Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Curr Issues Mol Biol ; 46(4): 2946-2960, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38666914

RESUMO

Targeting the FLT3 receptor and the IL-1R associated kinase 4 as well as the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The FLT3 and IRAK4 inhibitor emavusertib (CA4948), the MCL1 inhibitor S63845, the BCL2 inhibitor venetoclax, and the HSP90 inhibitor PU-H71 were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells in vitro. AML cells represented all major morphologic and molecular subtypes, including FLT3-ITD and NPM1 mutant AML cell lines and a variety of patient-derived AML cells. Emavusertib in combination with MCL1 inhibitor S63845 or BCL2 inhibitor venetoclax induced cell cycle arrest and apoptosis in MOLM-13 cells. In primary AML cells, the response to emavusertib was associated with the presence of the FLT3 gene mutation with an allelic ratio >0.5 and the presence of NPM1 gene mutations. S63845 was effective in all tested AML cell lines and primary AML samples. Blast cell percentage was positively associated with the response to CA4948, S63845, and venetoclax, with elevated susceptibility of primary AML with blast cell fraction >80%. Biomarkers of the response to venetoclax included the blast cell percentage and bone marrow infiltration rate, as well as the expression levels of CD11b, CD64, and CD117. Elevated susceptibility to CA4948 combination treatments with S63845 or PU-H71 was associated with FLT3-mutated AML and CD34 < 30%. The combination of CA4948 and BH3-mimetics may be effective in the treatment in FLT3-mutated AML with differential target specificity for MCL1 and BCL2 inhibitors. Moreover, the combination of CA4948 and PU-H71 may be a candidate combination treatment in FLT3-mutated AML.

2.
BMC Cancer ; 23(1): 479, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237269

RESUMO

BACKGROUND: B-cell lymphoma 2 (Bcl-2) family proteins are key regulators of apoptosis, which possess four conserved Bcl-2 homologies (BH) domains. Among the BH domains, the BH3 domain is considered as a potent 'death domain' while the BH4 domain is required for anti-apoptotic activity. Bcl-2 can be converted to a pro-apoptotic molecule through the removal or mutation of the BH4 domain. Bcl-2 is considered as an inducer of angiogenesis, which can promote tumor vascular network formation and further afford nutrients and oxygen to promote tumor progression. However, whether disrupting the function of the BH4 domain to convert Bcl-2 into a pro-apoptotic molecule could make Bcl-2 possess the potential for anti-angiogenic therapy remains to be defined. METHODS: CYD0281 was designed and synthesized according to the lead structure of BDA-366, and its function on inducing a conformational change of Bcl-2 was further evaluated via immunoprecipitation (IP) and immunofluorescence (IF) assays. Moreover, the function of CYD0281 on apoptosis of endothelial cells was analyzed via cell viability, flow cytometry, and western blotting assays. Additionally, the role of CYD0281 on angiogenesis in vitro was determined via endothelial cell migration and tube formation assays and rat aortic ring assay. Chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models, breast cancer cell xenograft tumor on CAM and in mouse models as well as the Matrigel plug angiogenesis assay were used to explore the effects of CYD0281 on angiogenesis in vivo. RESULTS: We identified a novel potent small-molecule Bcl-2-BH4 domain antagonist, CYD0281, which exhibited significant anti-angiogenic effects both in vitro and in vivo, and further inhibited breast cancer tumor growth. CYD0281 was found to induce conformational changes in Bcl-2 through the exposure of the BH3 domain and convert Bcl-2 from an anti-apoptotic molecule into a cell death inducer, thereby resulting in the apoptosis of vascular endothelial cells. CONCLUSIONS: This study has revealed CYD0281 as a novel Bcl-2-BH4 antagonist that induces conformational changes of Bcl-2 to convert to a pro-apoptotic molecule. Our findings indicate that CYD0281 plays a crucial role in anti-angiogenesis and may be further developed as a potential anti-tumor drug candidate for breast cancer. This work also provides a potential anti-angiogenic strategy for breast cancer treatment.


Assuntos
Antineoplásicos , Neoplasias da Mama , Embrião de Galinha , Camundongos , Humanos , Ratos , Animais , Feminino , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células Endoteliais/metabolismo , Domínios Proteicos , Neoplasias da Mama/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
3.
EMBO Rep ; 20(9): e47425, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31385392

RESUMO

Intrinsic apoptosis requires mitochondrial outer membrane disruption triggered by recruitment, activation, and oligomerization of the Bcl-2 homology protein Bax. Following oxidative stress, we demonstrated that the transcriptional regulator cyclin C is released into the cytosol where it directs mitochondrial fragmentation and efficient apoptotic induction. This study reveals that cytoplasmic cyclin C is required for both normal Bax activation and its efficient mitochondrial localization. This activity appears direct as cyclin C co-immunoprecipitates with active Bax in stressed cells and binds recombinant Bax in vitro. In addition, stable cyclin C-Bax association requires the fission complex. Pharmacologically stimulating cyclin C nuclear release is sufficient for Bax association and their mitochondrial localization in the absence of any stress signals. However, these cells do not undergo cell death as Bax fails to oligomerize. These data support a model that cyclin C association defines an initial step in Bax mitochondrial recruitment and provides a physical connection between the fission and apoptotic factors. This strategy allows the cell to discriminate stress-induced fission able to recruit Bax from other types of mitochondrial divisions.


Assuntos
Ciclina C/metabolismo , Mitocôndrias/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Apoptose/fisiologia , Western Blotting , Linhagem Celular , Imunofluorescência , Células HeLa , Humanos , Imunoprecipitação , Camundongos , Camundongos Knockout , Membranas Mitocondriais/metabolismo , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia
4.
Int J Mol Sci ; 18(1)2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-28035994

RESUMO

Colorectal cancer is the third most common cancer worldwide. Aberrant overexpression of antiapoptotic BCL-2 (B-cell lymphoma 2) family proteins is closely linked to tumorigenesis and poor prognosis in colorectal cancer. Obatoclax is an inhibitor targeting all antiapoptotic BCL-2 proteins. A previous study has described the antiproliferative action of obatoclax in one human colorectal cancer cell line without elucidating the underlying mechanisms. We herein reported that, in a panel of human colorectal cancer cell lines, obatoclax inhibits cell proliferation, suppresses clonogenicity, and induces G1-phase cell cycle arrest, along with cyclin D1 downregulation. Notably, ectopic cyclin D1 overexpression abrogated clonogenicity suppression but also G1-phase arrest elicited by obatoclax. Mechanistically, pre-treatment with the proteasome inhibitor MG-132 restored cyclin D1 levels in all obatoclax-treated cell lines. Cycloheximide chase analyses further revealed an evident reduction in the half-life of cyclin D1 protein by obatoclax, confirming that obatoclax downregulates cyclin D1 through induction of cyclin D1 proteasomal degradation. Lastly, threonine 286 phosphorylation of cyclin D1, which is essential for initiating cyclin D1 proteasomal degradation, was induced by obatoclax in one cell line but not others. Collectively, we reveal a novel anticancer mechanism of obatoclax by validating that obatoclax targets cyclin D1 for proteasomal degradation to downregulate cyclin D1 for inducing antiproliferation.


Assuntos
Carcinoma/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Ciclina D1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Pirróis/farmacologia , Regulação para Baixo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Indóis , Proteólise , Pirróis/toxicidade
5.
Biochim Biophys Acta ; 1833(12): 3448-3459, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23770045

RESUMO

Apoptosis and necrosis are the two major modes of cell death, the molecular mechanisms of which have been extensively studied. Although initially thought to constitute mutually exclusive cellular states, recent findings reveal cellular contexts that require a balanced interplay between these two modes of cellular demise. Several death initiator and effector molecules, signaling pathways and subcellular sites have been identified as key mediators in both processes, either by constituting common modules or alternatively by functioning as a switch allowing cells to decide which route to take, depending on the specific situation. Importantly, autophagy, which is a predominantly cytoprotective process, has been linked to both types of cell death, serving either a pro-survival or pro-death function. Here we review the recent literature that highlights the intricate interplay between apoptosis, necrosis and autophagy, focusing on the relevance and impact of this crosstalk in normal development and in pathology. This article is part of a Special Section entitled: Cell Death Pathways.


Assuntos
Apoptose , Autofagia , Necrose/patologia , Transdução de Sinais , Humanos , Modelos Biológicos
6.
Exp Dermatol ; 23(6): 375-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24673301

RESUMO

Despite recent developments for new targeted therapies in melanoma, as BRAF inhibitors and immune-stimulating antibodies, tumor relapse frequently follows within less than a year. Therapy resistance is explained by defects in proapoptotic signalling. Thus, efficient induction of apoptosis in tumor cells appears as predominant therapeutic goal. In apoptosis control of melanoma, the balance between pro- and antiapoptotic Bcl-2 proteins plays a decisive role. In particular, members of the subfamily of BH3-only proteins function as proapoptotic triggers, and mimetics of these proteins are already in clinical trials in other cancers. Recent experimental work has revealed that the effects of different treatments in melanoma are related to the activation of BH3-only proteins, and also the proapoptotic effects of BRAF inhibitors are prevented by knockdown of the BH3-only protein Bim. Thus, melanoma therapy might be critically improved by the combination of survival pathway antagonists as BRAF inhibitors with BH3 mimetics.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/fisiologia , Melanoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/fisiologia , Proteína 11 Semelhante a Bcl-2 , Humanos , Melanoma/patologia , Melanoma/fisiopatologia , Proteínas de Membrana/fisiologia , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/fisiopatologia
7.
Biochem Biophys Res Commun ; 441(3): 531-7, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24177013

RESUMO

Apoptosis is an important mechanism to maintain homeostasis in mammals, and disruption of the apoptosis regulation mechanism triggers a range of diseases, such as cancer, autoimmune diseases, and developmental disorders. The severity of influenza A virus (IAV) infection is also closely related to dysfunction of apoptosis regulation. In the virus infected cells, the functions of various host cellular molecules involved in regulation of induction of apoptosis are modulated by IAV proteins to enable effective virus replication. The modulation of the intracellular signaling pathway inducing apoptosis by the IAV infection also affects extracellular mechanisms controlling apoptosis, and triggers abnormal host responses related to the disease severity of IAV infections. This review focuses on apoptosis related molecules involved in IAV replication and pathogenicity, the strategy of the virus propagation through the regulation of apoptosis is also discussed.


Assuntos
Apoptose , Caspase 3/metabolismo , RNA Helicases DEAD-box/metabolismo , Vírus da Influenza A/fisiologia , Receptores de Morte Celular/metabolismo , Replicação Viral , Proteína DEAD-box 58 , Humanos , Vírus da Influenza A/patogenicidade , Receptores Imunológicos , Transdução de Sinais
8.
J Surg Res ; 184(1): 628-37, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23731686

RESUMO

BACKGROUND: Tumor necrosis factor-α (TNF-α), a cytotoxic cytokine, induces endothelial cell barrier dysfunction and microvascular hyperpermeability, leading to tissue edema, a hallmark of traumatic injuries. The objective of the present study was to determine whether B-cell lymphoma-extra large (Bcl-xL), an antiapoptotic protein, would regulate and protect against TNF-α-mediated endothelial cell barrier dysfunction and microvascular hyperpermeability. METHODS: Rat lung microvascular endothelial cells were grown as monolayers on Transwell membranes, and fluorescein isothiocyanate-bovine albumin flux (5 mg/mL) across the monolayer was measured fluorometrically to indicate changes in monolayer permeability. The rat lung microvascular endothelial cell adherens junctional integrity and actin cytoskeleton was studied using ß-catenin immunofluorescence and rhodamine phalloidin dye, respectively. Pretreatment of caspase-8 inhibitor (Z-IETD-FMK, 100 µM) for 1 hour and transfection of Bcl-2-homology domain 3-interacting domain death agonist small interfering RNA (10 µM) for 48 hours were performed to study their respective effects on TNF-α-induced (10 ng/mL; 1-hour treatment) monolayer permeability. Recombinant Bcl-xL protein (2.5 µg/ml) was transfected in rat lung microvascular endothelial cells for 1 hour, and its effect on permeability was demonstrated using a permeability assay. Caspase-3 activity was assayed fluorometrically. RESULTS: Z-IETD-FMK pretreatment protected the adherens junctions and decreased TNF-α-induced monolayer hyperpermeability. Bcl-2-homology domain 3-interacting domain death agonist small interfering RNA transfection attenuated the TNF-α-induced increase in monolayer permeability. Recombinant Bcl-xL protein showed protection against TNF-α-induced actin stress fiber formation, an increase in caspase-3 activity, and monolayer hyperpermeability. CONCLUSIONS: Our results have demonstrated the protective effects of recombinant Bcl-xL protein against TNF-α-induced endothelial cell adherens junction damage and microvascular endothelial cell hyperpermeability. These findings support the potential for Bcl-xL-based drug development against microvascular hyperpermeability and tissue edema.


Assuntos
Edema/metabolismo , Células Endoteliais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína bcl-X/metabolismo , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Caspase 3/metabolismo , Caspase 8/metabolismo , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Edema/patologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Pulmão/citologia , Oligopeptídeos/farmacologia , RNA Interferente Pequeno/genética , Ratos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteína bcl-X/farmacologia , beta Catenina/metabolismo
9.
Explor Target Antitumor Ther ; 3(3): 278-296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045907

RESUMO

The antiapoptotic B cell lymphoma-2 (Bcl-2) family members are apical regulators of the intrinsic pathway of apoptosis that orchestrate mitochondrial outer membrane permeabilization (MOMP) through interactions with their proapoptotic counterparts. Overexpression of antiapoptotic Bcl-2 family proteins has been linked to therapy resistance and poor prognosis in diverse cancers. Among the antiapoptotic Bcl-2 family members, predominant overexpression of the prosurvival myeloid cell leukemia-1 (Mcl-1) has been reported in a myriad of hematological malignancies and solid tumors, contributing to therapy resistance and poor outcomes, thus making it a potential druggable target. The unique structure of Mcl-1 and its complex regulatory mechanism makes it an adaptive prosurvival switch that ensures tumor cell survival despite therapeutic intervention. This review focusses on diverse mechanisms adopted by tumor cells to maintain sustained elevated levels of Mcl-1 and how high Mcl-1 levels contribute to resistance in conventional as well as targeted therapies. Moreover, recent developments in the Mcl-1-targeted therapeutics and the underlying challenges and considerations in designing novel Mcl-1 inhibitors are also discussed.

10.
Front Pharmacol ; 12: 758130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531757

RESUMO

[This corrects the article DOI: 10.3389/fphar.2021.699629.].

11.
Front Pharmacol ; 12: 699629, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349655

RESUMO

Multiple myeloma (MM) is a plasma cells neoplasm. The overexpression of Bcl-2 family proteins, particularly myeloid cell leukemia 1 (Mcl-1), plays a critical role in the pathogenesis of MM. The overexpression of Mcl-1 is associated with drug resistance and overall poor prognosis of MM. Thus, inhibition of the Mcl-1 protein considered as a therapeutic strategy to kill the myeloma cells. Over the last decade, the development of selective Mcl-1 inhibitors has seen remarkable advancement. This review presents the critical role of Mcl-1 in the progression of MM, the most prominent BH3 mimetic and semi-BH3 mimetic that selectively inhibit Mcl-1, and could be used as single agent or combined with existing therapies.

12.
ACS Chem Neurosci ; 12(24): 4554-4563, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34806861

RESUMO

Aggregation of the ß-Amyloid (Aß) peptide in brain tissues is the hallmark of Alzheimer's disease (AD). While Aß is presumed to be insidiously involved in the disease's pathophysiology, concrete mechanisms accounting for the role of Aß in AD are yet to be deciphered. While Aß has been primarily identified in the extracellular space, the peptide also accumulates in cellular compartments such as mitochondria and lysosomes and impairs cellular functions. Here, we show that prominent proapoptotic peptides associated with the mitochondrial outer membrane, the Bcl-2-homology-only peptides BID, PUMA, and NOXA, exert significant and divergent effects upon aggregation, cytotoxicity, and membrane interactions of Aß42, the main Aß homolog. Interestingly, we show that BID and PUMA accelerated aggregation of Aß42, reduced Aß42-induced toxicity and mitochondrial disfunction, and inhibited Aß42-membrane interactions. In contrast, NOXA exhibited opposite effects, reducing Aß42 fibril formation, affecting more pronounced apoptotic effects and mitochondrial disfunction, and enhancing membrane interactions of Aß42. The effects of BID, PUMA, and NOXA upon the Aß42 structure and toxicity may be linked to its biological properties and affect pathophysiological features of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Peptídeos beta-Amiloides/toxicidade , Humanos , Mitocôndrias , Fragmentos de Peptídeos
13.
Biochem Biophys Rep ; 9: 159-165, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29114584

RESUMO

Hepatitis B virus X protein (HBx) is a multifunctional protein that interacts directly with many host proteins. For example, HBx interacts with anti-apoptotic proteins, Bcl-2 and Bcl-xL, through its BH3-like motif, which leads to elevated cytosolic calcium levels, efficient viral DNA replication and the induction of apoptosis. To facilitate sample preparation and perform detailed structural characterization of the complex between HBx and Bcl-xL, we designed and purified a recombinant HBx BH3-like motif-linker-Bcl-xL fusion protein produced in E. coli. The fusion protein was characterized by size exclusion chromatography, circular dichroism and nuclear magnetic resonance experiments. Our results show that the fusion protein is a monomer in aqueous solution, forms a stable intramolecular complex, and likely retains the native conformation of the complex between Bcl-xL and the HBx BH3-like motif. Furthermore, the HBx BH3-like motif of the intramolecular complex forms an α-helix. These observations indicate that the fusion protein should facilitate structural studies aimed at understanding the interaction between HBx and Bcl-xL at the atomic level.

14.
Acta Pharm Sin B ; 7(1): 18-26, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28119805

RESUMO

Apoptosis, especially the intrinsic mitochondrial cell death pathway, is regulated by the BCL-2 family of proteins. Defects in apoptotic machinery are one of the main mechanisms that cells employ to evade cell death and become cancerous. Targeting the apoptotic defects, either by direct inhibition of BCL-2 family proteins or through modulation of regulatory pathways, can restore cell sensitivity to cell death. This review will focus on the aspects of BCL-2 family proteins, their interactions with kinase pathways, and how novel targeted agents can help overcome the apoptotic blockades. Furthermore, functional assays, such as BH3 profiling, may help in predicting responses to chemotherapies and aid in the selection of combination therapies by determining the mitochondrial threshold for initiating cell death.

15.
Am J Cancer Res ; 6(5): 1053-65, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27293998

RESUMO

Polypeptide APP8 is a prostate-specific antigen (PSA)-activated prodrug that was designed to synergize the effects of the Bcl-2 homology domain 3 (BH3) peptide, K237 and the DG2 peptide. The aim of this study is to evaluate its biodistribution and anticancer effect in vitro and in vivo. In this study, APP8 and each component peptide were synthesized. The biodistribution was identified using con-focal microscopyin both PSA(+) cell line and PSA(-) cell line in vitro. Then cell cycle, MTT and in-cell western blot were accessed to analyze the effect mechanisms. Finally, xenografts were used to confirm the anticancer effect in vivo. Here, it was shown that APP8 was hydrolyzed and BH3 was released into the nucleus, while K237 and DG2 were located predominantly in the cytoplasm, only in LNCaP cells (PSA(+)), but not PC3 cells (PSA(-)). K237 and DG2 could induce cell apoptosis through decreasing the phosphorylation of ERK-2 and Flk-1. APP8 also caused the death of LNCaP cells, and was predominantly dependent on BH3 in vitro. In addition, It was noted that as the tumor grew in vivo, APP8 could inhibit the tumor volume to 77.3%, mainly depending on K237 and DG2 via inhibition of the growth of vascular endothelial cells. Our results suggested that APP8 could promote prostate cancer cell death and stop prostate cancer growth via synergizing apoptosis induction of tumor cell and inhibition of the growth of vascular endothelial cells. It provides a novel candidate prodrug for specific therapy of prostate cancer.

16.
Cancer Biol Ther ; 16(2): 276-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25756510

RESUMO

The pediatric solid tumor neuroblastoma (NB) often depends on the anti-apoptotic protein, Mcl(-)1, for survival through Mcl(-)1 sequestration of pro-apoptotic Bim. High affinity Mcl(-)1 inhibitors currently do not exist such that novel methods to inhibit Mcl(-)1 clinically are in high demand. Receptor tyrosine kinases (RTK) regulate Mcl(-)1 in many cancers and play a role in NB survival, yet how they regulate Bcl(-)2 family interactions in NB is unknown. We found that NB cell lines derived to resist the Bcl(-)2/-xl/-w antagonist, ABT-737, acquire a dependence on Mcl(-)1 and show increased expression and activation of the RTK, EGFR. Mcl(-)1 dependent NB cell lines derived at diagnosis and from the same tumor following relapse also have increased EGFR expression compared to those dependent on Bcl(-)2. Inhibition of EGFR by shRNA or erlotinib in Mcl(-)1 dependent NBs disrupts Bim binding to Mcl(-)1 and enhances its affinity for Bcl(-)2, restoring sensitivity to ABT-737 as well as cytotoxics in vitro. Mechanistically treatment of NBs with small molecule inhibitors of EGFR (erlotinib, cetuximab) and ERK (U0126) increases Noxa expression and dephosphorylates Bim to promote Bim binding to Bcl(-)2. Thus, EGFR regulates Mcl(-)1 dependence in high-risk NB via ERK-mediated phosphorylation of Bim such that EGFR/ERK inhibition renders Mcl(-)1 dependent tumors now reliant on Bcl(-)2. Clinically, EGFR inhibitors are ineffective as single agent compounds in patients with recurrent NB, likely due to this transferred survival dependence to Bcl(-)2. Likewise, EGFR or ERK inhibitors warrant further testing in combination with Bcl(-)2 antagonists in vivo as a novel future combination to overcome therapy resistance in the clinic.


Assuntos
Receptores ErbB/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neuroblastoma/metabolismo , Transdução de Sinais , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Humanos , Proteínas de Membrana/metabolismo , Recidiva Local de Neoplasia , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Nitrofenóis/farmacologia , Fosforilação , Piperazinas/farmacologia , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia
17.
Cell Cycle ; 14(11): 1631-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25927598

RESUMO

Apoptosis is a primary characteristic in the pathogenesis of liver disease. Hepatic apoptosis is regulated by autophagic activity. However, mechanisms mediating their interaction remain to be determined. Basal level of autophagy ensures the physiological turnover of old and damaged organelles. Autophagy also is an adaptive response under stressful conditions. Autophagy can control cell fate through different cross-talk signals. A complex interplay between hepatic autophagy and apoptosis determines the degree of hepatic apoptosis and the progression of liver disease as demonstrated by pre-clinical models and clinical trials. This review summarizes recent advances on roles of autophagy that plays in pathophysiology of liver. The autophagic pathway can be a novel therapeutic target for liver disease.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Hepatopatias/fisiopatologia , Modelos Biológicos , Receptor Cross-Talk/fisiologia , Transdução de Sinais/fisiologia , Progressão da Doença , Humanos
18.
Acta Pharm Sin B ; 5(5): 390-401, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26579470

RESUMO

Since the discovery that non-small cell lung cancer (NSCLC) is driven by epidermal growth factor receptor (EGFR) mutations, the EGFR tyrosine kinase inhibitors (EGFR-TKIs, e.g., gefitinib and elrotinib) have been effectively used for clinical treatment. However, patients eventually develop drug resistance. Resistance to EGFR-TKIs is inevitable due to various mechanisms, such as the secondary mutation (T790M), activation of alternative pathways (c-Met, HGF, AXL), aberrance of the downstream pathways (K-RAS mutations, loss of PTEN), impairment of the EGFR-TKIs-mediated apoptosis pathway (BCL2-like 11/BIM deletion polymorphism), histologic transformation, ATP binding cassette (ABC) transporter effusion, etc. Here we review and summarize the known resistant mechanisms to EGFR-TKIs and provide potential targets for development of new therapeutic strategies.

19.
Autophagy ; 10(12): 2269-78, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25629932

RESUMO

During macroautophagy, conjugation of ATG12 to ATG5 is essential for LC3 lipidation and autophagosome formation. Additionally, ATG12 has ATG5-independent functions in diverse processes including mitochondrial fusion and mitochondrial-dependent apoptosis. In this study, we investigated the regulation of free ATG12. In stark contrast to the stable ATG12-ATG5 conjugate, we find that free ATG12 is highly unstable and rapidly degraded in a proteasome-dependent manner. Surprisingly, ATG12, itself a ubiquitin-like protein, is directly ubiquitinated and this promotes its proteasomal degradation. As a functional consequence of its turnover, accumulation of free ATG12 contributes to proteasome inhibitor-mediated apoptosis, a finding that may be clinically important given the use of proteasome inhibitors as anticancer agents. Collectively, our results reveal a novel interconnection between autophagy, proteasome activity, and cell death mediated by the ubiquitin-like properties of ATG12.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Animais , Proteína 12 Relacionada à Autofagia , Morte Celular/fisiologia , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Enzimas de Conjugação de Ubiquitina/metabolismo
20.
Cancer Biol Ther ; 15(12): 1688-99, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25535900

RESUMO

Mcl-1, a pro-survival member of the Bcl-2 protein family, is an attractive target for cancer therapy. We have recently identified the natural product marinopyrrole A (maritoclax) as a novel small molecule Mcl-1 inhibitor. Here, we describe the structure-activity relationship study of pyoluteorin derivatives based on maritoclax. To date, we synthesized over 30 derivatives of maritoclax and evaluated their inhibitory actions and cytotoxicity toward Mcl-1-dependent cell lines. As a result, several functional groups were identified in the pyoluteorin motif that significantly potentiate biological activity. A number of such derivatives, KS04 and KS18, interacted with Mcl-1 in a conserved fashion according to NMR spectroscopy and molecular modeling. KS04 and KS18 induced apoptosis selectively in Mcl-1-dependent but not Bcl-2-dependent K562 cells through selective Mcl-1 down-regulation, and synergistically enhanced apoptosis in combination with ABT-737. Moreover, the intraperitoneal administration of KS18 (10 mg/kg/d) and ABT-737 (20 mg/kg/d) significantly suppressed the growth of ABT-737-resistant HL-60 xenografts in nude mice without apparent toxicity. Overall, we identified the pharmacophore of pyoluteorin derivatives that act as potent and promising Mcl-1 antagonists against Mcl-1-dependent hematological cancers.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Hematológicas/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fenóis/farmacologia , Pirróis/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Feminino , Neoplasias Hematológicas/patologia , Humanos , Modelos Moleculares , Conformação Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Fenóis/química , Fenóis/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise/efeitos dos fármacos , Pirróis/química , Pirróis/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA