform Decis Mak ; 24(1): 160, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849815

RESUMO

PURPOSE: Liver disease causes two million deaths annually, accounting for 4% of all deaths globally. Prediction or early detection of the disease via machine learning algorithms on large clinical data have become promising and potentially powerful, but such methods often have some limitations due to the complexity of the data. In this regard, ensemble learning has shown promising results. There is an urgent need to evaluate different algorithms and then suggest a robust ensemble algorithm in liver disease prediction. METHOD: Three ensemble approaches with nine algorithms are evaluated on a large dataset of liver patients comprising 30,691 samples with 11 features. Various preprocessing procedures are utilized to feed the proposed model with better quality data, in addition to the appropriate tuning of hyperparameters and selection of features. RESULTS: The models' performances with each algorithm are extensively evaluated with several positive and negative performance metrics along with runtime. Gradient boosting is found to have the overall best performance with 98.80% accuracy and 98.50% precision, recall and F1-score for each. CONCLUSIONS: The proposed model with gradient boosting bettered in most metrics compared with several recent similar works, suggesting its efficacy in predicting liver disease. It can be further applied to predict other diseases with the commonality of predicate indicators.


Assuntos
Hepatopatias , Aprendizado de Máquina , Humanos , Algoritmos
3.
Sensors (Basel) ; 24(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38894212

RESUMO

Advancements in imaging, computer vision, and automation have revolutionized various fields, including field-based high-throughput plant phenotyping (FHTPP). This integration allows for the rapid and accurate measurement of plant traits. Deep Convolutional Neural Networks (DCNNs) have emerged as a powerful tool in FHTPP, particularly in crop segmentation-identifying crops from the background-crucial for trait analysis. However, the effectiveness of DCNNs often hinges on the availability of large, labeled datasets, which poses a challenge due to the high cost of labeling. In this study, a deep learning with bagging approach is introduced to enhance crop segmentation using high-resolution RGB images, tested on the NU-Spidercam dataset from maize plots. The proposed method outperforms traditional machine learning and deep learning models in prediction accuracy and speed. Remarkably, it achieves up to 40% higher Intersection-over-Union (IoU) than the threshold method and 11% over conventional machine learning, with significantly faster prediction times and manageable training duration. Crucially, it demonstrates that even small labeled datasets can yield high accuracy in semantic segmentation. This approach not only proves effective for FHTPP but also suggests potential for broader application in remote sensing, offering a scalable solution to semantic segmentation challenges. This paper is accompanied by publicly available source code.


Assuntos
Produtos Agrícolas , Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Fenótipo , Zea mays , Processamento de Imagem Assistida por Computador/métodos , Semântica
4.
J Environ Manage ; 354: 120349, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401497

RESUMO

Flow obstructed by bridge piers can increase sediment transport leading to local scour. This local scour poses a risk to the stability of bridge structures, which could lead to structural failures. There are two main approaches for evaluating the scour depth (ds) of bridge piers. The first is based on understanding hydraulic phenomena and developing relationships with properties affecting scour. The second uses data-driven soft computing models that lack physical interpretations but rely on algorithms to predict outcomes. Methods are chosen by researchers based on their goals and resources. This study aims to create innovative ensemble frameworks comprising support vector machine for regression (SVMR), random forest regression (RFR), and reduced error pruning tree (REPTree) as base learners, alongside bagging regression tree (BRT) and stochastic gradient boosting (SGB) as meta learners. These ensembles were developed to analyse maximum scour depths (dsm) in clear water conditions, utilizing 35 literature's experimental data published in last 63 years. The performance of each machine learning (ML) approach was assessed using statistical performance indicators. The proposed model was also compared with top six empirical equations with strong predictive ability. Results show that among these empirical equations, the equation from Nandi and Das (2023) performs best. Performance evaluation considering training, testing, and the entire dataset, SGB (REPTree), BRT(SVMR-PUK), and SGB (REPTree) exhibited the highest performance, securing the top rank among all ML models and empirical equations. Sensitivity analysis identified sediment gradation and flow intensity as the most influential variables for predicting dsm during both training and testing phases, respectively.


Assuntos
Metadados , Água , Algoritmos , Aprendizado de Máquina
5.
BMC Bioinformatics ; 24(1): 325, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644423

RESUMO

INTRODUCTION: There are countless possibilities for drug combinations, which makes it expensive and time-consuming to rely solely on clinical trials to determine the effects of each possible drug combination. In order to screen out the most effective drug combinations more quickly, scholars began to apply machine learning to drug combination prediction. However, most of them are of low interpretability. Consequently, even though they can sometimes produce high prediction accuracy, experts in the medical and biological fields can still not fully rely on their judgments because of the lack of knowledge about the decision-making process. RELATED WORK: Decision trees and their ensemble algorithms are considered to be suitable methods for pharmaceutical applications due to their excellent performance and good interpretability. We review existing decision trees or decision tree ensemble algorithms in the medical field and point out their shortcomings. METHOD: This study proposes a decision stump (DS)-based solution to extract interpretable knowledge from data sets. In this method, a set of DSs is first generated to selectively form a decision tree (DST). Different from the traditional decision tree, our algorithm not only enables a partial exchange of information between base classifiers by introducing a stump exchange method but also uses a modified Gini index to evaluate stump performance so that the generation of each node is evaluated by a global view to maintain high generalization ability. Furthermore, these trees are combined to construct an ensemble of DST (EDST). EXPERIMENT: The two-drug combination data sets are collected from two cell lines with three classes (additive, antagonistic and synergistic effects) to test our method. Experimental results show that both our DST and EDST perform better than other methods. Besides, the rules generated by our methods are more compact and more accurate than other rule-based algorithms. Finally, we also analyze the extracted knowledge by the model in the field of bioinformatics. CONCLUSION: The novel decision tree ensemble model can effectively predict the effect of drug combination datasets and easily obtain the decision-making process.


Assuntos
Algoritmos , Biologia Computacional , Linhagem Celular , Combinação de Medicamentos , Conhecimento
6.
BMC Bioinformatics ; 24(1): 458, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38053030

RESUMO

Intense sun exposure is a major risk factor for the development of melanoma, an abnormal proliferation of skin cells. Yet, this more prevalent type of skin cancer can also develop in less-exposed areas, such as those that are shaded. Melanoma is the sixth most common type of skin cancer. In recent years, computer-based methods for imaging and analyzing biological systems have made considerable strides. This work investigates the use of advanced machine learning methods, specifically ensemble models with Auto Correlogram Methods, Binary Pyramid Pattern Filter, and Color Layout Filter, to enhance the detection accuracy of Melanoma skin cancer. These results suggest that the Color Layout Filter model of the Attribute Selection Classifier provides the best overall performance. Statistics for ROC, PRC, Kappa, F-Measure, and Matthews Correlation Coefficient were as follows: 90.96% accuracy, 0.91 precision, 0.91 recall, 0.95 ROC, 0.87 PRC, 0.87 Kappa, 0.91 F-Measure, and 0.82 Matthews Correlation Coefficient. In addition, its margins of error are the smallest. The research found that the Attribute Selection Classifier performed well when used in conjunction with the Color Layout Filter to improve image quality.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Algoritmos , Neoplasias Cutâneas/diagnóstico por imagem , Melanoma/diagnóstico por imagem , Aprendizado de Máquina , Melanoma Maligno Cutâneo
7.
J Comput Aided Mol Des ; 37(1): 17-37, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36404382

RESUMO

One solution to the challenge of choosing an appropriate clustering algorithm is to combine different clusterings into a single consensus clustering result, known as cluster ensemble (CE). This ensemble learning strategy can provide more robust and stable solutions across different domains and datasets. Unfortunately, not all clusterings in the ensemble contribute to the final data partition. Cluster ensemble selection (CES) aims at selecting a subset from a large library of clustering solutions to form a smaller cluster ensemble that performs as well as or better than the set of all available clustering solutions. In this paper, we investigate four CES methods for the categorization of structurally distinct organic compounds using high-dimensional IR and Raman spectroscopy data. Single quality selection (SQI) forms a subset of the ensemble by selecting the highest quality ensemble members. The Single Quality Selection (SQI) method is used with various quality indices to select subsets by including the highest quality ensemble members. The Bagging method, usually applied in supervised learning, ranks ensemble members by calculating the normalized mutual information (NMI) between ensemble members and consensus solutions generated from a randomly sampled subset of the full ensemble. The hierarchical cluster and select method (HCAS-SQI) uses the diversity matrix of ensemble members to select a diverse set of ensemble members with the highest quality. Furthermore, a combining strategy can be used to combine subsets selected using multiple quality indices (HCAS-MQI) for the refinement of clustering solutions in the ensemble. The IR + Raman hybrid ensemble library is created by merging two complementary "views" of the organic compounds. This inherently more diverse library gives the best full ensemble consensus results. Overall, the Bagging method is recommended because it provides the most robust results that are better than or comparable to the full ensemble consensus solutions.


Assuntos
Algoritmos , Aprendizado de Máquina , Análise Espectral , Análise por Conglomerados
8.
Sensors (Basel) ; 23(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850861

RESUMO

The Internet-of-Things (IoT) massive access is a significant scenario for sixth-generation (6G) communications. However, low-power IoT devices easily suffer from remote interference caused by the atmospheric duct under the 6G time-division duplex (TDD) mode. It causes distant downlink wireless signals to propagate beyond the designed protection distance and interfere with local uplink signals, leading to a large outage probability. In this paper, a remote interference discrimination testbed is originally proposed to detect interference, which supports the comparison of different types of algorithms on the testbed. Specifically, 5,520,000 TDD network-side data collected by real sensors are used to validate the interference discrimination capabilities of nine promising AI algorithms. Moreover, a consistent comparison of the testbed shows that the ensemble algorithm achieves an average accuracy of 12% higher than the single model algorithm.

9.
Sensors (Basel) ; 23(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37300016

RESUMO

Diving can have significant cardiovascular effects on the human body and increase the risk of developing cardiac health issues. This study aimed to investigate the autonomic nervous system (ANS) responses of healthy individuals during simulated dives in hyperbaric chambers and explore the effects of the humid environment on these responses. Electrocardiographic- and heart-rate-variability (HRV)-derived indices were analyzed, and their statistical ranges were compared at different depths during simulated immersions under dry and humid conditions. The results showed that humidity significantly affected the ANS responses of the subjects, leading to reduced parasympathetic activity and increased sympathetic dominance. The power of the high-frequency band of the HRV after removing the influence of respiration, PHF⟂¯, and the number of pairs of successive normal-to-normal intervals that differ by more than 50 ms divided by the total number of normal-to-normal intervals, pNN50¯, indices were found to be the most informative in distinguishing the ANS responses of subjects between the two datasets. Additionally, the statistical ranges of the HRV indices were calculated, and the classification of subjects as "normal" or "abnormal" was determined based on these ranges. The results showed that the ranges were effective at identifying abnormal ANS responses, indicating the potential use of these ranges as a reference for monitoring the activity of divers and avoiding future immersions if many indices are out of the normal ranges. The bagging method was also used to include some variability in the datasets' ranges, and the classification results showed that the ranges computed without proper bagging represent reality and its associated variability. Overall, this study provides valuable insights into the ANS responses of healthy individuals during simulated dives in hyperbaric chambers and the effects of humidity on these responses.


Assuntos
Sistema Nervoso Autônomo , Mergulho , Humanos , Sistema Nervoso Autônomo/fisiologia , Coração , Eletrocardiografia , Respiração , Mergulho/fisiologia , Frequência Cardíaca/fisiologia
10.
Sensors (Basel) ; 23(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37631671

RESUMO

The internet of things (IoT) technology presents an intelligent way to improve our lives and contributes to many fields such as industry, communications, agriculture, etc. Unfortunately, IoT networks are exposed to many attacks that may destroy the entire network and consume network resources. This paper aims to propose intelligent process automation and an auto-configured intelligent automation detection model (IADM) to detect and prevent malicious network traffic and behaviors/events at distributed multi-access edge computing in an IoT-based smart city. The proposed model consists of two phases. The first phase relies on the intelligent process automation (IPA) technique and contains five modules named, specifically, dataset collection and pre-processing module, intelligent automation detection module, analysis module, detection rules and action module, and database module. In the first phase, each module composes an intelligent connecting module to give feedback reports about each module and send information to the next modules. Therefore, any change in each process can be easily detected and labeled as an intrusion. The intelligent connection module (ICM) may reduce the search time, increase the speed, and increase the security level. The second phase is the dynamic adaptation of the attack detection model based on reinforcement one-shot learning. The first phase is based on a multi-classification technique using Random Forest Trees (RFT), k-Nearest Neighbor (K-NN), J48, AdaBoost, and Bagging. The second phase can learn the new changed behaviors based on reinforced learning to detect zero-day attacks and malicious events in IoT-based smart cities. The experiments are implemented using a UNSW-NB 15 dataset. The proposed model achieves high accuracy rates using RFT, K-NN, and AdaBoost of approximately 98.8%. It is noted that the accuracy rate of the J48 classifier achieves 85.51%, which is lower than the others. Subsequently, the accuracy rates of AdaBoost and Bagging based on J48 are 98.9% and 91.41%, respectively. Additionally, the error rates of RFT, K-NN, and AdaBoost are very low. Similarly, the proposed model achieves high precision, recall, and F1-measure high rates using RFT, K-NN, AdaBoost, and Bagging. The second phase depends on creating an auto-adaptive model through the dynamic adaptation of the attack detection model based on reinforcement one-shot learning using a small number of instances to conserve the memory of any smart device in an IoT network. The proposed auto-adaptive model may reduce false rates of reporting by the intrusion detection system (IDS). It can detect any change in the behaviors of smart devices quickly and easily. The IADM can improve the performance rates for IDS by maintaining the memory consumption, time consumption, and speed of the detection process.

11.
Entropy (Basel) ; 25(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37510035

RESUMO

Imprecise classification is a relatively new task within Machine Learning. The difference with standard classification is that not only is one state of the variable under study determined, a set of states that do not have enough information against them and cannot be ruled out is determined as well. For imprecise classification, a mode called an Imprecise Credal Decision Tree (ICDT) that uses imprecise probabilities and maximum of entropy as the information measure has been presented. A difficult and interesting task is to show how to combine this type of imprecise classifiers. A procedure based on the minimum level of dominance has been presented; though it represents a very strong method of combining, it has the drawback of an important risk of possible erroneous prediction. In this research, we use the second-best theory to argue that the aforementioned type of combination can be improved through a new procedure built by relaxing the constraints. The new procedure is compared with the original one in an experimental study on a large set of datasets, and shows improvement.

12.
BMC Bioinformatics ; 23(1): 447, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303135

RESUMO

BACKGROUND: The site information of substrates that can be cleaved by human immunodeficiency virus 1 proteases (HIV-1 PRs) is of great significance for designing effective inhibitors against HIV-1 viruses. A variety of machine learning-based algorithms have been developed to predict HIV-1 PR cleavage sites by extracting relevant features from substrate sequences. However, only relying on the sequence information is not sufficient to ensure a promising performance due to the uncertainty in the way of separating the datasets used for training and testing. Moreover, the existence of noisy data, i.e., false positive and false negative cleavage sites, could negatively influence the accuracy performance. RESULTS: In this work, an ensemble learning algorithm for predicting HIV-1 PR cleavage sites, namely EM-HIV, is proposed by training a set of weak learners, i.e., biased support vector machine classifiers, with the asymmetric bagging strategy. By doing so, the impact of data imbalance and noisy data can thus be alleviated. Besides, in order to make full use of substrate sequences, the features used by EM-HIV are collected from three different coding schemes, including amino acid identities, chemical properties and variable-length coevolutionary patterns, for the purpose of constructing more relevant feature vectors of octamers. Experiment results on three independent benchmark datasets demonstrate that EM-HIV outperforms state-of-the-art prediction algorithm in terms of several evaluation metrics. Hence, EM-HIV can be regarded as a useful tool to accurately predict HIV-1 PR cleavage sites.


Assuntos
Protease de HIV , HIV-1 , Algoritmos , Protease de HIV/química , HIV-1/enzimologia , Aprendizado de Máquina , Especificidade por Substrato
13.
BMC Bioinformatics ; 23(1): 97, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313824

RESUMO

BACKGROUND: Genetic risk scores (GRS) summarize genetic features such as single nucleotide polymorphisms (SNPs) in a single statistic with respect to a given trait. So far, GRS are typically built using generalized linear models or regularized extensions. However, these linear methods are usually not able to incorporate gene-gene interactions or non-linear SNP-response relationships. Tree-based statistical learning methods such as random forests and logic regression may be an alternative to such regularized-regression-based methods and are investigated in this article. Moreover, we consider modifications of random forests and logic regression for the construction of GRS. RESULTS: In an extensive simulation study and an application to a real data set from a German cohort study, we show that both tree-based approaches can outperform elastic net when constructing GRS for binary traits. Especially a modification of logic regression called logic bagging could induce comparatively high predictive power as measured by the area under the curve and the statistical power. Even when considering no epistatic interaction effects but only marginal genetic effects, the regularized regression method lead in most cases to inferior results. CONCLUSIONS: When constructing GRS, we recommend taking random forests and logic bagging into account, in particular, if it can be assumed that possibly unknown epistasis between SNPs is present. To develop the best possible prediction models, extensive joint hyperparameter optimizations should be conducted.


Assuntos
Algoritmos , Polimorfismo de Nucleotídeo Único , Estudos de Coortes , Humanos , Análise de Regressão , Fatores de Risco
14.
BMC Microbiol ; 22(1): 239, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199024

RESUMO

BACKGROUND: Fruit bagging is an effective technique for fruit protection in the orchard management. Bagging can create a micro-environment for fruit growth and affect fruit quality during storage, in which the diversity of microorganisms may play an important role. Therefore, various methods including biochemistry, analytical chemistry, and bioinformatics methods were used to reveal the influences of fruit bagging on postharvest fruit quality, physiological characters, decay and surface fungal community of 'Yali' pear fruit were investigated in this study. RESULTS: Fruit bagging significantly decreased the postharvest decay after 15 days of ambient storage. There were no significant differences in fruit firmness, titratable acid and ethylene production rate between the fruit-bagging and non-bagging group after 15 days of storage, while the soluble solids contents (SSC) and respiration rate in non-bagging fruit was significantly higher than that in fruit-bagging after 15 days of storage. Furthermore, the surface microbes of pear were collected and determined by the new generation sequencing technology. The alpha diversity of fungi in non-bagging fruit decreased significantly after 15 days of storage, while there were no significant changes in bagging fruit. Ascomycota and Basidiomycota were the two major phyla detected in the bagging fruit, and the dominant fungal genera were Alternaria (23.7%), Mycosphaerella (17.25%), Vishniacozyma (16.14%), and Aureobasidium (10.51%) after 15 days of storage. For the non-bagging pear, Ascomycota was the only phylum detected, and the dominant genera was Pichia (83.32%) after 15 days of storage. The abundance of Pichia may be regarded as the biomarker to indicate the degree of fruit decay. CONCLUSIONS: This study showed that fruit bagging could significantly reduce postharvest fruit decay and respiration rate of 'Yali' pear. Significant differences were found in fungal composition between bagging and non-bagging pear after storage for 0 or 15 days. Fruit bagging maintained the diversity of fungi on the fruit surface, increased the abundance of non-pathogenic fungi, and even antagonistic fungi such as Aureobasidium, Vishniacozyma, and Mycosphaerella. A reduction in the abundance of pathogenic fungi and incidence of postharvest decay during the storage of 'Yali' pear were also recorded. In conclusion, fruit-bagging changed the fungal diversity on fruit surface of 'Yali' pear, which had significant effect on reducing postharvest fruit decay, and thus prolong the storage period of 'Yali' pears. The future thrust of this study will focus on the isolation of fungi or bacteria from pear fruit surface and identify their roles in causing fruit decay and changing fruit quality during storage.


Assuntos
Micobioma , Pyrus , Alternaria , Etilenos/análise , Frutas/química , Pyrus/química
15.
Naturwissenschaften ; 109(4): 35, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35759047

RESUMO

Phenological overlap with pollinators is crucial for reproductive success in insect-pollinated plants. In this study, we examined whether pollinator visitation successfully occurred during an entire flowering season in two populations of the insect-pollinated spring ephemeral Trillium camschatcense in the Tokachi region of Hokkaido, northern Japan. We bagged flowers and excluded pollinator visitation during either the first or the last half of the entire flowering season to compare pollination success between the two periods. The two populations have experienced differing levels of climate warming in the last 60 years, which impacted pollinator visitation. In the population experiencing temperature rise more rapidly, fertilization rate and seed set decreased sharply when bagged during the first half period, indicating that pollinator visitation is skewed to the early part of the flowering season. The temporal skewness of pollination success would be an early warning signal of the impacts of climate warming on the reproductive success of T. camschatcense.


Assuntos
Polinização , Trillium , Animais , Flores , Insetos , Reprodução , Estações do Ano
16.
Chemometr Intell Lab Syst ; 224: 104535, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35308181

RESUMO

COVID-19 disease causes serious respiratory illnesses. Therefore, accurate identification of the viral infection cycle plays a key role in designing appropriate vaccines. The risk of this disease depends on proteins that interact with human receptors. In this paper, we formulate a novel model for COVID-19 named "amino acid encoding based prediction" (AAPred). This model is accurate, classifies the various coronavirus types, and distinguishes SARS-CoV-2 from other coronaviruses. With the AAPred model, we reduce the number of features to enhance its performance by selecting the most important ones employing statistical criteria. The protein sequence of SARS-CoV-2 for understanding the viral infection cycle is analyzed. Six machine learning classifiers related to decision trees, k-nearest neighbors, random forest, support vector machine, bagging ensemble, and gradient boosting are used to evaluate the model in terms of accuracy, precision, sensitivity, and specificity. We implement the obtained results computationally and apply them to real data from the National Genomics Data Center. The experimental results report that the AAPred model reduces the features to seven of them. The average accuracy of the 10-fold cross-validation is 98.69%, precision is 98.72%, sensitivity is 96.81%, and specificity is 97.72%. The features are selected utilizing information gain and classified with random forest. The proposed model predicts the type of Coronavirus and reduces the number of extracted features. We identify that SARS-CoV-2 has similar physicochemical characteristics in some regions of SARS-CoV. Also, we report that SARS-CoV-2 has similar infection cycles and sequences in some regions of SARS CoV indicating the affectedness of vaccines on SARS-CoV-2. A comparison with deep learning shows similar results with our method.

17.
Sensors (Basel) ; 22(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890927

RESUMO

Diabetes is a long-lasting disease triggered by expanded sugar levels in human blood and can affect various organs if left untreated. It contributes to heart disease, kidney issues, damaged nerves, damaged blood vessels, and blindness. Timely disease prediction can save precious lives and enable healthcare advisors to take care of the conditions. Most diabetic patients know little about the risk factors they face before diagnosis. Nowadays, hospitals deploy basic information systems, which generate vast amounts of data that cannot be converted into proper/useful information and cannot be used to support decision making for clinical purposes. There are different automated techniques available for the earlier prediction of disease. Ensemble learning is a data analysis technique that combines multiple techniques into a single optimal predictive system to evaluate bias and variation, and to improve predictions. Diabetes data, which included 17 variables, were gathered from the UCI repository of various datasets. The predictive models used in this study include AdaBoost, Bagging, and Random Forest, to compare the precision, recall, classification accuracy, and F1-score. Finally, the Random Forest Ensemble Method had the best accuracy (97%), whereas the AdaBoost and Bagging algorithms had lower accuracy, precision, recall, and F1-scores.


Assuntos
Diabetes Mellitus , Aprendizado de Máquina , Algoritmos , Diabetes Mellitus/diagnóstico , Pesquisa Empírica , Humanos
18.
Sensors (Basel) ; 22(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35808305

RESUMO

The performance of a six-axis force/torque sensor (F/T sensor) severely decreased when working in an extreme environment due to its sensitivity to ambient temperature. This paper puts forward an ensemble temperature compensation method based on the whale optimization algorithm (WOA) tuning the least-square support vector machine (LSSVM) and trimmed bagging. To be specific, the stimulated annealing algorithm (SA) was hybridized to the WOA to solve the local entrapment problem, and an adaptive trimming strategy is proposed to obtain the optimal trim portion for the trimmed bagging. In addition, inverse quote error (invQE) and cross-validation are employed to estimate the fitness better in training process. The maximum absolute measurement error caused by temperature decreased from 3.34% to 3.9×10-3% of full scale after being compensated by the proposed method. The analyses of experiments illustrate the ensemble hWOA-LSSVM based on improved trimmed bagging improves the precision and stability of F/T sensors and possesses the strengths of local search ability and better adaptability.


Assuntos
Algoritmos , Máquina de Vetores de Suporte , Análise dos Mínimos Quadrados , Temperatura , Torque
19.
Sensors (Basel) ; 22(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408413

RESUMO

Software products from all vendors have vulnerabilities that can cause a security concern. Malware is used as a prime exploitation tool to exploit these vulnerabilities. Machine learning (ML) methods are efficient in detecting malware and are state-of-art. The effectiveness of ML models can be augmented by reducing false negatives and false positives. In this paper, the performance of bagging and boosting machine learning models is enhanced by reducing misclassification. Shapley values of features are a true representation of the amount of contribution of features and help detect top features for any prediction by the ML model. Shapley values are transformed to probability scale to correlate with a prediction value of ML model and to detect top features for any prediction by a trained ML model. The trend of top features derived from false negative and false positive predictions by a trained ML model can be used for making inductive rules. In this work, the best performing ML model in bagging and boosting is determined by the accuracy and confusion matrix on three malware datasets from three different periods. The best performing ML model is used to make effective inductive rules using waterfall plots based on the probability scale of features. This work helps improve cyber security scenarios by effective detection of false-negative zero-day malware.


Assuntos
Algoritmos , Aprendizado de Máquina , Segurança Computacional , Coleta de Dados , Software
20.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806309

RESUMO

'Xinqihong' is a recently selected and well-colored red pear (Pyrus bretschneideri Rehd.) cultivar that is popular in the marketplace owing to the bright red color and high quality of the fruit. The red pigmentation is strongly associated with the light signal. However, its responses to bagging treatment and to light exposure after shading are unknown. In this study, the fruit were treated with three types of fruit bags. 'Xinqihong' fruit colored rapidly in response to light stimulation. A white fruit bag was optimal for bagging of 'Xinqihong' fruit. To ensure satisfactory red pigmentation, the fruit required exposure to 30 days of light after bag removal. A transcriptome analysis was conducted to screen light-signal-related genes and identify their possible functions. PbCRY1 activated the promoter of PbHY5.2 and enhanced its expression. PbHY5.2 activated the promoter activity of PbUFGT and induced anthocyanin synthesis, and also showed self-activation characteristics. Both PbCRY2 and PbPHY1 induced anthocyanin accumulation. Thus, blue-light receptors played an important role in anthocyanin synthesis. This study provides a theoretical basis for the bagging cultivation of new varieties of 'Xinqihong', and lays a foundation for the study of the mechanisms of red pear fruit coloring in response to light signals.


Assuntos
Pyrus , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Pigmentação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/genética , Pyrus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA