Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Pharmacol Res ; 183: 106361, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35882295

RESUMO

There are numerous prescription drugs and non-prescription drugs that cause drug-induced liver injury (DILI), which is the main cause of liver disease in humans around the globe. Its mechanism becomes clearer as the disease is studied further. For an instance, when acetaminophen (APAP) is taken in excess, it produces N-acetyl-p-benzoquinone imine (NAPQI) that binds to biomacromolecules in the liver causing liver injury. Treatment of DILI with traditional Chinese medicine (TCM) has shown to be effective. For example, activation of the Nrf2 signaling pathway as well as regulation of glutathione (GSH) synthesis, coupling, and excretion are the mechanisms by which ginsenoside Rg1 (Rg1) treats APAP-induced acute liver injury. Nevertheless, reducing the toxicity of TCM in treating DILI is still a problem to be overcome at present and in the future. Accumulated evidences show that hydrogel-based nanocomposite may be an excellent carrier for TCM. Therefore, we reviewed TCM with potential anti-DILI, focusing on the signaling pathway of these drugs' anti-DILI effect, as well as the possibility and prospect of treating DILI by TCM based on hydrogel materials in the future. In conclusion, this review provides new insights to further explore TCM in the treatment of DILI.


Assuntos
Produtos Biológicos , Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Acetaminofen , Produtos Biológicos/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Hidrogéis , Medicina Tradicional Chinesa
2.
Pharmacol Res ; 180: 106246, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35562014

RESUMO

Uncontrolled inflammation and failure to resolve the inflammatory response are crucial factors involved in the progress of inflammatory diseases. Current therapeutic strategies aimed at controlling excessive inflammation are effective in some cases, though they may be accompanied by severe side effects, such as immunosuppression. Phytochemicals as a therapeutic alternative can have a fundamental impact on the different stages of inflammation and its resolution. Biochanin A (BCA) is an isoflavone known for its wide range of pharmacological properties, especially its marked anti-inflammatory effects. Recent studies have provided evidence of BCA's abilities to activate events essential for resolving inflammation. In this review, we summarize the most recent findings from pre-clinical studies of the pharmacological effects of BCA on the complex signaling network associated with the onset and resolution of inflammation and BCA's potential protective functionality in several models of inflammatory diseases, such as arthritis, pulmonary disease, neuroinflammation, and metabolic disease.


Assuntos
Genisteína , Isoflavonas , Genisteína/farmacologia , Genisteína/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Fitoterapia
3.
Pharmacol Res ; 184: 106419, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041653

RESUMO

In recent years, the strategy for tumor therapy has changed from focusing on the direct killing effect of different types of therapeutic agents on cancer cells to the new mainstream of multi-mode and -pathway combined interventions in the microenvironment of the developing tumor. Flavonoids, with unique tricyclic structures, have diverse and extensive immunomodulatory and anti-cancer activities in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the most abundant immunosuppressive cells in the TME. The regulation of macrophages to fight cancer is a promising immunotherapeutic strategy. This study covers the most comprehensive cognition of flavonoids in regulating TAMs so far. Far more than a simple list of studies, we try to dig out evidence of crosstalk at the molecular level between flavonoids and TAMs from literature, in order to discuss the most relevant chemical structure and its possible relationship with the multimodal pharmacological activity, as well as systematically build a structure-activity relationship between flavonoids and TAMs. Additionally, we point out the advantages of the macro-control of flavonoids in the TME and discuss the potential clinical implications as well as areas for future research of flavonoids in regulating TAMs. These results will provide hopeful directions for the research of antitumor drugs, while providing new ideas for the pharmaceutical industry to develop more effective forms of flavonoids.


Assuntos
Flavonoides , Macrófagos Associados a Tumor , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Relação Estrutura-Atividade
4.
Pharmacol Res ; 184: 106424, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36064077

RESUMO

The global COVID-19 pandemic remains a critical public health threat, as existing vaccines and drugs appear insufficient to halt the rapid transmission. During an outbreak from May to August 2021 in Taiwan, patients with severe COVID-19 were administered NRICM102, which was a traditional Chinese medicine (TCM) formula developed based on its predecessor NRICM101 approved for treating mild cases. This study aimed to explore the mechanism of NRICM102 in ameliorating severe COVID-19-related embolic and fibrotic pulmonary injury. NRICM102 was found to disrupt spike protein/ACE2 interaction, 3CL protease activity, reduce activation of neutrophils, monocytes and expression of cytokines (TNF-α, IL-1ß, IL-6, IL-8), chemokines (MCP-1, MIP-1, RANTES) and proinflammatory receptor (TLR4). NRICM102 also inhibited the spread of virus and progression to embolic and fibrotic pulmonary injury through reducing prothrombotic (vWF, PAI-1, NET) and fibrotic (c-Kit, SCF) factors, and reducing alveolar type I (AT1) and type II (AT2) cell apoptosis. NRICM102 may exhibit its protective capability via regulation of TLRs, JAK/STAT, PI3K/AKT, and NET signaling pathways. The study demonstrates the ability of NRICM102 to ameliorate severe COVID-19-related embolic and fibrotic pulmonary injury in vitro and in vivo and elucidates the underlying mechanisms.


Assuntos
Tratamento Farmacológico da COVID-19 , Lesão Pulmonar , Embolia Pulmonar , Enzima de Conversão de Angiotensina 2 , Quimiocina CCL5 , Citocinas , Fibrose , Humanos , Interleucina-6/metabolismo , Interleucina-8 , Lesão Pulmonar/tratamento farmacológico , Pandemias , Fosfatidilinositol 3-Quinases , Inibidor 1 de Ativador de Plasminogênio , Proteínas Proto-Oncogênicas c-akt , Embolia Pulmonar/tratamento farmacológico , Glicoproteína da Espícula de Coronavírus , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de von Willebrand
5.
Pharmacol Res ; 169: 105617, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872811

RESUMO

Traditional Chinese multi-herb-combined prescriptions usually show better performance than a single agent since a group of effective compounds interfere multiple disease-relevant targets simultaneously. Huang-Lian-Jie-Du decoction is a remedy made of four herbs that are widely used to treat oral ulcers, gingivitis, and periodontitis. However, the active ingredients and underlying mechanisms are not clear. To address these questions, we prepared a water extract solution of Huang-Lian-Jie-Du decoction (HLJDD), called it as WEH (Water Extract Solution of HLJDD), and used it to treat LPS-induced systemic inflammation in mice. We observed that WEH attenuated inflammatory responses including reducing production of cytokines, chemokines and interferons (IFNs), further attenuating emergency myelopoiesis, and preventing mice septic lethality. Upon LPS stimulation, mice pretreated with WEH increased circulating Ly6C- patrolling and splenic Ly6C+ inflammatory monocytes. The acute myelopoiesis related transcriptional factor profile was rearranged by WEH. Mechanistically we confirmed that WEH interrupted LPS/TLR4/CD14 signaling-mediated downstream signaling pathways through its nine principal ingredients, which blocked LPS stimulated divergent signaling cascades, such as activation of NF-κB, p38 MAPK, and ERK1/2. We conclude that the old remedy blunts LPS-induced "danger" signal recognition and transduction process at multiple sites. To translate our findings into clinical applications, we refined the crude extract into a pure multicomponent drug by directly mixing these nine chemical entities, which completely reproduced the effect of protecting mice from lethal septic shock. Finally, we reduced a large number of compounds within a multi-herb water extract to seven-chemical combination that exhibited superior therapeutic efficacy compared with WEH.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/tratamento farmacológico , Monócitos/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Fatores de Transcrição/efeitos dos fármacos , Animais , Reprogramação Celular/efeitos dos fármacos , Coptis chinensis , Medicamentos de Ervas Chinesas/administração & dosagem , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Extratos Vegetais/administração & dosagem , Células RAW 264.7/efeitos dos fármacos , Fatores de Transcrição/metabolismo
6.
Pharmacol Res ; 163: 105224, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007416

RESUMO

Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Pulmão/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Humanos , Pulmão/metabolismo , Pulmão/patologia , Compostos Fitoquímicos/isolamento & purificação , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Transdução de Sinais
7.
Pharmacol Res ; 157: 104820, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32360484

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic has become a huge threaten to global health, which raise urgent demand of developing efficient therapeutic strategy. The aim of the present study is to dissect the chemical composition and the pharmacological mechanism of Qingfei Paidu Decoction (QFPD), a clinically used Chinese medicine for treating COVID-19 patients in China. Through comprehensive analysis by liquid chromatography coupled with high resolution mass spectrometry (MS), a total of 129 compounds of QFPD were putatively identified. We also constructed molecular networking of mass spectrometry data to classify these compounds into 14 main clusters, in which exhibited specific patterns of flavonoids (45 %), glycosides (15 %), carboxylic acids (10 %), and saponins (5 %). The target network model of QFPD, established by predicting and collecting the targets of identified compounds, indicated a pivotal role of Ma Xing Shi Gan Decoction (MXSG) in the therapeutic efficacy of QFPD. Supportively, through transcriptomic analysis of gene expression after MXSG administration in rat model of LPS-induced pneumonia, the thrombin and Toll-like receptor (TLR) signaling pathway were suggested to be essential pathways for MXSG mediated anti-inflammatory effects. Besides, changes in content of major compounds in MXSG during decoction were found by the chemical analysis. We also validate that one major compound in MXSG, i.e. glycyrrhizic acid, inhibited TLR agonists induced IL-6 production in macrophage. In conclusion, the integration of in silico and experimental results indicated that the therapeutic effects of QFPD against COVID-19 may be attributed to the anti-inflammatory effects of MXSG, which supports the rationality of the compatibility of TCM.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Animais , Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , COVID-19 , Células Cultivadas , Simulação por Computador , Infecções por Coronavirus/genética , Expressão Gênica/efeitos dos fármacos , Ácido Glicirrízico/farmacologia , Humanos , Interleucina-6/metabolismo , Lipopeptídeos/antagonistas & inibidores , Lipopeptídeos/farmacologia , Lipopolissacarídeos , Masculino , Pandemias , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia Viral/genética , Ratos , SARS-CoV-2 , Transdução de Sinais/efeitos dos fármacos , Trombina/metabolismo , Receptores Toll-Like/metabolismo
8.
Pharmacol Res ; 159: 104795, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32278035

RESUMO

Cerebral ischemia reperfusion injury (CIRI), one of the major causes of death from stroke in the world, not only causes tremendous damage to human health, but also brings heavy economic burden to society. Current available treatments for CIRI, including mechanical therapies and drug therapies, are often accompanied by significant side-effects. Therefore, it is necessary to discovery new strategies for treating CIRI. Many studies have confirmed that the herbal medicine has the advantages of abundant resources, good curative effect and little side effects, which can be used as potential drug for treatment of CIRI through multiple targets. It's known that oral administration commonly has low bioavailability, and injection administration is inconvenient and unsafe. Many drugs can't delivery to brain through routine pathways due to the blood-brain-barrier (BBB). Interestingly, increasing evidences have suggested the nasal administration is a potential direct route to transport drug into brain avoiding the BBB and has the characteristics of high bioavailability for treating brain diseases. Therefore, intranasal administration can be treated as an alternative way to treat brain diseases. In the present review, effective methods to treat CIRI by using active ingredients derived from herbal medicine through nose to brain drug delivery (NBDD) are updated and discussed, and some related pharmacological mechanisms have also been emphasized. Our present study would be beneficial for the further drug development of natural agents from herbal medicines via NBDD.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Mucosa Nasal/metabolismo , Preparações de Plantas/administração & dosagem , Traumatismo por Reperfusão/tratamento farmacológico , Administração Intranasal , Animais , Disponibilidade Biológica , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Composição de Medicamentos , Humanos , Preparações de Plantas/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Distribuição Tecidual
9.
Pharmacol Res ; 142: 176-191, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30818043

RESUMO

As an important component of complementary and alternative medicines, traditional Chinese medicines (TCM) are gaining more and more attentions around the world because of the powerful therapeutic effects and less side effects. However, there are still some doubts about TCM because of the questionable TCM theories and unclear biological active compounds. In recent years, gut microbiota has emerged as an important frontier to understand the development and progress of diseases. Together with this trend, an increasing number of studies have indicated that drug molecules can interact with gut microbiota after oral administration. In this context, more and more studies pertaining to TCM have paid attention to gut microbiota and have yield rich information for understanding TCM. After oral administration, TCM can interact with gut microbiota: (1) TCM can modulate the composition of gut microbiota; (2) TCM can modulate the metabolism of gut microbiota; (3) gut microbiota can transform TCM compounds. During the interactions, two types of metabolites can be produced: gut microbiota metabolites (of food and host origin) and gut microbiota transformed TCM compounds. In this review, we summarized the interactions between TCM and gut microbiota, and the pharmacological effects and features of metabolites produced during interactions between TCM and gut microbiota. Then, focusing on gut microbiota and metabolites, we summarized the aspects in which gut microbiota has facilitated our understanding of TCM. At the end of this review, the outlooks for further research of TCM and gut microbiota were also discussed.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Medicina Tradicional Chinesa , Animais , Humanos
10.
Pharmacol Res ; 147: 104367, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31344423

RESUMO

The dynamic and delicate interactions amongst intestinal microbiota, metabolome and metabolism dictates human health and disease. In recent years, our understanding of gut microbial regulation of intestinal immunometabolic and redox homeostasis have evolved mainly out of in vivo studies associated with high-fat feeding induced metabolic diseases. Techniques utilizing fecal transplantation and germ-free mice have been instrumental in reproducibly demonstrating how the gut microbiota affects disease pathogenesis. However, the pillars of modern drug discovery i.e. evidence-based pharmacological studies critically lack focus on intestinal microflora. This is primarily due to targeted in vitro molecular-approaches at cellular-level that largely overlook the etiology of disease pathogenesis from the physiological perspective. Thus, this review aims to provide a comprehensive understanding of the key notions of intestinal microbiota and dysbiosis, and highlight the microbiota-phytochemical bidirectional interactions that affects bioavailability and bioactivity of parent phytochemicals and their metabolites. Potentially by focusing on the three major aspects of gut microbiota i.e. microbial abundance, diversity, and functions, I will discuss phytochemical-microbiota reciprocal interactions, biotransformation of phytochemicals and plant-derived drugs, and pre-clinical and clinical efficacies of herbal medicine on dysbiosis. Additionally, in relation to phytochemical pharmacology, I will briefly discuss the role of dietary-patterns associated with changes in microbial profiles and review pharmacological study models considering possible microbial effects. This review therefore, emphasize on the timely and critically needed evidence-based phytochemical studies focusing on gut microbiota and will provide newer insights for future pre-clinical and clinical phytopharmacological interventions.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Fitoterapia , Animais , Biotransformação , Dieta , Humanos , Compostos Fitoquímicos/farmacocinética
11.
Biochim Biophys Acta Mol Basis Dis ; 1863(2): 598-606, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27903431

RESUMO

Baicalin and scutellarin, two flavonoid glucuronic acids isolated from Scutellaria baicalensis, exhibit beneficial effects on glucose homeostasis. Baicalin and scutellarin are similar in structure except scutellarin has an additional hydroxyl at composition C-4'. In this work, we observed that baicalin and scutellarin promoted glucose disposal in mice and in adipocytes. Baicalin selectively increased phosphorylation of AMP-activated kinase (AMPK), while scutellarin selectively enhanced Akt phosphorylation. Both of them increased AS160 phosphorylation and glucose uptake in basal condition. AMPK inhibitor or knockdown of AMPK by siRNA blocked baicalin-induced AS160 phosphorylation and glucose uptake, but showed no effects on scutellarin. In contrast, Akt inhibitor and knockdown of Akt with siRNA decreased scutellarin-stimulated glucose uptake but had no effects on baicalin. The molecular dynamic simulations analysis showed that the binding energy of baicalin to AMPK (-34.30kcal/mol) was more favorable than scutellarin (-21.27kcal/mol), while the binding energy of scutellarin (-29.81kcal/mol) to Akt was much more favorable than baicalin (4.04kcal/mol). Interestingly, a combined treatment with baicalin and scutellarin acted synergistically to enhance glucose uptake in adipocytes (combination index: 0.94-0.046). In conclusion, baicalin and scutellarin, though structurally similar, promoted glucose disposal in adipocytes by differential regulation on AMPK and Akt activity. Our data provide insight that multicomponent herbal medicines may act synergistically on multiple targets.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/efeitos dos fármacos , Apigenina/farmacologia , Flavonoides/farmacologia , Glucose/metabolismo , Glucuronatos/farmacologia , Hipoglicemiantes/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Apigenina/química , Ativação Enzimática/efeitos dos fármacos , Flavonoides/química , Glucuronatos/química , Hipoglicemiantes/química , Camundongos , Scutellaria baicalensis/química
12.
J Ethnopharmacol ; 337(Pt 1): 118785, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39241972

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Research suggests that traditional Chinese medicine (TCM) holds promise in offering innovative approaches to tackle neurodegenerative disorders. In our endeavor, we conducted a comprehensive bibliometric analysis to delve into the landscape of TCM research within the realm of neurodegenerative diseases, aiming to uncover the present scenario, breadth, and trends in this field. This analysis presents potentially valuable insights for the clinical application of traditional Chinese medicine and provides compelling evidence supporting its efficacy in the treatment of neurodegenerative conditions. AIM OF THE STUDY: The incidence of neurodegenerative diseases is on the rise, yet effective treatments are still lacking. Research indicates that TCM could offer novel perspectives for addressing neurodegenerative conditions. Nonetheless, the literature on this topic is intricate and multifaceted, with existing reviews offering only limited coverage. To gain a thorough understanding of TCM research in neurodegenerative diseases, we undertook a bibliometric analysis to explore the current status, scope, and trends in this area. MATERIALS AND METHODS: A literature search was carried out on April 1, 2024, utilizing the Web of Science Core Collection (WoSCC). Visualization and quantitative analyses were then performed with the assistance of CiteSpace, VOSviewer, and R software. RESULTS: A total of 6856 articles were retrieved in the search. Research on TCM for neurodegenerative diseases commenced in 1989 and has exhibited a notable overall growth since then. Main research contributors include East Asian countries like China, as well as the United States. Through our analysis, we identified 15 highly productive authors, 10 top-tier journals, 13 citation clusters, 11 influential articles, and observed a progression in keyword evolution across 4 distinct categories. In 2020, there was a significant upsurge in the knowledge base, collaboration efforts, and publication output within the field. This field is interdisciplinary: network pharmacology emerges as the cutting-edge paradigm in TCM research, while Alzheimer's disease remains a prominent focus among neurodegenerative conditions due to its evolving etiology. A burst detection analysis unveils that in 2024, the focal points of research convergence between TCM and neurodegenerative diseases lie in two key biological processes or mechanisms: autophagy and microbiota. CONCLUSIONS: For the first time, this study quantitatively and visually captures the evolution of TCM in addressing neurodegenerative diseases, showcasing a notable acceleration in recent years. Our findings underscore the pivotal role of interdisciplinary collaboration and the necessity for increased global partnerships. Network pharmacology, leveraging the advancements of the big data era, embraces a holistic and systematic approach as a novel paradigm in exploring traditional Chinese medicine and unraveling their fundamental mechanisms. Three ethnomedical plants-Tianma, Renshen, and Wuweizi-demonstrate the promise of their bioactive compounds in treating neurodegenerative disorders, bolstered by their extensive historical usage for such ailments. Moreover, our intricate analysis of the evolutionary trajectories of key themes such as targets and biomarkers substantially enriches our comprehension of the underlying mechanisms involved.

13.
Eur J Pharmacol ; 925: 174996, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35513018

RESUMO

In this work, we examined whether baicalin (BC), a bioactive flavonoid in Scutellaria baicalensis Georgi, can reduce high-fat diet (HFD)-induced metabolic syndrome (MetS) in mice. The UPLC-QTOF/MS was used for metabolome profiles analysis, and an analysis of bacterial 16S rDNA in feces was used to examine the effects of BC on gut microbiota composition. Our results showed that BC (400 mg/kg) could reduce the body weight gain, decrease hepatic fat accumulation and abnormal blood lipids, and increase insulin sensitivity after 8 weeks of treatment. BC could reverse the alteration of 7 metabolites induced by HFD and the metabolic pathways responsive to BC intervention including citrate cycle, alanine, aspartate and glutamate metabolism, glycerophospholipid metabolism, and aminoacyl-tRNA biosynthesis. 16S rDNA analysis demonstrated that BC altered the composition and function of gut microbiota in MetS mice. Notably, we found that the change in succinic acid was negatively associated with the changes in Bacteroides and Sutterella, and positively associated with the change in Mucispirillum. Moreover, we confirmed that succinic acid displayed a metabolic protective effect on MetS mice. The antibiotic treatment verified that BC exerts metabolic protection through gut microbiota. Our findings suggested BC may be a potential therapeutic drug to ameliorate diet induced MetS and gut microbiome may be a novel mechanistic target of BC for treatment of MetS.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Animais , DNA Ribossômico/farmacologia , Dieta Hiperlipídica/efeitos adversos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Ácido Succínico/farmacologia
14.
Phytomedicine ; 100: 154083, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35413645

RESUMO

BACKGROUND: The high incidence of thrombotic events is one of the clinical characteristics of coronavirus disease of 2019 (COVID-19), due to a hyperinflammatory response caused by the virus. Gegen Qinlian Pills (GQP) is a Traditional Chinese Medicine that is included in the Chinese Pharmacopoeia and played an important role in the clinical fight against COVID-19. Although GQP has shown the potential to treat thrombosis, there is no relevant research on its treatment of thrombosis so far. HYPOTHESIS: We hypothesized that GQP may be capable inhibit inflammation-induced thrombosis. STUDY DESIGN: We tested our hypothesis in a carrageenan-induced thrombosis mouse model in vivo and lipopolysaccharide (LPS)-induced human endothelial cells (HUVECs) in vitro. METHODS: We used a carrageenan-induced mouse thrombus model to confirm the inhibitory effect of GQP on inflammation-induced thrombus. In vitro, studies in human umbilical vein endothelial cells (HUVECs) and in silico network pharmacology analyses were performed to reveal the underlying mechanisms of GQP and determine the main components, targets, and pathways of GQP, respectively. RESULTS: Oral administration of 227.5 mg/kg, 445 mg/kg and 910 mg/kg of GQP significantly inhibited thrombi in the lung, liver, and tail and augmented tail blood flow of carrageenan-induced mice with reduced plasma tumor necrosis factor α (TNF-α) and diminished expression of high mobility group box 1 (HMGB1) in lung tissues. GQP ethanol extract (1, 2, or 5 µg/ml) also reduced the adhesion of platelets to LPS stimulated HUVECs. The TNF-α and the expression of HMGB1, nuclear factor kappa B (NF-κB), and NLR family pyrin domain containing 3 (NLRP3) in LPS stimulated HUVECs were also attenuated. Moreover, we analyzed the components of GQP and inferred the main targets, biological processes, and pathways of GQP in the treatment of inflammation-induced thrombosis through network pharmacology. CONCLUSION: Overall, we demonstrated that GQP could reduce inflammation-induced thrombosis by inhibiting HMGB1/NFκB/NLRP3 signaling and provided an accurate explanation for the multi-target, multi-function mechanism of GQP in the treatment of thromboinflammation, and provides a reference for the clinical usage of GQP.


Assuntos
Medicamentos de Ervas Chinesas , Proteína HMGB1 , Trombose , Animais , Carragenina , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos , Camundongos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Trombose/induzido quimicamente , Trombose/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo
15.
J Ethnopharmacol ; 292: 115043, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35124185

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qingkailing (QKL), Reduning (RDN), Xiyanping (XYP), Tanreqing (TRQ) and Yuxingcao (YXC) injections are all phlegm-heat clearing Chinese medicine (CM) injections composed of the extract from traditional CM materials. Evidence from clinical studies and animal experiments indicates that the above CM injections are effective supplementary therapy for acute exacerbation chronic obstructive pulmonary disease (AECOPD), and clinicians are faced with a difficult choice on the optimal phlegm-heat clearing CM injection for AECOPD. AIM OF THE STUDY: This systematic review and Bayesian network meta-analysis aimed to evaluate the comparative effectiveness of five commonly used phlegm-heat clearing CM injections for COPD. MATERIALS AND METHODS: A pairwise and network meta-analyses were performed to assess the effectiveness of QKL, RDN, TRQ, XYP and YXC on AECOPD. Randomized controlled trials (RCTs) were identified by searching English and Chinese databases. The primary outcome was lung function (forced expiration volume [FEV1] and forced vital capacity [FVC]), blood gas analysis index was secondary outcome measure. Winbugs and Stata 15.0 software were used for data analysis. RESULTS: A total of 57 RCTs were included. The pairwise analyses showed that each of the injections combined with routine treatment were superior to routine treatment alone [FEV1: QKL, MD 0.20, 95% CI (0.06, 0.35); RDN, MD 0.24, 95% CI (0.08, 0.40); TRQ, MD 0.24, 95% CI (0.19, 0.29); XYP, MD 0.26, 95% CI (0.20, 0.32); YXC MD 0.73, 95% CI (0.06, 1.41)]. The network meta-analysis provided the following rank of lung function improvement: FEV1: YXC > TRQ > XYP > RDN > QKL; FVC: YXC > TRQ > QKL > RDN > XYP. RDN and YXC ranked highest in blood gas analysis index. RDN was the highest ranked injection for effectiveness, followed by QKL, TRQ, XYP, then YXC. Most of the injections appeared safe, with severe adverse events rarely reported. CONCLUSION: This study suggests that YXC and TRQ are the most effective therapies in treating AECOPD patients. RDN and YXC are more effective in the alleviation of clinical symptoms. Given that the safety of YXC is controversial, TRQ and RDN may be preferable as phlegm-heat clearing CM injections in the adjuvant treatment of AECOPD.


Assuntos
Medicamentos de Ervas Chinesas , Doença Pulmonar Obstrutiva Crônica , Animais , Volume Expiratório Forçado , Temperatura Alta , Humanos , Medicina Tradicional Chinesa , Metanálise em Rede , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
16.
J Ethnopharmacol ; 270: 113773, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33388430

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qingxue jiedu Formulation (QF) is composed of two classic prescriptions which have been clinically used for more than 5 centuries and appropriately modified through basic theory of traditional Chinese medicine for treating various skin inflammation such as atopic dermatitis (AD), acute dermatitis and rash. Although QF possesses a prominent clinical therapeutic effect, seldom pharmacological studies on its anti-AD activity are conducted. AIM OF THE STUDY: We used AD mice model to investigate the anti-AD activities of QF, as well as its underlying molecular mechanisms which involved signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. MATERIALS AND METHODS: 2,4-dinitrofluorobenzene (DNFB)-induced AD mice were used to collect serum and skin tissues for consequential determination. The levels of various inflammatory factors [interleukin (IL)-12, Interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-4, IL-6 and immunoglobulin E (IgE)] were determined by enzyme-linked immunosorbent assay (ELISA). Real-time polymerase chain reaction (RT-PCR) was contributed to detect the effects of relevant inflammatory factors on mRNA. The roles of STAT3, NF-κB and MAPK signaling pathways in AD response were analyzed by Western blotting (WB), and the thickening of mice dorsal skin and inflammatory cell infiltration were observed by hematoxylin and eosin (H&E) staining. RESULTS: QF significantly reduced the skin thickening, inflammatory cell infiltration and other symptoms in AD mice. The levels of IL-12, TNF-α, IL-4, IL-6 and IgE were decreased, while IFN-γ was increased by QF in the ELISA analysis. QF lessened the levels of lL-6 and elevated IFN-γ on the mRNA level. In addition, WB analysis showed QF thoroughly inhibited the activation of NF-κB, STAT3 and phosphorylation of JAK1, JAK2, JAK3, while partially suppressed MAPK signaling pathways. CONCLUSIONS: QF inhibited the activations of STAT3, MAPK and NF-κB signaling pathways and possessed a significant therapeutic effect on AD. Therefore, QF deserves our continuous attention and research as a prominent medicine for AD.


Assuntos
Dermatite Atópica/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Citocinas/sangue , Citocinas/genética , Dermatite Atópica/sangue , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/patologia , Dinitrofluorbenzeno/toxicidade , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Imunoglobulina E/sangue , Masculino , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo
17.
Biomed Pharmacother ; 141: 111931, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34328111

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disorder that is difficult to cure and characterized by periods of relapse. To face the challenges of limited treatment strategies and drawbacks of conventional medications, developing new and promising strategies as well as safe and effective drugs for treatment of IBD has become an urgent demand for clinics. The imbalance of Th17/Treg is a crucial event for the development of IBD, and studies have verified that correcting the imbalance of Th17/Treg is an effective strategy for preventing and treating IBD. Recently, a growing body of studies has indicated that phytochemicals derived from natural products are potent regulators of Th17/Treg, and exert preferable protective benefits against colonic inflammation. In this review, the great potential of anti-colitis agents derived from natural products through targeting Th17/Treg cells and their action mechanisms for the treatment or prevention of IBD in recent research is summarized, which may help further the development of new drugs for IBD treatment.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Doenças Inflamatórias Intestinais/imunologia , Compostos Fitoquímicos/farmacologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/uso terapêutico , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/efeitos dos fármacos
18.
Jpn Dent Sci Rev ; 56(1): 90-96, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32612718

RESUMO

An analysis of the implication of the PD-1/PD-L1 immune checkpoint in periodontitis is provided with the objective to propose a novel therapeutic approach. An exhaustive survey of the literature has been performed to answer two questions: (1) Is there a role for PD-1 and/or PD-L1 in the development of periodontitis? (2) Which natural products interfere with the checkpoint activity and show activity against periodontitis? All online published information was collected and analyzed. The pathogenic bacteria Porphyromonas gingivalis, through its membrane-attached peptidoglycans, exploits the PD-1/PD-L1 checkpoint to evade immune response and to amplify the infection. Three anti-inflammatory natural products (and derivatives or plant extracts) active against periodontitis and able to interfere with the checkpoint were identified. Both curcumin and baicalin attenuate periodontitis and induce a down-regulation of PD-L1 in cells. The terpenoid saponin platycodin D inhibits the growth of P. gingivalis responsible for periodontitis and shows a rare capacity to induce the extracellular release of a soluble form of PD-L1, thereby restoring T cell activation. A potential PD-L1 shedding mechanism is discussed. The targeting of the PD-1/PD-L1 immune checkpoint could be considered a suitable approach to improve the treatment of chronic periodontitis. The plant natural products curcumin, baicalin and platycodin D should be further evaluated as PD-1/PD-L1 checkpoint modulators active against periodontitis.

19.
J Ethnopharmacol ; 231: 438-445, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445107

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaochaihutang (XCHT), one of famous Chinese herbal prescription for treating Shaoyang symptom, has been used successfully in depressive disorders for many years. Our laboratory has demonstrated that XCHT remarkably alleviated various depressive behaviors induced by several depressive animal models, but previous studies only focused on one or several protein targets, lacked dynamic change and interrelation of proteins. Therefore, potential protein targets and mechanisms are required further systematic investigation. AIM OF THE STUDY: To discover and assess the differentially expressed proteins (DEPs) of hippocampus after oral administration of XCHT in corticosterone (CORT) induced model of depression by using isobaric tags for relative and absolute quantification (iTRAQ) analysis. MATERIALS AND METHODS: The antidepressant effects of XCHT were assessed by two behavioral despair models (forced swimming test and tail suspension test) in CORT induced model of depression. The DEPs of hippocampus after XCHT treatment were investigated by iTRAQ analysis. Potential protein targets and mechanisms were assessed by gene ontology (GO), Kyoto encyclopedia of gene and genomes (KEGG) and protein-protein interaction (PPI) network. RESULTS: Our data demonstrated XCHT could significantly improve depressive behaviors. A total of 241 DEPs were identified after XCHT treatment, including 68 up regulation and 173 down regulation proteins. GO enrichment results indicated that XCHT mainly regulated intracellular structural proteins involved in cellular response to stress, transferase activity and steroid hormone. KEGG enrichment analysis showed that endocytosis might be the principal pathway of XCHT on depression. PPI analysis predicted cell division cycle and apoptosis regulator protein 1 (Ccar1) and Calretinin (Calb2) might play the central roles in XCHT's antidepressant network. CONCLUSION: Our results indicate that XCHT plays the important roles in antidepressant action by restoring DEPs, which results in the dysregulation of hippocampal neurogenesis, neurotransmitter and steroid hormone. The current results wish to provide novel perspectives for revealing the potential protein targets of XCHT on depression.


Assuntos
Antidepressivos/farmacologia , Depressão/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Animais , Antidepressivos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Corticosterona , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Fitoterapia , Proteômica
20.
J Ethnopharmacol ; 243: 112097, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31325600

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: According to Traditional Chinese Medicine theory, influenza is categorized as a warm disease or Wen Bing. The Wen Bing formulas, such as Yin-Qiao-San and Sang-Ju-Yin, are still first-line herbal therapies in combating variant influenza virus. To continue our study on the pharmacokinetic and pharmacodynamic interactions between Wen Bing formulas and oseltamivir (OS), the first-line western drug for the treatment of influenza, further interactions between OS and the eight single herbs and their relevant marker components from Wen Bing formulas were investigated in the current study. AIM OF STUDY: To establish an in-vitro screening platform for investigation of the potential anti-influenza herbs/herbal components that may have pharmacokinetic and pharmacodynamic interactions with OS. MATERIALS AND METHODS: To screen potential inhibition on OS hydrolysis, 1 µg/mL of OS is incubated with herbs/herbal components in diluted rat plasma, microsomes and human recombinant carboxylesterase 1(hCE1) under optimized conditions. MDCK-WT and MDCK-MDR1 cell lines are utilized to identify potential modification on P-gp mediated transport of OS by herbs/herbal components. Caco-2 cells with and without Gly-Sar inhibition are performed to study the uptake of OS via PEPT1 transporters. Modification on OAT3 mediated transport is verified by the uptake of OS on HEK293-MOCK/HEK293-OAT3 cells. Anti-virus effects were evaluated using plaque reduction assay on H1N1 and H3N2 viruses. Potential pharmacokinetic and pharmacodynamic interaction between OS (30 mg/kg) and the selected herb, Radix Scutellariae (RS), at 300-600 mg/kg were carried out on rats. All samples are analyzed by an LC/MS/MS method for the contents of OS and OSA. A mechanistic PK model was developed to interpret the HDI between OS and RS in rats. RESULTS: Our developed platform was successfully applied to screen the eight herbal extracts and their ten marker components on metabolic inhibition of OS and modification of OS transport mediated by P-gp, OAT3 and PEPT1. Results from six in-vitro experiments were analyzed after converting raw data from each experiment to corresponding fold-change (FC) values, based on which Radix Scutellariae (RS) were selected to have the most HDI potential with OS. By analyzing the plasma and urine pharmacokinetic data after co-administration of OS with a standardized RS extract in rats using an integrated population pharmacokinetics model, it is suggested that RS could inhibit OS hydrolysis during absorption and increase the absorbed fraction of OS, which leads to the increased ratio of OS concentration versus that of OSA in both rat plasma and urine. Never the less, the anti-virus effects of 2.5 h post-dose rat plasma were not influenced by co-administration of OS with RS. CONCLUSION: A six-dimension in-vitro screening platform has been developed and successfully applied to find RS as a potential herb that would influence the co-administrated OS in rats. Although co-administered RS could inhibit OS hydrolysis during absorption and increase the absorbed fraction of OS, which lead to the increased ratio of OS concentration versus that of OSA in both rat plasma and urine, the anti-virus effect of OS was not influenced by co-administered RS.


Assuntos
Antivirais/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Interações Ervas-Drogas , Oseltamivir/farmacocinética , Scutellaria baicalensis , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Antivirais/farmacologia , Células CACO-2 , Cães , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Células Madin Darby de Rim Canino , Masculino , Medicina Tradicional Chinesa , Microssomos Hepáticos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Oseltamivir/farmacologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA