Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 34(8): 123, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054735

RESUMO

Biotechnological application of xylanolytic enzymes is normally hindered by their temperature-dependent catalytic property. To satisfy the industrial demands, xylanases that can perform catalysis under cold condition are attracting attention. In this study, the biochemical properties of a predicted xylanase (laXynA) encoded in the genome of marine bacterium Luteimonas abyssi XH031T were characterized. Structure modeling and structure-based sequence alignment indicated that laXynA belongs to the glycoside hydrolase family 10, and it is 20-26% identical to other characterized cold-active xylanases in the same family. Recombinant laXynA was successfully produced in Escherichia coli system by autoinduction and purified by Ni-affinity chromatography. The isolated enzyme showed an optimum temperature of 30 °C toward beechwood xylan and retained important percentage of optimal activity at low temperatures (64, 55, and 29% at 10, 5, and 0 °C, respectively). A remarkable characteristic of laXynA was extreme halophilicity as demonstrated by fourfold enhancement on xylanase activity at 0.5 M NaCl and by maintaining nearly 100% activity at 4 M NaCl. Thin layer chromatography analysis demonstrated that laXynA is an endo xylanase. This study is the first to report the over-expression and characterization of a cold-active xylanase from Luteimonas species. The enzymatic property revealed the cold-active nature of laXynA. The enzyme is a promising candidate in saline food processing application.


Assuntos
Temperatura Baixa , Xanthomonadaceae/enzimologia , Xanthomonadaceae/genética , Xilosidases/química , Xilosidases/genética , Xilosidases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , DNA Bacteriano , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Ensaios Enzimáticos , Estabilidade Enzimática , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Concentração de Íons de Hidrogênio , Cinética , Metais , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Cloreto de Sódio , Xilosidases/classificação
2.
Carbohydr Polym ; 340: 122295, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858006

RESUMO

GH30 xylobiohydrolases, an expanding enzyme category, need deeper insights for optimal use. The primary aim of this study was to characterize a new xylobiohydrolase, AcGH30A of GH30 family from Acetivibrio clariflavus. The gene encoding AcGH30A was cloned using pET28a(+) vector and expressed in E. coli BL21(DE3) cells. AcGH30A was purified by immobilized metal-ion affinity chromatography. SDS-PAGE analysis of AcGH30A showed molecular mass of ~58 kDa. AcGH30A showed optimum temperature 80 °C and optimum pH 7.0. AcGH30A was stable (maintaining >80 % of control activity) in pH range, 4-7 and temperature range, 30 °C -70 °C when incubated for 90 min. AcGH30A displayed melting temperature, 72 °C and half-life, 21 days at 4 °C. The enzyme activity of AcGH30A was enhanced by 10 mM Ca2+ and Mg2+ ions by 25 % and 21 %, respectively, whereas 10 mM Co2+, Zn2+, Fe2+, and Cu2+ ions significantly reduced it. AcGH30A showed activity against various xylan polysaccharides displaying highest Vmax, 139 U.mg-1 and KM, 0.71 mg.ml-1 against 4-O-methyl glucuronoxylan under optimum conditions. TLC, HPLC and LC-MS analyses of AcGH30A hydrolyzed products from xylan substrates revealed the release of sole product, xylobiose, confirming it as an obligate xylobiohydrolase. AcGH30A being a highly thermostable enzyme can be potentially utlilized in various biotechnological applications.


Assuntos
Estabilidade Enzimática , Proteínas Recombinantes , Xilanos , Xilanos/química , Xilanos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Concentração de Íons de Hidrogênio , Temperatura , Especificidade por Substrato , Hidrólise , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Escherichia coli/genética
3.
Carbohydr Polym ; 342: 122387, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39048228

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes which are categorized in the CAZy database under auxiliary activities families AA9-11, 13, 14-17. Secreted by various microorganisms, they play a crucial role in carbon recycling, particularly in fungal saprotrophs. LPMOs oxidize polysaccharides through monooxygenase/peroxygenase activities and exhibit peroxidase and oxidase activities, with variations among different families. AA16, a newly identified LPMO family, is noteworthy due to limited studies on its members, thus rendering the characterization of AA16 enzymes vital for addressing controversies around their functions. This study focused on heterologous expression and biochemical study of an AA16 LPMO from Thermothelomyces thermophilus (formerly known as Myceliophthora thermophila), namely MtLPMO16A. Substrate specificity evaluation of MtLPMO16A showed oxidative cleavage of hemicellulosic substrates and no activity on cellulose, accompanied by a strong oxidase activity. A comparative analysis with an LPMO from AA9 family explored correlations between these families, while MtLPMO16A was shown to boost the activity of some AA9 family LPMOs. The results offer new insights into the AA16 family's action mode and microbial hemicellulose decomposition mechanisms in nature.


Assuntos
Oxigenases de Função Mista , Polissacarídeos , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Polissacarídeos/química , Polissacarídeos/metabolismo , Especificidade por Substrato , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Sordariales/enzimologia
4.
J Chromatogr A ; 1666: 462836, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35108629

RESUMO

High-performance anion-exchange chromatography (HPAEC) coupled with triple quadrupole mass spectrometry (HPAEC-QqQ-MS) was applied to the determination of xylooligosaccharides (XOS) derived from enzymatically hydrolysed commercial xylan from beechwood and the analytical performance and advantages of the method explored. Separation, eluent suppression, electrospray ionisation, and detection options to enhance XOS sensitivity and selectivity were evaluated, delivering a new simple, fast, selective, and sensitive solution for the characterisation of these complex compounds. The method was fully validated in terms of its analytical performance for those XOS for which standards were available, i.e., degree of polymerisation from 1 to 6. The new method was applied to the analysis of xylan hydrolysates obtained by different enzymatic hydrolysis treatments using endo-xylanase from Thermomyces lanuginosus, characterising 25 different XOS and demonstrating the method's utility for future tailoring of enzymatic hydrolysis conditions to obtain desired XOS profiles in such hydrolysates. Linear XOS and 4-O-methyl glucuronic acid (MeGluA) branched XOS were detected by direct injection of the xylan hydrolysates after a simple 10-fold sample dilution and filtration. Identification of XOS detected by HPAEC-QqQ-MS was additionally confirmed using high-resolution orbitrap mass spectrometry (HR-orbitrap-MS). Further, an ultra-sensitive and -selective method was developed by using selected reaction monitoring acquisition mode (SRM), increasing signal-to noise ratio and decreasing the limits of detection, opening future applications to low concentrated sample analysis.


Assuntos
Espectrometria de Massas em Tandem , Xilanos , Ânions , Cromatografia , Glucuronatos/química , Hidrólise , Oligossacarídeos/química , Xilanos/química
5.
AMB Express ; 12(1): 135, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289146

RESUMO

Acetylxylan esterase plays a crucial role in xylan hydrolysis as the acetyl side-groups restrict endoxylanase action by stearic hindrance. In this study, an acetylxylan esterase (AXE-HAS10: 960 bp & 319 a.a) putative ORF from Halalkalibacterium halodurans NAH-Egypt was extensively studied through heterologous overexpression in Escherichia coli, biochemical characterization, and structural modeling. The AXE-HAS10 tertiary structure was predicted by the Local Meta Threading Server. AXE-HAS10 belongs to the carbohydrate esterase Family 7. Purified to homogeneity AXE-HAS10 showed specific activity (36.99 U/mg), fold purification (11.42), and molecular mass (41.39 kDa). AXE-HAS10 showed optimal pH (8.5) and temperature (40 oC). After 15 h of incubation at pH 7.0-9.0, AXE-HAS10 maintained 100% activity. After 120 min at 35 and 40 oC, the retained activity was 80 and 50%, respectively. At 10 mM Mn2+, Fe3+, K+, and Ca2+ after 30 min, retained activity was 329 ± 15, 212 ± 5.2, 123 ± 1.4, and 120 ± 3.0%, respectively. After 30 min of preincubation with triton x-100, SDS, and CTAB at 0.1% (v/v), the retained activity was 150 ± 19, 88 ± 4, and 82 ± 7%, respectively. At 6.0 M NaCl after 30 min, retained activity was 58%. A 1.44-fold enhancement of beechwood xylan hydrolysis was achieved by AXE-HAS10 and Penicillium chrysogenum DSM105774 ß-xylanase concurrently. Present data underpins AXE-HAS10 as a promising AXE for industrial exploitation.

6.
J Agric Food Chem ; 63(28): 6430-9, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26132889

RESUMO

A xylanase gene was cloned and characterized from Thermoanerobacterium aotearoense SCUT27, which was attested to consist of a signal peptide, one glycoside hydrolase family 10 domain, four carbohydrate binding modules, and three surface layer homology domains. The change of expression host from Escherichia coli to Bacillus subtilis resulted in a 4.1-fold increase of specific activity for the truncated XynAΔSLH. Five different versions of secretion signals in B. subtilis indicated that it was preferably routed via a Sec-dependent pathway. Purified XynAΔSLH showed a high activity of 379.8 U/mg on beechwood xylan. XynAΔSLH was optimally active at 80 °C, pH 6.5. Thin layer chromatography results showed that xylobiose and the presumed methylglucuronoxylotriose (MeGlcAXyl3) were the main products liberated from beechwood xylan catalyzed by the recombinant xylanase. All of the results suggest that XynAΔSLH is a suitable candidate for generating xylooligosaccharides from cellulosic materials for industrial uses.


Assuntos
Bacillus subtilis/genética , Endo-1,4-beta-Xilanases/genética , Expressão Gênica , Thermoanaerobacterium/enzimologia , Sequência de Bases , Sítios de Ligação , Carboidratos , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Glucuronatos/metabolismo , Temperatura Alta , Oligossacarídeos/metabolismo , Proteínas Recombinantes , Especificidade por Substrato , Xilanos/metabolismo
7.
Appl Biochem Biotechnol ; 177(5): 1152-63, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26289020

RESUMO

The most commonly used method for the measurement of the level of endo-xylanase in commercial enzyme preparations is the 3,5-dinitrosalicylic acid (DNS) reducing sugar method with birchwood xylan as substrate. It is well known that with the DNS method, much higher enzyme activity values are obtained than with the Nelson-Somogyi (NS) reducing sugar method. In this paper, we have compared the DNS and NS reducing sugar assays using a range of xylan-type substrates and accurately compared the molar response factors for xylose and a range of xylo-oligosaccharides. Purified beechwood xylan or wheat arabinoxylan is shown to be a suitable replacement for birchwood xylan which is no longer commercially available, and it is clearly demonstrated that the DNS method grossly overestimates endo-xylanase activity. Unlike the DNS assay, the NS assay gave the equivalent colour response with equimolar amounts of xylose, xylobiose, xylotriose and xylotetraose demonstrating that it accurately measures the quantity of glycosidic bonds cleaved by the endo-xylanase. The authors strongly recommend cessation of the use of the DNS assay for measurement of endo-xylanase due to the fact that the values obtained are grossly overestimated due to secondary reactions in colour development.


Assuntos
Proteínas de Bactérias/química , Endo-1,4-beta-Xilanases/química , Proteínas Fúngicas/química , Polissacarídeos/química , Betula/química , Especificidade por Substrato , Madeira/química , Xilanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA