RESUMO
A 22-year-old man from Guatemala sought care for subacute endocarditis and mycotic brain aneurysm after living in good health in the United States for 15 months. Bartonella rochalimae, a recently described human and canine pathogen, was identified by plasma microbial cell-free DNA testing. The source of infection is unknown.
Assuntos
Bartonella , Endocardite Bacteriana , Endocardite , Humanos , Masculino , Adulto Jovem , Bartonella/genética , Encéfalo , Endocardite Bacteriana/diagnóstico , Endocardite Bacteriana/tratamento farmacológicoRESUMO
Bartonella infection was explored in wild animals from Israel. Golden jackals (Canis aureus), red foxes (Vulpes vulpes), rock hyraxes (Procavia capensis), southern white-breasted hedgehogs (Erinaceus concolor), social voles (Microtus socialis), Tristram's jirds (Meriones tristrami), Cairo spiny mice (Acomys cahirinus), house mice (Mus musculus) and Indian crested porcupines (Hystrix indica) were sampled and screened by molecular and isolation methods. Bartonella-DNA was detected in 46 animals: 9/70 (13%) golden jackals, 2/11 (18%) red foxes, 3/35 (9%) rock hyraxes, 1/3 (33%) southern white-breasted hedgehogs, 5/57 (9%) Cairo spiny mice, 25/43 (58%) Tristram's jirds and 1/6 (16%) house mice. Bartonella rochalimae and B. rochalimae-like were widespread among jackals, foxes, hyraxes and jirds. This report represents the first detection of this zoonotic Bartonella sp. in rock hyraxes and golden jackals. Moreover, DNA of Bartonella vinsonii subsp. berkhoffii, Bartonella acomydis, Candidatus Bartonella merieuxii and other uncharacterized genotypes were identified. Three different Bartonella strains were isolated from Tristram's jirds, and several genotypes were molecularly detected from these animals. Furthermore, this study reports the first detection of Bartonella infection in a southern hedgehog. Our study indicates that infection with zoonotic and other Bartonella species is widespread among wild animals and stresses their potential threat to public health.
Assuntos
Animais Selvagens/microbiologia , Infecções por Bartonella/veterinária , Bartonella/isolamento & purificação , Carnívoros/microbiologia , Ouriços/microbiologia , Procaviídeos/microbiologia , Roedores/microbiologia , Animais , Bartonella/genética , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/microbiologia , Raposas/microbiologia , Genótipo , Israel/epidemiologia , Murinae/microbiologia , Reação em Cadeia da Polimerase , Doenças dos Roedores/epidemiologiaRESUMO
Fleas represent an acknowledged burden on dogs worldwide. The characterization of flea species infesting kennel dogs from two localities in Israel (Rehovot and Jerusalem) and their molecular screening for Bartonella species (Rhizobiales: Bartonellaceae) was investigated. A total of 355 fleas were collected from 107 dogs. The fleas were morphologically classified and molecularly screened targeting the Bartonella 16S-23S internal transcribed spacer (ITS). Of the 107 dogs examined, 80 (74.8%) were infested with Ctenocephalides canis (Siphonaptera: Pulicidae), 68 (63.6%) with Ctenocephalides felis, 15 (14.0%) with Pulex irritans (Siphonaptera: Pulicidae) and one (0.9%) with Xenopsylla cheopis (Siphonaptera: Pulicidae). Fleas were grouped into 166 pools (one to nine fleas per pool) according to species and host. Thirteen of the 166 flea pools (7.8%) were found to be positive for Bartonella DNA. Detected ITS sequences were 99-100% similar to those of four Bartonella species: Bartonella henselae (six pools); Bartonella elizabethae (five pools); Bartonella rochalimae (one pool), and Bartonella bovis (one pool). The present study indicates the occurrence of a variety of flea species in dogs in Israel; these flea species are, in turn, carriers of several zoonotic Bartonella species. Physicians, veterinarians and public health workers should be aware of the presence of these pathogens in dog fleas in Israel and preventive measures should be implemented.
Assuntos
Infecções por Bartonella/veterinária , Bartonella/isolamento & purificação , Doenças do Cão/epidemiologia , Sifonápteros/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bartonella/classificação , Bartonella/genética , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/microbiologia , Doenças do Cão/microbiologia , Cães , Infestações por Pulgas/veterinária , Israel/epidemiologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Análise de Sequência de DNA/veterinária , Sifonápteros/microbiologiaRESUMO
Red foxes (Vulpes vulpes) have been recognized as natural reservoirs for multiple pathogens and a source of infection for domestic animals, wildlife and humans. To date, no reports are available on the Bartonella rochalimae and Hepatozoon canis infection in red foxes from China. In 2018-2022, a total of 16 red foxes were sampled in two counties and a city in Xinjiang Uygur Autonomous Region (XUAR) in northwest China. Subsequently analyzed by DNA extraction amplified by polymerase chain reaction (PCR). In the present study, based on nucleotide sequence and phylogenetic tree analyses, B. rochalimae and H. canis were molecularly identified in red foxes. Our findings provide the first molecular evidence of B. rochalimae and H. canis in red foxes from China.
RESUMO
Wild carnivores serve as reservoirs of several zoonotic Bartonella species such as Bartonella henselae, Bartonella vinsonii subsp. berkhoffii, and Bartonella rochalimae. The raccoon dog (Nyctereutes procyonoides viverrinus) is the most common native carnivore in Japan, but epidemiologic studies of Bartonella infections have not been performed in this animal species yet. Here, we report a molecular survey of B. rochalimae prevalence in 619 wild raccoon dogs captured from 2009 to 2017 in western Japan. Bartonella rochalimae DNA was detected in 7.1% (44/619) of the raccoon dogs examined by PCR targeting the rpoB and ssrA genes. All of the sequences obtained were identical in each of the genes. The prevalence of B. rochalimae by sex of the animals was 6.1% (21/344) in male and 8.4% (23/275) in female. The prevalence by year varied from 2% (1/45) in 2011 to 14% (4/28) in 2016. The prevalence (7.9%) of B. rochalimae in the raccoon dogs with sarcoptic mange tended to be higher than the prevalence (4.0%) in the animals without the infestation of mites, although the differences were not significant. Sequence analysis indicated that Japanese raccoon dogs in the area examined were infected with B. rochalimae carrying identical sequences in the rpoB and ssrA genes. In addition, the raccoon dog strain had few sequence variations in both genes compared to other known B. rochalimae strains detected in other parts of the world.
Assuntos
Bartonella/isolamento & purificação , Cães Guaxinins/microbiologia , Animais , Bartonella/genética , DNA Bacteriano/genética , Feminino , Japão , Masculino , Filogenia , Prevalência , Cães Guaxinins/parasitologia , Escabiose/veterináriaRESUMO
The aim of this study was to molecularly survey Bartonella spp. in rodents from the Valdivia Province, Southern Chile and from wild black rat-fleas in Guafo Island, Chilean Patagonia. Thrity-three spleens from synanthropic (Mus musculus, Rattus novergicus and Rattus rattus) and wild (Abrothrix longipilis, Oligoryzomys longicaudatus, Abrothrix sp.) rodents from Valdivia and 39 fleas/flea-pools (Plocopsylla sp. and Nosopsyllus sp.) from R. rattus in Guafo Island were obtained. All samples were screened by high-resolution melting (HRM) real-time PCR for Bartonella ITS locus (190 bp). ITS-Positive samples were further analyzed for two HRM real-time PCR assays targeting Bartonella rpoB (191 bp) and gltA (340 bp) gene fragments. All positive ITS, gltA and rpoB real-time PCR products were purified and sequenced. Bayesian inference trees were built for the gltA and rpoB gene fragments. Bartonella-ITS DNA was detected in 36.3% (12/33) [95% CI (22-53%)] of the tested rodents from Valdivia, being identified in all but O. longicaudatus rodent species captured in this study. ITS DNA was detected in 28% (11/39) [95% CI (16-43%)] of fleas/flea-pools from Guafo Island and identified in both Plocopsylla and Nosopsyllus genera. Sequencing and phylogenic analyses targeting three loci of Bartonella spp. allowed the identification of five genotypes in rodents from Southern Chile, potentially belonging to three different Bartonella spp. Those included Bartonella tribocorum identified from R. rattus, Bartonella rochalimae detected from Abrothix sp., and one novel genotype from uncharacterized Bartonella sp. identified in M. musculus, R. norvegicus, A. longipilis, and Abothrix sp., related to strains previously isolated in Phyllotis sp. from Peru. Additionally, two genotypes of B. tribocorum were identified in fleas from Guafo. In a nutshell, highly diverse and potentially zoonotic Bartonella spp. are described for the first time in wild and synanthropic rodents from Chile, and B. tribocorum was detected in wild back rat fleas from Guafo Island.
Assuntos
Bartonella/isolamento & purificação , Roedores/microbiologia , Sifonápteros/microbiologia , Animais , Bartonella/genética , Chile , Feminino , Genótipo , Masculino , Camundongos , RatosRESUMO
Spleen samples from 292 wild carnivores from Colorado, US were screened for Bartonella infection. Bartonella DNA was detected in coyotes ( Canis latrans ) (28%), striped skunks ( Mephitis mephitis ) (23%), red foxes ( Vulpes vulpes ) (27%), and raccoons ( Procyon lotor ) (8%) but not in black bears ( Ursus americanus ), gray foxes ( Urocyon cinereoargenteus ), and mountain lions ( Puma concolor ). Two Bartonella species, B. vinsonii subsp. berkhoffii and B. rochalimae, were identified. All 10 infected striped skunks exclusively carried B. rochalimae while coyotes, red foxes, and raccoons could be infected with both Bartonella species. Five of seven infected coyotes carried B. v. berkhoffii whereas five of seven infected red foxes and 11 of 14 infected raccoons carried B. rochalimae. Further studies are needed to understand relationships between Bartonella species, wild carnivores, and their ectoparasites.
Assuntos
Infecções por Bartonella/veterinária , Bartonella/patogenicidade , Coiotes/microbiologia , Raposas/microbiologia , Animais , Infecções por Bartonella/epidemiologia , ColoradoRESUMO
Several Bartonella spp. associated with fleas can induce a variety of clinical syndromes in both dogs and humans. However, few studies have investigated the prevalence of Bartonella in the blood of dogs and their fleas. The objectives of this study were to determine the genera of fleas infesting shelter dogs in Florida, the prevalence of Bartonella spp. within the fleas, and the prevalence of Bartonella spp. within the blood of healthy dogs from which the fleas were collected. Fleas, serum, and EDTA-anti-coagulated whole blood were collected from 80 healthy dogs, and total DNA was extracted for PCR amplification of Bartonella spp. The genera of fleas infesting 43 of the dogs were determined phenotypically. PCR amplicons from blood and flea pools were sequenced to confirm the Bartonella species. Amplicons for which sequencing revealed homology to Bartonella vinsonii subsp. berkhoffii (Bvb) underwent specific genotyping by targeting the 16S-23S intergenic spacer region. A total of 220 fleas were collected from 80 dogs and pooled by genus (43 dogs) and flea species. Bartonella spp. DNA was amplified from 14 of 80 dog blood samples (17.5%) and from 9 of 80 pooled fleas (11.3%). B. vinsonii subsp. berkhoffii DNA was amplified from nine dogs and five of the flea pools. Bartonella rochalimae (Br) DNA was amplified from six dogs and two flea pools. One of 14 dogs was co-infected with Bvb and Br. The dog was infested with Pulex spp. fleas containing Br DNA and a single Ctenocephalides felis flea. Of the Bvb bacteremic dogs, five and four were infected with genotypes II and I, respectively. Of the Bvb PCR positive flea pools, three were Bvb genotype II and two were Bvb genotype I. Amplification of Bvb DNA from Pulex spp. collected from domestic dogs, suggests that Pulex fleas may be a vector for dogs and a source for zoonotic transfer of this pathogen from dogs to people. The findings of this study provide evidence to support the hypothesis that flea-infested dogs may be a reservoir host for Bvb and Br and that ectoparasite control is an important component of shelter intake protocols.