RESUMO
Emulsion-filled hydrogels are a growing system in the food industry for delivering bioactive compounds. In this study, Baneh gum (BG) particles were prepared as a Pickering emulsion stabilizer for curcumin delivery. Then, BG Pickering emulsion was added to the chitosan solution (1.5%, 2.0%, and 2.5% w/w) in different Pickering emulsion (PE):hydrogel (HYD) ratios (1:3, 1:5, and 1:7) to create an emulsion-filled gel. The highest amount of Cur stability after the 3rd week of storage was observed in the sample containing 2.0% CS and a 1:7 PE:HYD ratio (97.36%). Pickering emulsion and emulsion-filled gel significantly protected the antioxidant activity of curcumin against the thermal process (p < .05). Curcumin loading in the emulsion-filled gel provided better protection against the gastric condition compared to the emulsion system. The chitosan hydrogel swells in an acidic environment, but its combination with the anionic structure of the emulsion causes a lower release of curcumin in the stomach environment, which can help the stability of curcumin in the digestive system and have a controlled release in the gastrointestinal tract.
RESUMO
The purpose of this research was to investigate Baneh gum (BG) properties and prepare Pickering emulsion stabilized by BG particles at different concentrations (0.1, 0.3, 0.5, and 0.7 % (w/w)). Average size of the particles was 948 nm, and the SEM images confirmed the presence of the particles. Surface and interfacial tension of the BG particles were 48.39 and 15.36 (mN/m), respectively. Contact angle of water- and oil-BG particles was 99° and 42.68°, respectively, which can stabilize oil-in-water emulsions. Increment of the Pickering particles concentration decreased the size of the emulsion droplets and increased the emulsion stability (p ≤ 0.05). The size of emulsion droplets was in the range of 1.65-1.76 µm and the highest zeta potential value was obtained by 0.7 % (w/w) BG particles (-30.02 mV). It can be concluded that increasing BG particles to 0.7 % resulted in creating the most stable emulsion.
RESUMO
Pistacia atlantica is one of the species of Anacardiaceae that grows in the wild in different regions of Iran. Traditionally, anacardiaceae family has antibacterial, fungicidal, and cytotoxic properties. Therefore, the present study was designed to investigate the possible cytotoxic and anti-proliferative properties of Baneh gum. Cytotoxicity of the plant gum was determined using MTT assay on MCF-7 human breast cancer cells. The cellular makers of apoptosis (caspase3 and P53) and cell proliferation (Cyclin-D1) were evaluated by western blotting. Doxorubicin was used as anticancer control drug in combination treatment. The result showed that Baneh gum (100 µg/mL) significantly induced cell damage, activated caspase3, and increased P53 protein level. In addition, Cyclin-D1 was significantly decreased in gum-incubated cells. Furthermore, combination treatment of cells with Baneh gum (25 µg/mL) and doxorubicin (200 nM) produced a significant cytotoxic effect as compared to each drug alone. In conclusion, Baneh gum (100 µg/mL) has a potential pro-apoptotic/anti-proliferative property against human breast cancer cells and its combination with doxorubicin in low doses may induce cell death effectively and be a potent modality to treat this type of cancer.