Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 85: 74-81, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31471033

RESUMO

A column leaching experiment was used to investigate the efficacy of amendments on their ability to remove alkaline anions and metal ions from bauxite residue leachates. Treatments included, simulated acid rain (AR), phosphogypsum + vermicompost (PVC), phosphogypsum + vermicompost + simulated acid rain (PVA), and biosolids + microorganisms (BSM) together with controls (CK). Results indicated that amendment could effectively reduce the leachate pH and EC values, neutralize OH-, CO32-, HCO3-, and water soluble alkali, and suppress arsenic (As) content. Correlation analysis revealed significant linear correlations with pH and concentrations of OH-, CO32-, HCO3-, water-soluble alkali, and metal ions. BSM treatment showed optimum results with neutralizing anions (OH-, CO32-, and HCO3-), water soluble alkali, and removal of metal ions (Al, As, B, Mo, V, and Na), which was attributed to neutralization from the generation of small molecular organic acids and organic matter during microbial metabolism. BSM treatment reduced alkaline anions and metal ions based on neutralization reactions in bauxite residue leachate, which reduced the potential pollution effects from leachates on the soil surrounding bauxite residue disposal areas.


Assuntos
Óxido de Alumínio/química , Metais/química , Modelos Químicos , Poluentes do Solo/química , Ânions
2.
Sci Total Environ ; 867: 161259, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638981

RESUMO

Constructed wetlands (CWs) have been demonstrated as a cost-effective alternative to chemical treatment systems for mine waters, with the microbial communities attributed to promoting carbonation and aiding pH neutralization. However, few data are available for the long-term use of CWs treating alkaline leachates nor the activity of microbes within them. To investigate the feasibility of CW to buffer alkaline pH, a pilot-scale wetland was implemented in 2015 to treat alkaline bauxite residue leachate. After 5.5 years, samples of supernatant water and sediment were taken at 0.5 m increments along the 11 m long wetland. Waters were analysed for pH, EC and metal(loid) content, while sediment was subjected to physico-chemical assessment and element fractionation. Microbial biomass and community were assessed by phospholipid fatty acid analysis (PLFA) and functionality by the Rapid Automated Bacterial Impedance Technique (RABIT). Evidence presented demonstrates that the CW operating for 66 months effectively treats bauxite residue leachate, with reduced influent pH from 11.5 to 7.8. Trace element analysis revealed effective reduction in Al (94.9 %), As (86.7 %) and V (57.6 %) with substrate analysis revealing a frontloading of elevated pH and trace element content in the first 5 m of the wetland. Sediment Al, As and V were present mostly (>94 % of total) in recalcitrant forms. Sediment Na was mostly soluble (48-62 %), but soils were not sodic (ESP < 15 %). Investigations into the microbial community revealed greatest biomass was in the first 5 m of the wetland, where pH, EC and metal contents were greatest. Microbial respiration using endemic Phragmites australis as a substrate demonstrates an ability to cycle recalcitrant carbon sources within a CW system. These novel microbial findings highlight the need for further investigation into the microbial communities in alkaline CWs.


Assuntos
Microbiota , Oligoelementos , Áreas Alagadas , Metais/química , Óxido de Alumínio/química
3.
Environ Sci Pollut Res Int ; 24(9): 8516-8524, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28190233

RESUMO

Increasing volumes of bauxite residues and their associated leachates represent a significant environmental challenge to the alumina industry. Constructed wetlands have been proposed as a potential approach for leachate treatment, but there is limited data on field-scale applications. The research presented here provides preliminary evaluation of a purpose-built constructed wetland to buffer leachate from a bauxite residue disposal site in Ireland. Data collected over a 1-year period demonstrated that the pH of bauxite residue leachates could be effectively reduced from ca. pH 10.3 to 8.1 but was influenced by influent variability and temporal changes. The wetland was also effective in decreasing elemental loading, and sequential extractions suggested that the bulk of the sediment-bound metal inventory was in hard-to-leach phases. Elemental analysis of Phragmites australis showed that although vegetation displayed seasonal variation, no trace elements were at concentrations of concern.


Assuntos
Óxido de Alumínio/química , Áreas Alagadas , Irlanda , Metais , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA