Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 270: 110869, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32507745

RESUMO

This work recovered the dredged sediment around Kaohsiung Harbor, Taiwan, for preparing lightweight aggregates (LWA), of which physicochemical properties as affected by the addition of basic-oxygen-furnace (BOF) slag and waste glass were investigated. LWA properties included water absorption, particle density, compressive strength, shrinkage, and microstructure of sintered pellets were evaluated to ensure feasibility of dredged harbor sediment reutilization technique. Results showed that adding appropriate amount of glass powders (~7%) to the mixtures of sediment and slag significantly reduced the water absorption (as low as 2.2%) of the sintered pellets and increase the compressive strength (as high as 23.1 MPa) of LWA, which were found to be controlled by open porosity and shrinkage. Excessive addition of glass (>10%) led to increase in internal pore sizes of the sintered pellets, and thus reduced the compressive strength. The alkali-silica reactivity (ASR) of the LWA was innocuous according to the ASTM C289 test. Sintering and glass addition improved the stability of heavy metal and environmental compatibility of the LWA. The recycling of waste sediment, slag, and glass for LWA production can provide an alternative for the disposal of dredge harbor sediment and has positive impact on waste reduction, which not only can reduce secondary contamination to the environment, but also can contribute to circular economy.


Assuntos
Álcalis , Aço , Materiais de Construção , Resíduos Industriais/análise , Reciclagem , Dióxido de Silício , Taiwan
2.
Environ Geochem Health ; 42(11): 3983-3993, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32661877

RESUMO

Massive quantities of alkaline rocks are excavated from urban coastal and mountain areas to make underground spaces available for infrastructure projects; however, such excavated rock often releases arsenic. In the present study, arsenic release from the excavated rocks with steel slag was investigated using dialysis and batch leaching tests to understand where arsenic is immobilized and which components in the steel slag suppress arsenic release from the excavated rock. Dialysis test indicated that the addition of steel slag at 10 wt% could suppress arsenic release at a level greater than 66%. The total arsenic content in the steel slag did not increase as compared with that before the test. Sequential extraction analysis indicated that the arsenic released during the dialysis test is mainly derived from arsenic fraction 1 (nonspecifically bound) due to the higher amount of this arsenic fraction in the excavated rock with the steel slag. Moreover, the steel slag extract could suppress arsenic release from the excavated rock and remove the arsenic from aqueous solution. The pH dependence test further indicated that the arsenic immobilized by the steel slag extract was stable under alkaline pH conditions. The levels of arsenic release decreased with increasing calcium release from the steel slag regardless of the type of excavated rock with an alkaline pH and were particularly seen at calcium released > 500 mg kg-1. These results indicate that the arsenic immobilization could be occurred not on the surface of steel slag, but on the excavated rock, and the calcium dissolved from the steel slag regulates the behavior of arsenic release from the surface of excavated rock. The findings of the present study suggest that the steel slag could be utilized to enable the reuse of excavated sedimentary and metamorphic rock of alkaline pH for the control of arsenic release.


Assuntos
Arsênio/análise , Arsênio/química , Cálcio/química , Resíduos Industriais , Indústria da Construção , Concentração de Íons de Hidrogênio , Aço/química , Poluentes Químicos da Água/análise
3.
J Environ Manage ; 239: 66-72, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30889519

RESUMO

This study presents a promising approach that enhances the sludge fermentation by using basic oxygen furnace (BOF) slag as an alkaline source for the first time. BOF slag added to the reactors could maintain a stable alkaline condition due to continuous release of Ca(OH)2 from slag. The reactor pH could be adjusted to a target value by the choice of the BOF slag dose. Concentrations of soluble chemical oxygen demand (sCOD) and short-chain carboxylates (SCCs) were substantially increased in the presence of BOF slag. At a BOF slag mass to sludge volume ratio of 1/10 g slag/L sludge, the reactor pH was maintained at 10 and the concentration of SCCs produced was the highest (i.e., 3510 mg COD L-1 from 14,000 mg VS L-1 of sludge mixture), followed by B/S ratios of 1/20, 1.50, 1/5, and 1/2.5 g slag L-1 sludge with reactor pH of 9.4, 8.9, 10.5, and 11, respectively. Our data suggest that the pH value that best facilitates the degradation of sludge into SCCs and inhibit the conversion of SCCs into biogas is around 10. Interestingly, compositions of the accumulated SCCs varied greatly depending on the BOF slag dose. BOF slag showed phosphorus removal ability due to enhanced precipitation of Ca-PO43--P complexes, which significantly lowered PO43- concentration of the reactor effluent.


Assuntos
Oxigênio , Fosfatos , Fermentação , Fósforo , Esgotos
4.
Waste Manag Res ; 37(5): 469-477, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30726168

RESUMO

The mineral carbon sequestration capacity of basic oxygen furnace (BOF) slag offers great potential to absorb carbon dioxide (CO2) from landfill emissions. The BOF slag is highly alkaline and rich in calcium (Ca) containing minerals that can react with the CO2 to form stable carbonates. This property of BOF slag makes it appealing for use in CO2 sequestration from landfill gas. In a previous study, CO2 and CH4 removal from the landfill gas was investigated by performing batch and column experiments with BOF slag under different moisture and synthetic landfill gas exposure conditions. The study showed two stage CO2 removal mechanism: (1) initial rapid CO2 removal, which was attributed to the carbonation of free lime (CaO) and portlandite [(Ca(OH)2)], and (2) long-term relatively slower CO2 removal, which was attributed to be the gradual leaching of Ca2+ from minerals (calcium-silicates) present in the BOF slag. Realising that the particle size could be an important factor affecting total CO2 sequestration capacity, this study investigates the effect of gradation on the CO2 sequestration capacity of the BOF slag under simulated landfill gas conditions. Batch and column experiments were performed with BOF slag using three gradations: (1) coarse (D50 = 3.05 mm), (2) original (D50 = 0.47 mm), and (3) fine (D50 = 0.094 mm). The respective CO2 sequestration potentials attained were 255 mg g-1, 155 mg g-1, and 66 mg g-1. The highest CO2 sequestration capacity of fine BOF slag was attributed to the availability of calcium containing minerals on the slag particle surface owing to the highest surface area and shortest leaching path for the Ca2+ from the inner core of the slag particles.


Assuntos
Dióxido de Carbono , Oxigênio , Sequestro de Carbono , Resíduos Industriais , Tamanho da Partícula , Aço , Instalações de Eliminação de Resíduos
5.
J Environ Sci (China) ; 46: 63-71, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27521937

RESUMO

Basic oxygen furnace slag (BOFS) has the potential to remove hexavalent chromium (Cr(VI)) from wastewater by a redox process due to the presence of minerals containing Fe(2+). The effects of the solution pH, initial Cr(VI) concentration, BOFS dosage, BOFS particle size, and temperature on the removal of Cr(VI) was investigated in detail through batch tests. The chemical and mineral compositions of fresh and reacted BOFS were characterized using scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) system and X-ray diffractometer (XRD). The results show that Cr(VI) in wastewater can be efficiently removed by Fe(2+) released from BOFS under appropriate acidic conditions. The removal of Cr(VI) by BOFS significantly depended on the parameters mentioned above. The reaction of Cr(VI) with BOFS followed the pseudo-second-order kinetic model. Fe(2+) responsible for Cr(VI) removal was primarily derived from the dissolution of FeO and Fe3O4 in BOFS. When H2SO4 was used to adjust the solution acidity, gypsum (CaSO4·2H2O) could be formed and become an armoring precipitate layer on the BOFS surface, hindering the release of Fe(2+) and the removal of Cr(VI). Finally, the main mechanism of Cr(VI) removal by BOFS was described using several consecutive reaction steps.


Assuntos
Cromo/química , Resíduos Industriais , Metalurgia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Cromo/análise , Oxigênio , Poluentes Químicos da Água/análise
6.
J Environ Sci (China) ; 30: 21-9, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25872706

RESUMO

Removal kinetics of phosphorus through use of basic oxygen furnace slag (BOF-slag) was investigated through batch experiments. Effects of several parameters such as initial phosphorus concentration, temperature, BOF-slag size, initial pH, and BOF-slag dosage on phosphorus removal kinetics were measured in detail. It was demonstrated that the removal process of phosphorus through BOF-slag followed pseudo-first-order reaction kinetics. The apparent rate constant (kobs) significantly decreased with increasing initial phosphorus concentration, BOF-slag size, and initial pH, whereas it exhibited an opposite trend with increasing reaction temperature and BOF-slag dosage. A linear dependence of kobs on total removed phosphorus (TRP) was established with kobs=(3.51±0.11)×10(-4)×TRP. Finally, it was suggested that the Langmuir-Rideal (L-R) or Langmuir-Hinshelwood (L-H) mechanism may be used to describe the removal process of phosphorus using BOF-slag.


Assuntos
Fósforo/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Resíduos Industriais , Cinética , Microscopia Eletrônica de Varredura , Modelos Teóricos , Oxigênio , Espectrometria por Raios X , Águas Residuárias/química , Difração de Raios X
7.
Materials (Basel) ; 16(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36984237

RESUMO

Basic oxygen furnace slag (BOFS) is a waste material generated during the steelmaking process and has the potential to harm both the environment and living organisms when disposed of in a landfill. However, the cementitious properties of BOFS might help in utilizing this waste as an alternative material in alkali-activated systems. Therefore, in this study, BOFS and blast furnace slag were activated with varying dosages of NaOH, and the fresh, physical, mechanical, and microstructural properties were determined along with statistical analysis to reach the optimal mix design. The test results showed that an increase in BOFS content decreased compressive and flexural strengths, whereas it slightly increased the water absorption and permeable pores of the tested mortar samples. On the contrary, the increase in NaOH molarity resulted in a denser microstructure, reduced water absorption and permeable pores, and improved mechanical properties. Statistically significant relationships were obtained through response surface methodology with optimal mix proportions, namely, (i) 24.61% BOFS and 7.74 M and (ii) 20.00% BOFS and 8.90 M, which maximize the BOFS content with lower molarity and improve the mechanical properties with lower water absorption and porosity, respectively. The proposed methodology maximizes the utilization of waste BOFS in alkali-activated systems and may promote environmental and economic benefits.

8.
Mar Environ Res ; 192: 106223, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37903701

RESUMO

Ocean-based carbon dioxide removal has gained immense attention as a countermeasure against climate change. The enhancement of ocean alkalinity and the creation of new blue carbon ecosystems are considered effective approaches for this. To evaluate the function of steelmaking slag from the viewpoints of CO2 reduction and creation of new blue carbon ecosystems, we conducted a comparative experiment using two mesocosms that replicated tidal-flats and shallow-water ecosystems. Initially, approximately 20 seagrasses (Zostera marina) were transplanted into the shallow-water area in the mesocosm tanks. The use of steelmaking slag is expected to increase the pH by releasing calcium and mitigate turbidity by solidifying dredged soil. In the experimental tank, where dredged soil and steelmaking slag were utilized as bed materials, the pH remained higher throughout the experimental period compared with the control tank, which utilized only dredged soil. As a result, pCO2 remained consistently lower in the experimental tank due to mainly its alkaline effect (March 2019: -10 ± 6 µatm, September 2019: -130 ± 47 µatm). The light environment in the control tank deteriorated due to high turbidity, whereas the turbidity in the experimental tank remained low throughout the year. The number of seagrass shoots in the experimental tank was consistently approximately 20, which was higher than that in the control tank. Additionally, more seaweed and benthic algae were observed in the experimental tank, indicating that it was more conducive to the growth of primary producers. In conclusion, tidal-flat and shallow-water ecosystems constructed using dredged soil and steelmaking slag are expected to enhance CO2 uptake and provide a habitat for primary producers that is superior to those constructed using dredged soil only.


Assuntos
Ecossistema , Água , Solo
9.
Chemosphere ; 307(Pt 3): 135850, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35964717

RESUMO

Basic oxygen furnace (BOF) and blast furnace (BF) steel slags are well suited for phosphorous (P) removal from nonpoint sources such as agricultural runoff. However, the reported mechanism(s) of removal varies from study to study which complicates implementation for unique environmental conditions that may interfere with the removal mechanism(s). This work compared laboratory column experiments and field filter experiments to provide insights on the influence of relevant field conditions (water alkalinity, slag grain size distribution, BF:BOF slag ratio, and water stagnation) on P removal by BF and BOF steel slag mixtures. Alkalinity was the most influential variable in lab-scale slag columns that received 250 mg/L alkalinity water and achieved complete P removal throughout the 3-h experiment, while identical columns receiving 500 mg/L alkalinity water averaged 52% P removal and only 14% removal after 2.5 h. Batch regeneration and adsorption experiments were conducted on the exhumed BOF/BF slag mixture from the field filter to evaluate strategies for increasing field P removal capacity. The adsorption capacity of steel slags was effectively regenerated by 0.01 M Al2(SO4)3, which allowed for an additional 34% P removal in batch adsorption tests. The acid neutralization capacity of slag samples was effectively regenerated by 1 M NaOH, which allowed previously expended slag to reach a pH of 9.7 even in high alkalinity test water. The results presented here show that BF slag and Al2(SO4)3 regeneration of BF slag is best suited for high alkalinity influent conditions and removes P through adsorption while BOF slag and NaOH regeneration perform best under low alkalinity conditions and removes P through mineral precipitation.

10.
Bioresour Technol ; 342: 125968, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34563825

RESUMO

Attached cultivation of microalgae is a suitable strategy for attaining high biomass productivity with effortless harvesting. This study evaluates the feasibility of using Basic Oxygen Furnace Slag (BOFS) as a carrier for microalgae cultivation. Among the three indigenous microalgae (namely, Chlorella sorokiniana PTC13, Tetraselmis suecica SC5, and Nannochloropsis oceanica DG), which were examined for their capability of attached growth on BOFS, T. suecica SC5 showed the best attached-growth performance (2.52 mg/g slag). Optimizing the cultivation parameters (agitation rate, 200 rpm; added sodium acetate, 1 g/L; light intensity, 300 µmol/m2/s) further enhanced the attached biomass yield to 6.38 mg/g slag. The microalgae-attached slag can be used as the seed for re-growth for three additional cycles and the biomass yield and productivity both enhanced from 6.00 to 11.58 mg/g slag and 497 to 760 mg/L/d, respectively. This study demonstrated the potential of using T. suecica SC5-attached BOFS to construct artificial reefs.


Assuntos
Chlorella , Microalgas , Biomassa , Oxigênio
11.
Waste Manag ; 135: 158-166, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34509054

RESUMO

A synergetic valorization method was proposed to convert the basic oxygen furnace (BOF) slag and stone coal into ferroalloy and glass-ceramic in this work. Effects of reduction time, temperature, and the mass ratio of BOF slag to stone coal on the reduction were studied. The reduction mechanism was investigated by in-situ observation and dissolution experiments. The effect of sintering temperature on the properties of glass-ceramics prepared from the final slag was further studied. The in-situ observation results indicate that the reduction reactions occurred mainly in the temperature range of 1673-1793 K. The reduction ratio of oxides and size of metal droplets can be improved by increasing reduction time, temperature, and decreasing stone coal addition. The recovered ferroalloys consisted of Fe, Mn, P, and V, which has the potential of returning to the steelmaking process or extracting vanadium. The modified final slag was suitable material for preparing glass-ceramic. Wollastonite-based glass-ceramic with a maximum bending strength of 95.83 MPa was prepared, which could be applied as abrasion-resistant and building decoration materials. Therefore, the present technological route can convert two kinds of industrial solid waste into two kinds of cleaner products and achieve the target of "zero waste".


Assuntos
Carvão Mineral , Oxigênio , Cerâmica , Materiais de Construção , Resíduos Industriais/análise
12.
J Hazard Mater ; 388: 121784, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31831284

RESUMO

As an immobilizing agent for metal ions, basic oxygen furnace slag may affect bacterial community succession, thus further promote metal ion immobilization in acidic contaminated soil. In this work, pot experiments were conducted to study the effects of adding 10 g/kg (S10) and 15 g/kg (S15) slag on soil properties, plant growth, bacterial community succession and various metal ion immobilization in acidic mine soils contaminated by Pb, Zn, Cu, Cr and Cd. The results showed that after 93 days of potting, the soil pH, electrical conductivity, total nitrogen and organic carbon content increased significantly (P < 0.05), and the dry weight of Poa pratensis L. increased significantly (P < 0.05) in S10 and S15 compared with in original soil group. With slag addition and plant growth, the diversity and richness indices of bacterial communities greatly improved, and at the genus level, the abundance of metal-tolerant bacteria and bacteria beneficial to plant growth increased, while the abundance of acidophiles decreased. After adding slag to the soil, the various metals were immobilized because slag could not only immobilize metal ions through ion exchange and coprecipitation, but also benefit plant growth and bacterial community succession which further promote the immobilization of metal ions.


Assuntos
Metais Pesados/química , Microbiota , Poa/crescimento & desenvolvimento , Poluentes do Solo/química , Bactérias , Biodiversidade , Concentração de Íons de Hidrogênio , Resíduos Industriais , Mineração , Oxigênio
13.
Waste Manag ; 85: 425-436, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30803598

RESUMO

This study investigates the carbon dioxide (CO2) sequestration potential of three different basic oxygen furnace (BOF) slags (IHE-3/15, IHE-9/17, and Riverdale) subjected to simulated landfill gas (LFG) conditions (50% CH4 and 50% CO2 v/v) in a series of batch and column experiments. Batch experiments were performed at different moisture contents (0%, 10%, 15% and 20% moisture by weight) and temperatures (7 °C, 23 °C and 54 °C) to examine the effect of moisture and temperature on the CO2 sequestration potential of the BOF slags. The column experiments were conducted under continuous humid gas flow conditions. The results from the batch experiments show that the CO2 sequestration was significantly higher in a moist state (10%, 15%, 20% moisture (w/w)) versus the dry state (0% moisture). The optimum moisture content (w/w) for CO2 sequestration was different for each BOF slag; IHE-3/15 (10%), IHE-9/17 (20%) and Riverdale (20%). The variation in ambient temperature did not show any significant effect on the CO2 sequestration capacity of the BOF slags. The CO2 sequestration capacity of IHE-3/15, IHE-9/17 and Riverdale BOF slags determined by long-term batch experiments were 105 mg/g, 80 mg/g and 67 mg/g, respectively. The IHE-3/15 slag demonstrated the highest carbonation potential and was attributed to its finer particle size and higher free lime, portlandite and larnite content. The IHE-9/17 and Riverdale slags showed significantly lower CO2 sequestration capacity in comparison to the IHE-3/15 slag. The amount of free lime, portlandite and larnite, which are considered to be the most reactive minerals during carbonation, was nearly 1.3 times less than that of the IHE-3/15 slag in the IHE-9/17 and Riverdale slags. Also, the Riverdale slag showed relatively lower CO2 sequestration in column experiment in comparison to the batch experiments, perhaps due to a high in-situ density which limited CO2 diffusion and hence the CO2 uptake. Overall, this study provides a means to analyze the suitability of the use of BOF slags in landfill covers for mitigating fugitive CO2 emissions from landfills.


Assuntos
Dióxido de Carbono , Oxigênio , Resíduos Industriais , Aço , Instalações de Eliminação de Resíduos
14.
Environ Sci Pollut Res Int ; 26(9): 9281-9292, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30721429

RESUMO

Soil contamination with polycyclic aromatic hydrocarbons (PAHs) is a serious problem in Northeast China, especially in the steel industrial area. The objective of this study was to evaluate the feasibility of using basic oxygen furnace (BOF) slag to activate the Fenton-like remediation of PAH-contaminated soil to achieve the objectives of "waste control by waste" and "resource recycling" in Chinese steel industry. The effects of BOF slag dosages, H2O2 concentrations, and exothermicity-driven evaporation were evaluated with respect to the removal efficiencies of phenanthrene (Phe) and pyrene (Pyr). Results indicated that PAH oxidation was proportional to the BOF slag dosages and was increased exponentially with H2O2 concentrations. Evaporation due to increasing temperature caused by exothermic reaction played an important role in total soil PAH losses. The sequential Fenton-like oxidation with a 3-times application of 15% H2O2 and the same BOF slag repeatedly used were able to remove 65.87% of Phe and 58.33% of Pyr, respectively. Soluble iron oxides containing in BOF slag were reduced, while amorphous iron oxide concentration remained stable during the repeated Fenton-like process. Column study mimics real field applications showing high removal efficiencies of Phe (36.05-83.20%) and Pyr (21.79-68.06%) in 30-cm depth of soil profile. The tests on soluble heavy metal concentrations after the reactions with high slag dosage or high H2O2 concentration confirmed that BOF slag would not cause heavy metal contamination. Consequently, BOF slag may provide an efficient way for enhancing the Fenton-like based remediation of heavily PAH-polluted soil with little risk on collateral heavy metal contamination. However, an external gas collection and purification equipment would be essential to eliminate the evaporated PAHs.


Assuntos
Recuperação e Remediação Ambiental/métodos , Peróxido de Hidrogênio/química , Fenantrenos/análise , Pirenos/análise , Poluentes do Solo/análise , Catálise , China , Resíduos Industriais , Oxirredução , Oxigênio , Hidrocarbonetos Policíclicos Aromáticos , Solo , Aço
15.
Materials (Basel) ; 12(14)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295809

RESUMO

In this study, environmentally friendly ground granulated blast furnace slag (GGBFS) based alkali activated materials and basic oxygen furnace slags (BOFs) were used as bonding materials and aggregates, respectively, to produce novel, environmentally friendly GGBFS based porous concrete. Porous concrete with a particle size of 4.75-9.5 mm and 9.5-19.00 mm was used as an aggregate. The "liquid-to-solid ratios" (L/S) variable was set at set at 0.5 and 0.6, and the "percentage of pore filling paste ratio" variable was controlled at 40%, 50%, and 60%. The curing period was set at 28 d, and the relationship between connected porosity and permeability, as well as that between unit weight and the pore filling paste ratio percentage were explored using analysis of variance. The results showed that the porous concrete had a maximum compressive strength of 8.31 MPa. The following results were obtained. An increase in percentage of pore filling paste ratio increased compressive strength. Permeability was measured at 4.67 cm/s and was positively correlated with porosity. An increase in porosity increased permeability, in which porosity was positively correlated with the percentage of pore filling paste ratio. The maximum splitting strength achieved during the 28 d was 1.46 MPa, showing a trend similar to that of compressive strength.

16.
Materials (Basel) ; 12(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577482

RESUMO

Basic oxygen furnace slag (BOFS) was ground to three levels of fineness as a replacement for cement at weight proportions of 10, 30, 50, and 70 wt.%. Fineness and weight proportion were shown to have significant effects on the flowability and setting time of the mortars. The expansion of BOFS mortars increased with an increase in the proportion of cement replaced, thereby exacerbating the effects of cracking. Optimal mechanical properties were achieved when 10 wt.% of the cement was replaced using BOFS with fineness of 10,000 cm²/g. The compressive strength of BOFS mortar is similar to that of ordinary Portland mortar, which makes BOFS suitable for the partial replacement of cement as a supplementary cementitious material. Scanning electron microscopy results revealed that the reaction of CaO with H2O results in the formation of C⁻S⁻H colloids, whereas the reaction of SiO2 with Al2O3 produces C⁻A⁻S⁻H colloids. The use of BOFS as a partial replacement for Portland cement could make a tremendous contribution to the steel industry and help to lower CO2 emissions.

17.
Environ Sci Pollut Res Int ; 25(23): 23082-23090, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29860687

RESUMO

Basic oxygen furnace slags (BOS) are by-products of basic oxygen steel production. Whereas the solubility of some elements from these slags has been well investigated, information about the mineralogy and related leaching, i.e., availability of the environmentally relevant elements chromium (Cr), molybdenum (Mo), and vanadium (V), is still lacking. The aim of this study was to investigate these issues with a modified, four-fraction-based, sequential extraction procedure (F1-F4), combined with X-ray diffraction, of two BOS. Extractants with increasing strength were used (F1 demineralized water, F2 CH3COOH + HCl, F3 Na2EDTA + NH2OH·HCl, and F4 HF + HNO3 + H2O2), and after each fraction, X-ray diffraction was performed. The recovery of Cr was moderate (66.5%) for one BOS, but significantly better (100.2%) for the other one. High recoveries were achieved for the other elements (Mo, 100.8-107.9% and V, 112.6-87.0%), indicating that the sequential extraction procedure was reliable when adapted to BOS. The results showed that Cr and Mo primarily occurred in F4, representing rather immobile elements under natural conditions, which were strongly bound into/onto Fe minerals (srebrodolskite, magnetite, hematite, or wustite). In contrast, V was more mobile with proportional higher findings in F2 and F3, and the X-ray diffraction results reveal that V was not solely bound into Ca minerals (larnite, hatrurite, kirschsteinite, and calcite), but also bound to Fe minerals. The results indicated that the total amount of recovery was a poor indicator of the availability of elements and did not correspond to the leaching of elements from BOS.


Assuntos
Cromo/análise , Poluição Ambiental/prevenção & controle , Molibdênio/análise , Vanádio/análise , Oxigênio , Aço/química , Difração de Raios X
18.
Bioresour Technol ; 214: 534-540, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27179297

RESUMO

As one solid waste with potential for phosphorus removal, application of slags in water treatment merits attention. But it was inhibited greatly by alkaline solution (pH>9.5) and cemented clogging generated. To give one solution, phosphorus removal was investigated by combining deep-sea bacterium Alteromonas 522-1 and basic oxygen furnace slag (BOFS). Results showed that by the combination, not only higher phosphorous removal efficiency (>90%) but also neutral solution pH of 7.8-8.0 were achieved at wide ranges of initial solution pH value of 5.0-9.0, phosphorus concentration of 5-30mg/L, salinity of 0.5-3.5%, and temperature of 15-35°C. Moreover, sedimentary property was also improved with lower amount of sludge production and alleviated BOFS cementation with increased porosity and enlarged particle size. These results provided a promising strategy for the phosphorus recovery with slags in large-scale wastewater treatment.


Assuntos
Bactérias/metabolismo , Oxigênio/química , Fósforo/isolamento & purificação , Água do Mar/microbiologia , Resíduos , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Salinidade , Esgotos/química , Temperatura
19.
Environ Technol ; 37(10): 1257-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26507932

RESUMO

Effects of reaction time, initial phosphorus concentration, basic oxygen furnace slag (BOF-slag) dosage and size, and temperature on the phosphorus removal capacities (PRCs) of BOF-slag have been investigated in detail through batch tests. Weakly bound phosphorus, Fe- and Al-associated phosphorus, and Ca-associated phosphorus from fresh and reacted BOF-slag were analysed using sequential chemical extraction processes. It was determined that the PRCs of BOF-slag increased with the increase of initial phosphorus concentration and temperature while it decreased with the increase of BOF-slag dosage and size. The phosphorus removed by BOF-slag was primarily assigned to weakly bound phosphorus and Ca-associated phosphorus. Weakly bound phosphorus showed a significant decrease with the increase in all experimental parameter values. However, Ca-associated phosphorus exhibited a prominent increase with increasing reaction time, initial phosphorus concentration, and temperature. These demonstrate that experimental parameters can simultaneously affect the PRCs of BOF-slag and the ways of phosphorus removal by BOF-slag.


Assuntos
Resíduos Industriais , Oxigênio/química , Fósforo/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Resíduos Industriais/análise , Óxidos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA