Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
EMBO J ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160276

RESUMO

Metabolic dysfunction-associated steatohepatitis (MASH, previously termed non-alcoholic steatohepatitis (NASH)), is a major complication of obesity that promotes fatty liver disease. MASH is characterized by progressive tissue fibrosis and sterile liver inflammation that can lead to liver cirrhosis, cancer, and death. The molecular mechanisms of fibrosis in MASH and its systemic control remain poorly understood. Here, we identified the secreted-type pro-fibrotic protein, procollagen C-endopeptidase enhancer-1 (PCPE-1), as a brown adipose tissue (BAT)-derived adipokine that promotes liver fibrosis in a murine obesity-induced MASH model. BAT-specific or systemic PCPE-1 depletion in mice ameliorated liver fibrosis, whereas, PCPE-1 gain of function in BAT enhanced hepatic fibrosis. High-calorie diet-induced ER stress increased PCPE-1 production in BAT through the activation of IRE-1/JNK/c-Fos/c-Jun signaling. Circulating PCPE-1 levels are increased in the plasma of MASH patients, suggesting a therapeutic possibility. In sum, our results uncover PCPE-1 as a novel systemic control factor of liver fibrosis.

2.
Am J Physiol Endocrinol Metab ; 325(1): E32-E45, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224469

RESUMO

Activation of brown adipose tissue (BAT) thermogenesis impacts energy balance and must be tightly regulated. Several neurotrophic factors, expressed in BAT of adult laboratory rodents, have been implicated in remodeling the sympathetic neural network to enhance thermogenesis [e.g., nerve growth factor (NGF), neuregulin-4 (NRG4), and S100b]. Here, we compare, to our knowledge, for the first time, the relative roles of three neurotrophic "batokines" in establishing/remodeling innervation during postnatal development and adult cold stress. We used laboratory-reared Peromyscus maniculatus, which rely heavily on BAT-based thermogenesis for survival in the wild, beginning between postnatal days (P) 8 and 10. BAT sympathetic innervation was enhanced from P6 to P10, and exogenous NGF, NRG4, and S100b stimulated neurite outgrowth from P6 sympathetic neurons. Endogenous BAT protein stores and/or gene expression of NRG4, S100b, and calsyntenin-3ß (which may regulate S100b secretion) remained high and constant during development. However, endogenous NGF was low and ngf mRNA was undetectable. Conditioned media (CM) from cultured P10 BAT slices stimulated neurite outgrowth from sympathetic neurons in vitro, which was inhibited by antibodies against all three growth factors. P10 CM had significant amounts of secreted NRG4 and S100b protein, but not NGF. By contrast, BAT slices from cold-acclimated adults released significant amounts of all three factors relative to thermoneutral controls. These data suggest that although neurotrophic batokines regulate sympathetic innervation in vivo, their relative contributions differ depending on the life stage. They also provide novel insights into the regulation of BAT remodeling and BAT's secretory role, both of which are critical to our understanding of mammalian energy homeostasis.NEW & NOTEWORTHY In altricial Peromyscus mice, the developmental shift to endothermy accompanies the establishment of the brown adipose tissue sympathetic neural network. Cultured slices of neonatal BAT secreted high quantities of two predicted neurotrophic batokines: S100b and neuregulin-4, but surprisingly low levels of the classic neurotrophic factor, NGF. Despite low NGF, neonatal BAT-conditioned media was highly neurotrophic. Cold-exposed adults use all three factors to dramatically remodel BAT, suggesting that BAT-neuron communication is life-stage dependent.


Assuntos
Tecido Adiposo Marrom , Peromyscus , Animais , Tecido Adiposo Marrom/metabolismo , Meios de Cultivo Condicionados , Termogênese/fisiologia , Homeostase
3.
J Nanobiotechnology ; 20(1): 165, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346213

RESUMO

BACKGROUND: Browning of white adipose tissue (WAT) is a particularly appealing target for therapeutics in the treatment of obesity and related metabolic diseases. Although small extracellular vesicles (sEVs) released from adipose tissue (sEVs-AT) have emerged as novel player that regulate systemic metabolism by connecting different organs, the role of specific contents in sEVs-AT played in WAT browning has not been clarified. RESULTS: We revealed Nucleophosmin3 (NPM3), which was mainly transferred by sEVs derived from brown adipose tissue (sEVs-BAT), was served as a batokine that could induce WAT browning by regulating the stability of PRDM16 mRNA. sEVs-BAT enhanced the expressions of browning related genes in 3T3-L1 preadipocytes and WAT while knocking down of NPM3 in BAT impaired sEVs-BAT mediated WAT browning and weight loss in obesity. CONCLUSION: These data provided new insight into the role of NPM3 in regulating the browning of WAT. Our study indicated that a supplement of sEVs-BAT might represent a promising therapeutic strategy to promote thermogenesis and energy expenditure in the future.


Assuntos
Tecido Adiposo Branco , Vesículas Extracelulares , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Obesidade/metabolismo , Termogênese
4.
Exp Cell Res ; 377(1-2): 47-55, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30794803

RESUMO

Brown and beige adipocytes contribute significantly to the regulation of whole body energy expenditure and systemic metabolic homeostasis not exclusively by thermogenesis through mitochondrial uncoupling. Several studies have provided evidence in rodents that brown and beige adipocytes produce a set of adipokines ("batokines") which regulate local tissue homeostasis and have beneficial effects on physiological functions of the entire body. We observed elevated secretion of Interleukin (IL)-6, IL-8 and monocyte chemoattractant protein (MCP)-1, but not tumor necrosis factor alpha (TNFα) or IL-1ß pro-inflammatory cytokines, by ex vivo differentiating human beige adipocytes (induced by either PPARγ agonist or irisin) compared to white. Higher levels of IL-6, IL-8 and MCP-1 were released from human deep neck adipose tissue biopsies (enriched in browning cells) than from subcutaneous ones. IL-6 was produced in a sustained manner and mostly by the adipocytes and not by the undifferentiated progenitors. Continuous blocking of IL-6 receptor by specific antibody during beige differentiation resulted in downregulation of brown marker genes and increased morphological changes that are characteristic of white adipocytes. The data suggest that beige adipocytes adjust their production of IL-6 to reach an optimal level for differentiation in the medium enhancing browning in an autocrine manner.


Assuntos
Adipócitos Bege/citologia , Adipócitos Bege/metabolismo , Tecido Adiposo Marrom/fisiologia , Diferenciação Celular , Interleucina-6/metabolismo , Adulto , Idoso , Células Cultivadas , Quimiocina CCL2/metabolismo , Metabolismo Energético , Humanos , Interleucina-8/metabolismo , Pessoa de Meia-Idade , Consumo de Oxigênio , Adulto Jovem
5.
Curr Hypertens Rep ; 20(11): 96, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30229358

RESUMO

PURPOSE OF REVIEW: Obesity is a major risk factor for the development of hypertension (HTN), a leading cause of cardiovascular morbidity and mortality. Growing body of research suggests that adipose tissue function is directly associated with the pathogenesis of obesity-related HTN. In this review, we will discuss recent research on the role of adipose tissue in blood pressure (BP) regulation and activation of brown adipose tissue (BAT) as a potentially new therapeutic means for obesity-related HTN. RECENT FINDINGS: Adipose tissue provides mechanical protection of the blood vessels and plays a role in regulation of vascular tone. Exercise and fasting activate BAT and induce browning of white adipose tissue (WAT). BAT-secreted FGF21 lowers BP and protects against HTN. Browning of perivascular WAT improves HTN. New insights on WAT browning and BAT activation can open new avenues of potential therapeutic interventions to treat obesity-related HTN.


Assuntos
Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Hipertensão/metabolismo , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Jejum/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Humanos , Fator de Crescimento Insulin-Like I/fisiologia , Metabolismo dos Lipídeos , Termogênese/fisiologia , Hormônios Tireóideos/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia
6.
Anal Bioanal Chem ; 410(3): 791-800, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29214530

RESUMO

Recent breakthroughs in organ-on-a-chip and related technologies have highlighted the extraordinary potential for microfluidics to not only make lasting impacts in the understanding of biological systems but also to create new and important in vitro culture platforms. Adipose tissue (fat), in particular, is one that should be amenable to microfluidic mimics of its microenvironment. While the tissue was traditionally considered important only for energy storage, it is now understood to be an integral part of the endocrine system that secretes hormones and responds to various stimuli. As such, adipocyte function is central to the understanding of pathological conditions such as obesity, diabetes, and metabolic syndrome. Despite the importance of the tissue, only recently have significant strides been made in studying dynamic function of adipocytes or adipose tissues on microfluidic devices. In this critical review, we highlight new developments in the special class of microfluidic systems aimed at culture and interrogation of adipose tissue, a sub-field of microfluidics that we contend is only in its infancy. We close by reflecting on these studies as we forecast a promising future, where microfluidic technologies should be capable of mimicking the adipose tissue microenvironment and provide novel insights into its physiological roles in the normal and diseased states. Graphical abstract This critical review focuses on recent developments and challenges in applying microfluidic systems to the culture and analysis of adipocytes and adipose tissue.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Adipócitos/citologia , Adipocinas/metabolismo , Tecido Adiposo/citologia , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Desenho de Equipamento , Ácidos Graxos/metabolismo , Glucose/metabolismo , Hormônios/metabolismo , Humanos , Insulina/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas de Cultura de Tecidos/instrumentação , Técnicas de Cultura de Tecidos/métodos
7.
Am J Physiol Endocrinol Metab ; 305(5): E567-72, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23839524

RESUMO

White adipose tissue is recognized as both a site of energy storage and an endocrine organ that produces a myriad of endocrine factors called adipokines. Brown adipose tissue (BAT) is the main site of nonshivering thermogenesis in mammals. The amount and activity of brown adipocytes are associated with protection against obesity and associated metabolic alterations. These effects of BAT are traditionally attributed to its capacity for the oxidation of fatty acids and glucose to sustain thermogenesis. However, recent data suggest that the beneficial effects of BAT could involve a previously unrecognized endocrine role through the release of endocrine factors. Several signaling molecules with endocrine properties have been found to be released by brown fat, especially under conditions of thermogenic activation. Moreover, experimental BAT transplantation has been shown to improve glucose tolerance and insulin sensitivity mainly by influencing hepatic and cardiac function. It has been proposed that these effects are due to the release of endocrine factors by brown fat, such as insulin-like growth factor I, interleukin-6, or fibroblast growth factor-21. Further research is needed to determine whether brown fat plays an endocrine role and, if so, to comprehensively identify which endocrine factors are released by BAT. Such research may reveal novel clues for the observed association between brown adipocyte activity and a healthy metabolic profile, and it could also enlarge a current view of potential therapeutic tools for obesity and associated metabolic diseases.


Assuntos
Adipocinas/fisiologia , Tecido Adiposo Marrom/fisiologia , Sistema Endócrino/fisiologia , Adipócitos Marrons/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Humanos , Fator de Crescimento Insulin-Like I/fisiologia , Interleucina-6/fisiologia , Transdução de Sinais
8.
Biochimie ; 204: 92-107, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36084909

RESUMO

Diseases originating from altered energy homeostasis including obesity, and type 2 diabetes are rapidly increasing worldwide. Research in the last few decades on animal models and humans demonstrates that the white adipose tissue (WAT) is critical for energy balance and more than just an energy storage site. WAT orchestrates the whole-body metabolism through inter-organ crosstalk primarily mediated by cytokines named "Adipokines". The adipokines influence metabolism and fuel selection of the skeletal muscle and liver thereby fine-tuning the load on WAT itself in physiological conditions like starvation, exercise and cold. In addition, adipokine secretion is influenced by various pathological conditions like obesity, inflammation and diabetes. In this review, we have surveyed the current state of knowledge on important adipokines and their significance in regulating energy balance and metabolic diseases. Furthermore, we have summarized the interplay of pro-inflammatory and anti-inflammatory adipokines in the modulation of pathological conditions.


Assuntos
Adipocinas , Diabetes Mellitus Tipo 2 , Animais , Humanos , Adipocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Homeostase , Tecido Adiposo/metabolismo , Metabolismo Energético
9.
Psychoneuroendocrinology ; 142: 105775, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35594830

RESUMO

BACKGROUND: Antipsychotic drug (APD) treatment has been associated with metabolic abnormalities. Brown adipose tissue (BAT) is the main site of adaptive thermogenesis and secretes various metabolism-improving factors known as batokines. We explored the association of BAT activity with APD treatment and metabolic abnormalities in patients with schizophrenia by measuring the blood levels of bone morphogenetic protein 8b (BMP8b), a batokine secreted by mature BAT. METHODS: BMP8b levels were compared among 50 drug-free, 32 aripiprazole-treated, and 91 clozapine-treated patients with schizophrenia. Regression analysis was used to explore factors, including APD types, that might be associated with BMP8b levels and the potential effect of BMP8b on metabolic syndrome (MS). RESULTS: APD-treated patients had decreased BMP8b levels relative to drug-free patients. The difference still existed after adjustment for body mass index and Brief Psychiatric Rating Scale scores. Among APD-treated group, clozapine was associated with even lower BMP8b levels than the less obesogenic APD, aripiprazole. Furthermore, higher BMP8b levels were associated with lower risks of MS after adjustment for BMI and APD treatment. CONCLUSION: Using drug-free patients as the comparison group to understand the effect of APDs, this is the first study to show APD treatment is associated with reduced BAT activity that is measured by BMP8b levels, with clozapine associated a more significant reduction than aripiprazole treatment. BMP8b might have a beneficial effect against metabolic abnormalities and this effect is independent of APD treatment. Future studies exploring the causal relationship between APD treatment and BMP8b levels and the underlying mechanisms are warranted.


Assuntos
Antipsicóticos , Clozapina , Síndrome Metabólica , Esquizofrenia , Tecido Adiposo Marrom/metabolismo , Antipsicóticos/efeitos adversos , Aripiprazol/metabolismo , Aripiprazol/farmacologia , Clozapina/metabolismo , Clozapina/farmacologia , Clozapina/uso terapêutico , Humanos , Síndrome Metabólica/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Termogênese
10.
Biomedicines ; 10(10)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36289764

RESUMO

Polycystic ovary syndrome (PCOS) and endometriosis are frequent diseases of the female reproductive tract causing high morbidity as they can significantly affect fertility and quality of life. Adipokines are pleiotropic signaling molecules secreted by white or brown adipose tissues with a central role in energy metabolism. More recently, their involvement in PCOS and endometriosis has been demonstrated. In this review article, we provide an update on the role of adipokines in both diseases and summarize previous findings. We also address the results of multi-omics approaches in adipokine research to examine the role of single nucleotide polymorphisms (SNPs) in genes coding for adipokines and their receptors, the secretome of adipocytes and to identify epigenetic alterations of adipokine genes that might be conferred from mother to child. Finally, we address novel data on the role of brown adipose tissue (BAT), which seems to have notable effects on PCOS. For this review, original research articles on adipokine actions in PCOS and endometriosis are considered, which are listed in the PubMed database.

11.
Front Physiol ; 12: 714530, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421656

RESUMO

Depending on its anatomical placement, perivascular adipose tissue (PVAT) has been found to possess features more (e.g., aortic thoracic) or less (e.g., aortic abdominal) similar to brown/beige adipose tissue in mice, whereas PVAT surrounding the mesenteric arteries and the caudal part of abdominal aorta is similar to white fat. PVAT is thought to influence vascular function through the effects of adipose-secreted molecules on vessels. Brown adipose tissue was recently shown to play differential secretory role via secretion of the so-called batokines but the involvement of differential batokine production in PVAT brown/beige plasticity was unclear. The current study characterizes for the first time the expression of batokines at aortic thoracic PVAT (tPVAT) and aortic abdominal PVAT (aPVAT) in comparison with typical brown and white adipose depots, in basal and thermogenically activated conditions. We found that both PVAT depots increased their expression of genes encoding the batokines bone morphogenetic protein-8b (BMP8B), fibroblast growth factor-21 (FGF21), and kininogen-2 (KNG2) in response to cold, indicating that, under cold-induced thermogenic activation, both thoracic aorta and abdominal aorta would experience intense local exposure to these PVAT-secreted batokines. In contrast, the gene expression levels of growth/differentiation factor-15 and vascular endothelial growth factor-A were induced only in tPVAT. Under short-term high-fat diet-induced thermogenic activation, the thoracic aorta would be specifically exposed to a local increase in PVAT-originating BMP8B, FGF21, and KNG2. Our data support the notion that acquisition of a brown/beige phenotype in PVAT is associated with upregulation of batokines, mainly BMP8B, FGF21, and KNG2, that can differentially target the vascular system.

12.
Cells ; 9(11)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182625

RESUMO

Brown adipose tissue (BAT), which is a thermogenic fat tissue originally discovered in small hibernating mammals, is believed to exert anti-obesity effects in humans. Although evidence has been accumulating to show the importance of BAT in metabolism regulation, there are a number of unanswered questions. In this review, we show the remaining mysteries about BATs. The distribution of BAT can be visualized by nuclear medicine examinations; however, the precise localization of human BAT is not yet completely understood. For example, studies of 18F-fluorodeoxyglucose PET/CT scans have shown that interscapular BAT (iBAT), the largest BAT in mice, exists only in the neonatal period or in early infancy in humans. However, an old anatomical study illustrated the presence of iBAT in adult humans, suggesting that there is a discrepancy between anatomical findings and imaging data. It is also known that BAT secretes various metabolism-improving factors, which are collectively called as BATokines. With small exceptions, however, their main producers are not BAT per se, raising the possibility that there are still more BATokines to be discovered. Although BAT is conceived as a favorable tissue from the standpoint of obesity prevention, it is also involved in the development of unhealthy conditions such as cancer cachexia. In addition, a correlation between browning of mammary gland and progression of breast cancers was shown in a xenotransplantation model. Therefore, the optimal condition should be carefully determined when BAT is considered as a measure the prevention of obesity and improvement of metabolism. Solving BAT mysteries will open a new door for health promotion via advanced understanding of metabolism regulation system.


Assuntos
Tecido Adiposo Marrom/metabolismo , Obesidade/terapia , Animais , Humanos , Camundongos
13.
J Endocrinol ; 243(2): R19-R27, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31419785

RESUMO

In recent years, an important secretory role of brown adipose tissue (BAT) has emerged, which is consistent, to some extent, with the earlier recognition of the important secretory role of white fat. The so-called brown adipokines or 'batokines' may play an autocrine role, which may either be positive or negative, in the thermogenic function of brown adipocytes. Additionally, there is a growing recognition of the signalling molecules released by brown adipocytes that target sympathetic nerve endings (such as neuregulin-4 and S100b protein), vascular cells (e.g., bone morphogenetic protein-8b), and immune cells (e.g., C-X-C motif chemokine ligand-14) to promote the tissue remodelling associated with the adaptive BAT recruitment in response to thermogenic stimuli. Moreover, existing indications of an endocrine role of BAT are being confirmed through the release of brown adipokines acting on other distant tissues and organs; a recent example is the recognition that BAT-secreted fibroblast growth factor-21 and myostatin target the heart and skeletal muscle, respectively. The application of proteomics technologies is aiding the identification of new members of the brown adipocyte secretome, such as the extracellular matrix or complement system components. In summary, BAT can no longer be considered a mere producer of heat in response to environment or dietary challenges; it is also an active secretory tissue releasing brown adipokines with a relevant local and systemic action. The identification of the major brown adipokines and their roles is highly important for the discovery of novel candidates useful in formulating intervention strategies for metabolic diseases.


Assuntos
Adipócitos Marrons/metabolismo , Adipocinas/metabolismo , Tecido Adiposo Marrom/metabolismo , Termogênese/fisiologia , Tecido Adiposo Marrom/citologia , Animais , Comunicação Autócrina/fisiologia , Metabolismo Energético/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/fisiopatologia , Doenças Metabólicas/terapia
14.
Endocrinol Metab (Seoul) ; 32(3): 383-388, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28956369

RESUMO

BACKGROUND: Slit2 is a new secreted protein from adipose tissue that improves glucose hemostasis in mice; however, there is no study about the serum levels and precise role of Slit2 in human. The aim of this study is to explore the serum level of Slit2 in human, and to identify the role of Slit2 in diabetes mellitus (DM). METHODS: The participants of this study consist of 38 subjects with newly diagnosed DM, and 75 healthy subjects as a control group. Serum Slit2 levels were measured using an enzyme-linked immunosorbent assay. Relationship between circulating Slit2 and diabetic related factors was investigated in diabetic group compared with non-diabetic group. Additionally, the correlations between the serum level of Slit2 and diverse metabolic parameters were analyzed. RESULTS: Circulating Slit2 level was more decreased in diabetic group than in control group, but there was no significant difference statistically. Interestingly, serum levels of Slit2 were significantly negatively correlated to the serum concentrations of fasting glucose (coefficient r=-0.246, P=0.008), the serum concentrations of postprandial glucose (coefficient r=-0.233, P=0.017), and glycosylated hemoglobin (HbA1c; coefficient r=-0.357, P<0.001). CONCLUSION: From our study, the first report of circulating Slit2 levels in human, circulating Slit2 level significantly negatively correlated with serum glucose and HbA1c. Our results suggest that the circulating Slit2 may play a role in maintainence of glucose homeostasis in human, even though exact contribution and mechanism are not yet known.

15.
Adipocyte ; 1(1): 13-24, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23700507

RESUMO

Obesity is currently a global pandemic, and is associated with increased mortality and co-morbidities including many metabolic diseases. Obesity is characterized by an increase in adipose mass due to increased energy intake, decreased energy expenditure, or both. While white adipose tissue is specialized for energy storage, brown adipose tissue has a high concentration of mitochondria and uniquely expresses uncoupling protein 1, enabling it to be specialized for energy expenditure and thermogenesis. Although brown fat was once considered only necessary in babies, recent morphological and imaging studies have provided evidence that, contrary to prior belief, this tissue is present and active in adult humans. In recent years, the topic of brown adipose tissue has been reinvigorated with many new studies regarding brown adipose tissue differentiation, function and therapeutic promise. This review summarizes the recent advances, discusses the emerging questions and offers perspective on the potential therapeutic applications targeting this tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA