Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2320796121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38959036

RESUMO

Phoresy is an interspecies interaction that facilitates spatial dispersal by attaching to a more mobile species. Hitchhiking species have evolved specific traits for physical contact and successful phoresy, but the regulatory mechanisms involved in such traits and their evolution are largely unexplored. The nematode Caenorhabditis elegans displays a hitchhiking behavior known as nictation during its stress-induced developmental stage. Dauer-specific nictation behavior has an important role in natural C. elegans populations, which experience boom-and-bust population dynamics. In this study, we investigated the nictation behavior of 137 wild C. elegans strains sampled throughout the world. We identified species-wide natural variation in nictation and performed a genome-wide association mapping. We show that the variants in the promoter of nta-1, encoding a putative steroidogenic enzyme, underlie differences in nictation. This difference is due to the changes in nta-1 expression in glial cells, which implies that glial steroid metabolism regulates phoretic behavior. Population genetic analysis and geographic distribution patterns suggest that balancing selection maintained two nta-1 haplotypes that existed in ancestral C. elegans populations. Our findings contribute to further understanding of the molecular mechanism of species interaction and the maintenance of genetic diversity within natural populations.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Neuroglia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuroglia/metabolismo , Estudo de Associação Genômica Ampla , Comportamento Animal/fisiologia , Variação Genética , Regiões Promotoras Genéticas/genética , Esteroides/metabolismo , Esteroides/biossíntese
2.
Trends Genet ; 39(6): 491-504, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36890036

RESUMO

Recent studies of cosmopolitan Drosophila populations have found hundreds to thousands of genetic loci with seasonally fluctuating allele frequencies, bringing temporally fluctuating selection to the forefront of the historical debate surrounding the maintenance of genetic variation in natural populations. Numerous mechanisms have been explored in this longstanding area of research, but these exciting empirical findings have prompted several recent theoretical and experimental studies that seek to better understand the drivers, dynamics, and genome-wide influence of fluctuating selection. In this review, we evaluate the latest evidence for multilocus fluctuating selection in Drosophila and other taxa, highlighting the role of potential genetic and ecological mechanisms in maintaining these loci and their impacts on neutral genetic variation.


Assuntos
Variação Genética , Animais , Drosophila melanogaster/genética , Humanos , Estações do Ano , Adaptação Fisiológica , Seleção Genética , Genoma
3.
Am J Hum Genet ; 110(4): 691-702, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36889308

RESUMO

ERAP2 is an aminopeptidase involved in immunological antigen presentation. Genotype data in human samples from before and after the Black Death, an epidemic due to Yersinia pestis, have marked changes in allele frequency of the single-nucleotide polymorphism (SNP) rs2549794, with the T allele suggested to be deleterious during this period, while ERAP2 is also implicated in autoimmune diseases. This study explored the association between variation at ERAP2 and (1) infection, (2) autoimmune disease, and (3) parental longevity. Genome-wide association studies (GWASs) of these outcomes were identified in contemporary cohorts (UK Biobank, FinnGen, and GenOMICC). Effect estimates were extracted for rs2549794 and rs2248374, a haplotype tagging SNP. Additionally, cis expression and protein quantitative trait loci (QTLs) for ERAP2 were used in Mendelian randomization (MR) analyses. Consistent with decreased survival in the Black Death, the T allele of rs2549794 showed evidence of association with respiratory infection (odds ratio; OR for pneumonia 1.03; 95% CI 1.01-1.05). Effect estimates were larger for more severe phenotypes (OR for critical care admission with pneumonia 1.08; 95% CI 1.02-1.14). In contrast, opposing effects were identified for Crohn disease (OR 0.86; 95% CI 0.82-0.90). This allele was shown to associate with decreased ERAP2 expression and protein levels, independent of haplotype. MR analyses suggest that ERAP2 expression may be mediating disease associations. Decreased ERAP2 expression is associated with severe respiratory infection with an opposing association with autoimmune diseases. These data support the hypothesis of balancing selection at this locus driven by autoimmune and infectious disease.


Assuntos
Doenças Autoimunes , Peste , Humanos , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos/genética , Doenças Autoimunes/genética , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença , Aminopeptidases/genética , Aminopeptidases/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(25): e2300673120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37311002

RESUMO

Genome re-arrangements such as chromosomal inversions are often involved in adaptation. As such, they experience natural selection, which can erode genetic variation. Thus, whether and how inversions can remain polymorphic for extended periods of time remains debated. Here we combine genomics, experiments, and evolutionary modeling to elucidate the processes maintaining an inversion polymorphism associated with the use of a challenging host plant (Redwood trees) in Timema stick insects. We show that the inversion is maintained by a combination of processes, finding roles for life-history trade-offs, heterozygote advantage, local adaptation to different hosts, and gene flow. We use models to show how such multi-layered regimes of balancing selection and gene flow provide resilience to help buffer populations against the loss of genetic variation, maintaining the potential for future evolution. We further show that the inversion polymorphism has persisted for millions of years and is not a result of recent introgression. We thus find that rather than being a nuisance, the complex interplay of evolutionary processes provides a mechanism for the long-term maintenance of genetic variation.


Assuntos
Aclimatação , Inversão Cromossômica , Animais , Inversão Cromossômica/genética , Fluxo Gênico , Genômica , Heterozigoto , Neópteros
5.
Proc Natl Acad Sci U S A ; 120(50): e2313284120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048455

RESUMO

Two separate but related literatures have examined familial correlates of male androphilia (i.e., sexual attraction and arousal to masculine adult males). The fraternal birth order effect (FBOE) is a widely established finding that each biological older brother a male has increased the probability of androphilia 20-35% above baseline rates. Other family demographic variables, such as reproduction by mothers, maternal aunts, and grandmothers, have been used to test evolutionary hypotheses that sexually antagonistic genes lead to androphilia among males, lowering or eliminating reproduction, which is offset by greater reproductive output among their female relatives. These proposed female fecundity effects (FFEs), and the FBOE, have historically been treated as separate yet complementary ways to understand the development and evolution of male androphilia. However, this approach ignores a vital confound within the data. The high overall reproductive output indicative of an FFE results in similar statistical patterns as the FBOE, wherein women with high reproductive output subsequently produce later-born androphilic sons. Thus, examination of the FBOE requires analytic approaches capable of controlling for the FFE, and vice-versa. Here, we present data simultaneously examining the FBOE and FFE for male androphilia in a large dataset collected in Samoa across 10 y of fieldwork, which only shows evidence of the FBOE.


Assuntos
Ordem de Nascimento , Homossexualidade Masculina , Adulto , Masculino , Humanos , Feminino , Estudos Retrospectivos , Comportamento Sexual , Samoa , Mães , Fertilidade
6.
Plant J ; 118(2): 358-372, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38194491

RESUMO

The natural variation of plant-specialized metabolites represents the evolutionary adaptation of plants to their environments. However, the molecular mechanisms that account for the diversification of the metabolic pathways have not been fully clarified. Rice plants resist attacks from pathogens by accumulating diterpenoid phytoalexins. It has been confirmed that the composition of rice phytoalexins exhibits numerous natural variations. Major rice phytoalexins (momilactones and phytocassanes) are accumulated in most cultivars, although oryzalactone is a cultivar-specific compound. Here, we attempted to reveal the evolutionary trajectory of the diversification of phytoalexins by analyzing the oryzalactone biosynthetic gene in Oryza species. The candidate gene, KSLX-OL, which accounts for oryzalactone biosynthesis, was found around the single-nucleotide polymorphisms specific to the oryzalactone-accumulating cultivars in the long arm of chromosome 11. The metabolite analyses in Nicotiana benthamiana and rice plants overexpressing KSLX-OL indicated that KSLX-OL is responsible for the oryzalactone biosynthesis. KSLX-OL is an allele of KSL8 that is involved in the biosynthesis of another diterpenoid phytoalexin, oryzalexin S and is specifically distributed in the AA genome species. KSLX-NOL and KSLX-bar, which encode similar enzymes but are not involved in oryzalactone biosynthesis, were also found in AA genome species. The phylogenetic analyses of KSLXs, KSL8s, and related pseudogenes (KSL9s) indicated that KSLX-OL was generated from a common ancestor with KSL8 and KSL9 via gene duplication, functional differentiation, and gene fusion. The wide distributions of KSLX-OL and KSL8 in AA genome species demonstrate their long-term coexistence beyond species differentiation, suggesting a balancing selection between the genes.


Assuntos
Diterpenos , Oryza , Sesquiterpenos , Oryza/genética , Oryza/metabolismo , Fitoalexinas , Sesquiterpenos/metabolismo , Filogenia , Diterpenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Mol Biol Evol ; 41(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38652808

RESUMO

In fungi, fusion between individuals leads to localized cell death, a phenomenon termed heterokaryon incompatibility. Generally, the genes responsible for this incompatibility are observed to be under balancing selection resulting from negative frequency-dependent selection. Here, we assess this phenomenon in Aspergillus fumigatus, a human pathogenic fungus with a very low level of linkage disequilibrium as well as an extremely high crossover rate. Using complementation of auxotrophic mutations as an assay for hyphal compatibility, we screened sexual progeny for compatibility to identify genes involved in this process, called het genes. In total, 5/148 (3.4%) offspring were compatible with a parent and 166/2,142 (7.7%) sibling pairs were compatible, consistent with several segregating incompatibility loci. Genetic mapping identified five loci, four of which could be fine mapped to individual genes, of which we tested three through heterologous expression, confirming their causal relationship. Consistent with long-term balancing selection, trans-species polymorphisms were apparent across several sister species, as well as equal allele frequencies within A. fumigatus. Surprisingly, a sliding window genome-wide population-level analysis of an independent dataset did not show increased Tajima's D near these loci, in contrast to what is often found surrounding loci under balancing selection. Using available de novo assemblies, we show that these balanced polymorphisms are restricted to several hundred base pairs flanking the coding sequence. In addition to identifying the first het genes in an Aspergillus species, this work highlights the interaction of long-term balancing selection with rapid linkage disequilibrium decay.


Assuntos
Aspergillus fumigatus , Desequilíbrio de Ligação , Seleção Genética , Aspergillus fumigatus/genética , Genes Fúngicos , Frequência do Gene
8.
Mol Biol Evol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980178

RESUMO

The role of balancing selection is a long-standing evolutionary puzzle. Balancing selection is a crucial evolutionary process that maintains genetic variation (polymorphism) over extended periods of time; however, detecting it poses a significant challenge. Building upon the polymorphism-aware phylogenetic models (PoMos) framework rooted in the Moran model, we introduce PoMoBalance model. This novel approach is designed to disentangle the interplay of mutation, genetic drift, directional selection (GC-biased gene conversion), along with the previously unexplored balancing selection pressures on ultra-long timescales comparable with species divergence times by analysing multi-individual genomic and phylogenetic divergence data. Implemented in the open-source RevBayes Bayesian framework, PoMoBalance offers a versatile tool for inferring phylogenetic trees as well as quantifying various selective pressures. The novel aspect of our approach in studying balancing selection lies in PoMos' ability to account for ancestral polymorphisms and incorporate parameters that measure frequency-dependent selection, allowing us to determine the strength of the effect and exact frequencies under selection. We implemented validation tests and assessed the model on the data simulated with SLiM and a custom Moran model simulator. Real sequence analysis of Drosophila populations reveals insights into the evolutionary dynamics of regions subject to frequency-dependent balancing selection, particularly in the context of sex-limited colour dimorphism in Drosophila erecta.

9.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165196

RESUMO

Life on Earth has been characterized by recurring cycles of ecological stasis and disruption, relating biological eras to geological and climatic transitions through the history of our planet. Due to the increasing degree of ecological abruption caused by human influences many advocate that we now have entered the geological era of the Anthropocene, or "the age of man." Considering the ongoing mass extinction and ecosystem reshuffling observed worldwide, a better understanding of the drivers of ecological stasis will be a requisite for identifying routes of intervention and mitigation. Ecosystem stability may rely on one or a few keystone species, and the loss of such species could potentially have detrimental effects. The Atlantic cod (Gadus morhua) has historically been highly abundant and is considered a keystone species in ecosystems of the northern Atlantic Ocean. Collapses of cod stocks have been observed on both sides of the Atlantic and reported to have detrimental effects that include vast ecosystem reshuffling. By whole-genome resequencing we demonstrate that stabilizing selection maintains three extensive "supergenes" in Atlantic cod, linking these genes to species persistence and ecological stasis. Genomic inference of historic effective population sizes shows continued declines for cod in the North Sea-Skagerrak-Kattegat system through the past millennia, consistent with an early onset of the marine Anthropocene through industrialization and commercialization of fisheries throughout the medieval period.


Assuntos
Aquicultura/métodos , Conservação dos Recursos Naturais/métodos , Gadus morhua/genética , Animais , Oceano Atlântico , Ecossistema , Pesqueiros , Gadus morhua/crescimento & desenvolvimento , Genoma , Genômica , Humanos , Mar do Norte , Dinâmica Populacional
10.
BMC Genomics ; 25(1): 192, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373909

RESUMO

BACKGROUND: Control and elimination of schistosomiasis is an arduous task, with current strategies proving inadequate to break transmission. Exploration of genetic approaches to interrupt Schistosoma mansoni transmission, the causative agent for human intestinal schistosomiasis in sub-Saharan Africa and South America, has led to genomic research of the snail vector hosts of the genus Biomphalaria. Few complete genomic resources exist, with African Biomphalaria species being particularly underrepresented despite this being where the majority of S. mansoni infections occur. Here we generate and annotate the first genome assembly of Biomphalaria sudanica sensu lato, a species responsible for S. mansoni transmission in lake and marsh habitats of the African Rift Valley. Supported by whole-genome diversity data among five inbred lines, we describe orthologs of immune-relevant gene regions in the South American vector B. glabrata and present a bioinformatic pipeline to identify candidate novel pathogen recognition receptors (PRRs). RESULTS: De novo genome and transcriptome assembly of inbred B. sudanica originating from the shoreline of Lake Victoria (Kisumu, Kenya) resulted in a haploid genome size of ~ 944.2 Mb (6,728 fragments, N50 = 1.067 Mb), comprising 23,598 genes (BUSCO = 93.6% complete). The B. sudanica genome contains orthologues to all described immune genes/regions tied to protection against S. mansoni in B. glabrata, including the polymorphic transmembrane clusters (PTC1 and PTC2), RADres, and other loci. The B. sudanica PTC2 candidate immune genomic region contained many PRR-like genes across a much wider genomic region than has been shown in B. glabrata, as well as a large inversion between species. High levels of intra-species nucleotide diversity were seen in PTC2, as well as in regions linked to PTC1 and RADres orthologues. Immune related and putative PRR gene families were significantly over-represented in the sub-set of B. sudanica genes determined as hyperdiverse, including high extracellular diversity in transmembrane genes, which could be under pathogen-mediated balancing selection. However, no overall expansion in immunity related genes was seen in African compared to South American lineages. CONCLUSIONS: The B. sudanica genome and analyses presented here will facilitate future research in vector immune defense mechanisms against pathogens. This genomic/transcriptomic resource provides necessary data for the future development of molecular snail vector control/surveillance tools, facilitating schistosome transmission interruption mechanisms in Africa.


Assuntos
Biomphalaria , Esquistossomose mansoni , Animais , Humanos , Schistosoma mansoni/genética , Biomphalaria/genética , Transcriptoma , Genômica , Quênia
11.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37220650

RESUMO

Since the pioneering work of Dobzhansky in the 1930s and 1940s, many chromosomal inversions have been identified, but how they contribute to adaptation remains poorly understood. In Drosophila melanogaster, the widespread inversion polymorphism In(3R)Payne underpins latitudinal clines in fitness traits on multiple continents. Here, we use single-individual whole-genome sequencing, transcriptomics, and published sequencing data to study the population genomics of this inversion on four continents: in its ancestral African range and in derived populations in Europe, North America, and Australia. Our results confirm that this inversion originated in sub-Saharan Africa and subsequently became cosmopolitan; we observe marked monophyletic divergence of inverted and noninverted karyotypes, with some substructure among inverted chromosomes between continents. Despite divergent evolution of this inversion since its out-of-Africa migration, derived non-African populations exhibit similar patterns of long-range linkage disequilibrium between the inversion breakpoints and major peaks of divergence in its center, consistent with balancing selection and suggesting that the inversion harbors alleles that are maintained by selection on several continents. Using RNA-sequencing, we identify overlap between inversion-linked single-nucleotide polymorphisms and loci that are differentially expressed between inverted and noninverted chromosomes. Expression levels are higher for inverted chromosomes at low temperature, suggesting loss of buffering or compensatory plasticity and consistent with higher inversion frequency in warm climates. Our results suggest that this ancestrally tropical balanced polymorphism spread around the world and became latitudinally assorted along similar but independent climatic gradients, always being frequent in subtropical/tropical areas but rare or absent in temperate climates.


Assuntos
Inversão Cromossômica , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Adaptação Fisiológica/genética , Polimorfismo de Nucleotídeo Único , América do Norte
12.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36814414

RESUMO

Genetic divergence is the fundamental process that drives evolution and ultimately speciation. Structural variants (SVs) are large-scale genomic differences within a species or population and can cause functionally important phenotypic differences. Characterizing SVs across invasive species will fill knowledge gaps regarding how patterns of genetic diversity and genetic architecture shape rapid adaptation under new selection regimes. Here, we seek to understand patterns in genetic diversity within the globally invasive European starling, Sturnus vulgaris. Using whole genome sequencing of eight native United Kingdom (UK), eight invasive North America (NA), and 33 invasive Australian (AU) starlings, we examine patterns in genome-wide SNPs and SVs between populations and within Australia. Our findings detail the landscape of standing genetic variation across recently diverged continental populations of this invasive avian. We demonstrate that patterns of genetic diversity estimated from SVs do not necessarily reflect relative patterns from SNP data, either when considering patterns of diversity along the length of the organism's chromosomes (owing to enrichment of SVs in subtelomeric repeat regions), or interpopulation diversity patterns (possibly a result of altered selection regimes or introduction history). Finally, we find that levels of balancing selection within the native range differ across SNP and SV of different classes and outlier classifications. Overall, our results demonstrate that the processes that shape allelic diversity within populations is complex and support the need for further investigation of SVs across a range of taxa to better understand correlations between often well-studied SNP diversity and that of SVs.


Assuntos
Genômica , Polimorfismo de Nucleotídeo Único , Austrália , Sequenciamento Completo do Genoma , Adaptação Fisiológica , Variação Genética
13.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37210585

RESUMO

Balancing selection is a form of natural selection maintaining diversity at the sites it targets and at linked nucleotide sites. Due to selection favoring heterozygosity, it has the potential to facilitate the accumulation of a "sheltered" load of tightly linked recessive deleterious mutations. However, precisely evaluating the extent of these effects has remained challenging. Taking advantage of plant self-incompatibility as one of the best-understood examples of long-term balancing selection, we provide a highly resolved picture of the genomic extent of balancing selection on the sheltered genetic load. We used targeted genome resequencing to reveal polymorphism of the genomic region flanking the self-incompatibility locus in three sample sets in each of the two closely related plant species Arabidopsis halleri and Arabidopsis lyrata, and used 100 control regions from throughout the genome to factor out differences in demographic histories and/or sample structure. Nucleotide polymorphism increased strongly around the S-locus in all sample sets, but only over a limited genomic region, as it became indistinguishable from the genomic background beyond the first 25-30 kb. Genes in this chromosomal interval exhibited no excess of mutations at 0-fold degenerated sites relative to putatively neutral sites, hence revealing no detectable weakening of the efficacy of purifying selection even for these most tightly linked genes. Overall, our results are consistent with the predictions of a narrow genomic influence of linkage to the S-locus and clarify how natural selection in one genomic region affects the evolution of the adjacent genomic regions.


Assuntos
Arabidopsis , Arabidopsis/genética , Carga Genética , Polimorfismo Genético , Seleção Genética , Nucleotídeos
14.
Proc Biol Sci ; 291(2018): 20232816, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38471544

RESUMO

Beneficial reversals of dominance reduce the costs of genetic trade-offs and can enable selection to maintain genetic variation for fitness. Beneficial dominance reversals are characterized by the beneficial allele for a given context (e.g. habitat, developmental stage, trait or sex) being dominant in that context but recessive where deleterious. This context dependence at least partially mitigates the fitness consequence of heterozygotes carrying one non-beneficial allele for their context and can result in balancing selection that maintains alternative alleles. Dominance reversals are theoretically plausible and are supported by mounting empirical evidence. Here, we highlight the importance of beneficial dominance reversals as a mechanism for the mitigation of genetic conflict and review the theory and empirical evidence for them. We identify some areas in need of further research and development and outline three methods that could facilitate the identification of antagonistic genetic variation (dominance ordination, allele-specific expression and allele-specific ATAC-Seq (assay for transposase-accessible chromatin with sequencing)). There is ample scope for the development of new empirical methods as well as reanalysis of existing data through the lens of dominance reversals. A greater focus on this topic will expand our understanding of the mechanisms that resolve genetic conflict and whether they maintain genetic variation.


Assuntos
Variação Genética , Seleção Genética , Fenótipo , Heterozigoto , Alelos , Modelos Genéticos , Aptidão Genética
15.
Arch Sex Behav ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438815

RESUMO

Research on the biological determinants of male homosexual preference has long realized that the older brother effect (FBOE, i.e., a higher fraternal birth rank of homosexuals) and the antagonist effect (AE, i.e., more fertile women have a higher chance of having a homosexual son) can both generate family data where homosexual men have more siblings and more older siblings than heterosexual men. Various statistical approaches were proposed in the recent literature to evaluate whether the action of FBOE or AE could be discriminated from empirical data, by controlling for the other effect. Here, we used simulated data to formally compare all the approaches that we could find in the relevant literature for their ability to reject the null hypothesis in the presence of a specified alternative hypothesis (tests based on regression, Bayesian modeling, or contingency tables). When testing for the FBOE, the relative performance of the different tests was different depending on the specific function generating the older brother effect. Even if no tests were found to always perform better than the others, some tests performed systematically poorly, and some tests displayed a systematic high rate of type-I error. For testing the AE, the relative performance of the tests was generally not changed across all parameter values assayed, providing a clear ranking of the various proposed approaches. Pros and cons for each candidate test are discussed, taking into consideration power and the rate of type-I error but also practicability, the possibility to control for confounding variables, and to consider alternative hypotheses.

16.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33771926

RESUMO

Infection with human and simian immunodeficiency viruses (HIV/SIV) requires binding of the viral envelope glycoprotein (Env) to the host protein CD4 on the surface of immune cells. Although invariant in humans, the Env binding domain of the chimpanzee CD4 is highly polymorphic, with nine coding variants circulating in wild populations. Here, we show that within-species CD4 diversity is not unique to chimpanzees but found in many African primate species. Characterizing the outermost (D1) domain of the CD4 protein in over 500 monkeys and apes, we found polymorphic residues in 24 of 29 primate species, with as many as 11 different coding variants identified within a single species. D1 domain amino acid replacements affected SIV Env-mediated cell entry in a single-round infection assay, restricting infection in a strain- and allele-specific fashion. Several identical CD4 polymorphisms, including the addition of N-linked glycosylation sites, were found in primate species from different genera, providing striking examples of parallel evolution. Moreover, seven different guenons (Cercopithecus spp.) shared multiple distinct D1 domain variants, pointing to long-term trans-specific polymorphism. These data indicate that the HIV/SIV Env binding region of the primate CD4 protein is highly variable, both within and between species, and suggest that this diversity has been maintained by balancing selection for millions of years, at least in part to confer protection against primate lentiviruses. Although long-term SIV-infected species have evolved specific mechanisms to avoid disease progression, primate lentiviruses are intrinsically pathogenic and have left their mark on the host genome.


Assuntos
Síndrome da Imunodeficiência Adquirida/genética , Antígenos CD4/genética , Catarrinos/genética , Catarrinos/virologia , Variação Genética , HIV , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia , Alelos , Animais , Antígenos CD4/química , Evolução Molecular , Produtos do Gene env/química , Humanos , Ligação Proteica , Domínios Proteicos
17.
BMC Biol ; 21(1): 122, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226197

RESUMO

BACKGROUND: The factors that maintain phenotypic and genetic variation within a population have received long-term attention in evolutionary biology. Here the genetic basis and evolution of the geographically widespread variation in twig trichome color (from red to white) in a shrub Melastoma normale was investigated using Pool-seq and evolutionary analyses. RESULTS: The results show that the twig trichome coloration is under selection in different light environments and that a 6-kb region containing an R2R3 MYB transcription factor gene is the major region of divergence between the extreme red and white morphs. This gene has two highly divergent groups of alleles, one of which likely originated from introgression from another species in this genus and has risen to high frequency (> 0.6) within each of the three populations under investigation. In contrast, polymorphisms in other regions of the genome show no sign of differentiation between the two morphs, suggesting that genomic patterns of diversity have been shaped by homogenizing gene flow. Population genetics analysis reveals signals of balancing selection acting on this gene, and it is suggested that spatially varying selection is the most likely mechanism of balancing selection in this case. CONCLUSIONS: This study demonstrate that polymorphisms on a single transcription factor gene largely confer the twig trichome color variation in M. normale, while also explaining how adaptive divergence can occur and be maintained in the face of gene flow.


Assuntos
Fatores de Transcrição , Tricomas , Fatores de Transcrição/genética , Tricomas/genética , Regulação da Expressão Gênica , Alelos , Genômica
18.
Exp Appl Acarol ; 93(1): 115-132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38597987

RESUMO

Genetic polymorphism in key metabolic genes plays a pivotal role in shaping phenotypes and adapting to varying environments. Polymorphism in the metabolic gene 6-phosphogluconate dehydrogenase (6Pgdh) in bulb mites, Rhizoglyphus robini is characterized by two alleles, S and F, that differ by a single amino acid substitution and correlate with male reproductive fitness. The S-bearing males demonstrate a reproductive advantage. Although the S allele rapidly fixes in laboratory settings, the persistence of polymorphic populations in the wild is noteworthy. This study examines the prevalence and stability of 6Pgdh polymorphism in natural populations across Poland, investigating potential environmental influences and seasonal variations. We found widespread 6Pgdh polymorphism in natural populations, with allele frequencies varying across locations and sampling dates but without clear geographical or seasonal clines. This widespread polymorphism and spatio-temporal variability may be attributed to population demography and gene flow between local populations. We found some correlation between soil properties, particularly cation content (Na, K, Ca, and Mg) and 6Pgdh allele frequencies, showcasing the connection between mite physiology and soil characteristics and highlighting the presence of environment-dependent balancing selection. We conducted experimental fitness assays to determine whether the allele providing the advantage in male-male competition has antagonistic effects on life-history traits and if these effects are temperature-dependent. We found that temperature does not differentially influence development time or juvenile survival in different 6Pgdh genotypes. This study reveals the relationship between genetic variation, environmental factors, and reproductive fitness in natural bulb mite populations, shedding light on the dynamic mechanisms governing 6Pgdh polymorphism.


Assuntos
Fosfogluconato Desidrogenase , Polimorfismo Genético , Animais , Masculino , Polônia , Fosfogluconato Desidrogenase/genética , Fosfogluconato Desidrogenase/metabolismo , Acaridae/genética , Acaridae/fisiologia , Características de História de Vida , Feminino , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Frequência do Gene , Meio Ambiente
19.
Ecol Lett ; 26 Suppl 1: S152-S167, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37840028

RESUMO

Growing evidence suggests that temporally fluctuating environments are important in maintaining variation both within and between species. To date, however, studies of genetic variation within a population have been largely conducted by evolutionary biologists (particularly population geneticists), while population and community ecologists have concentrated more on diversity at the species level. Despite considerable conceptual overlap, the commonalities and differences of these two alternative paradigms have yet to come under close scrutiny. Here, we review theoretical and empirical studies in population genetics and community ecology focusing on the 'temporal storage effect' and synthesise theories of diversity maintenance across different levels of biological organisation. Drawing on Chesson's coexistence theory, we explain how temporally fluctuating environments promote the maintenance of genetic variation and species diversity. We propose a further synthesis of the two disciplines by comparing models employing traditional frequency-dependent dynamics and those adopting density-dependent dynamics. We then address how temporal fluctuations promote genetic and species diversity simultaneously via rapid evolution and eco-evolutionary dynamics. Comparing and synthesising ecological and evolutionary approaches will accelerate our understanding of diversity maintenance in nature.


Assuntos
Evolução Biológica , Genética Populacional , Dinâmica Populacional
20.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35574644

RESUMO

Balancing selection is a classic mechanism for maintaining variability in immune genes involved in host-pathogen interactions. However, it remains unclear how widespread the mechanism is across immune genes other than the major histocompatibility complex (MHC). Although occasional reports suggest that balancing selection (heterozygote advantage, negative frequency-dependent selection, and fluctuating selection) may act on other immune genes, the current understanding of the phenomenon in non-MHC immune genes is far from solid. In this review, we focus on Toll-like receptors (TLRs), innate immune genes directly involved in pathogen recognition and immune response activation, as there is a growing body of research testing the assumptions of balancing selection in these genes. After reviewing infection- and fitness-based evidence, along with evidence based on population allelic frequencies and heterozygosity levels, we conclude that balancing selection maintains variation in TLRs, though it tends to occur under specific conditions in certain evolutionary lineages rather than being universal and ubiquitous. Our review also identifies key gaps in current knowledge and proposes promising areas for future research. Improving our understanding of host-pathogen interactions and balancing selection in innate immune genes are increasingly important, particularly regarding threats from emerging zoonotic diseases.


Assuntos
Polimorfismo Genético , Receptores Toll-Like , Frequência do Gene , Imunidade Inata/genética , Complexo Principal de Histocompatibilidade , Seleção Genética , Receptores Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA