RESUMO
A library of forty 7,8-benzoflavone derivatives was synthesized and evaluated for their inhibitory potential against cholesterol esterase (CEase). Among all the synthesized compounds seven benzoflavone derivatives (A-7, A-8, A-10, A-11, A-12, A-13, A-15) exhibited significant inhibition against CEase in in vitro enzymatic assay. Compound A-12 showed the most promising activity with IC50 value of 0.78nM against cholesterol esterase. Enzyme kinetic studies carried out for A-12, revealed its mixed-type inhibition approach. Molecular protein-ligand docking studies were also performed to figure out the key binding interactions of A-12 with the amino acid residues of the enzyme's active site. The A-12 fits well at the catalytic site and is stabilized by hydrophobic interactions. It completely blocks the catalytic assembly of CEase and prevents it to participate in ester hydrolysis mechanism. The favorable binding conformation of A-12 suggests its prevailing role as CEase inhibitor.
Assuntos
Benzoflavonas/química , Inibidores Enzimáticos/química , Esterol Esterase/antagonistas & inibidores , Benzoflavonas/síntese química , Benzoflavonas/metabolismo , Sítios de Ligação , Domínio Catalítico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica , Esterol Esterase/metabolismo , Relação Estrutura-AtividadeRESUMO
The MNa (in vitro the micronucleus assay) is recommended for studying genotoxicity of chemicals. However, no protocol is currently available for experiments with mouse fibroblast L929 cells. The aim of this study was to improve the scope of CBMNb (cytokinesis-block micronucleus) test. Optimization consisted of: selection of a non-cytotoxic concentration of cytokinesis blocker - cytoBc (cytochalasin B) and type and definition of the positive controls, verification of the efficacy of phenobarbital/5,6-benzoflavone as an S9 enzyme inducer as well as the identification of an optimal staining method. The compounds were tested in three exposure regimens: 6 h exposure with S9 activation followed by a 24 h recovery period, 6 h exposure followed by a 24 h recovery without metabolic activation of S9 and 30 h continuous exposure without S9. Different parameters, such as internal and interlaboratory reproducibility were investigated and criteria for test correctness were proposed. Higher MN rates were achieved using 1 µg/mL cytoBc as a cytokinesis blocker, and MMSd (methyl methanesulfonate), (250 µM), Cole (colchicine), (0.5 µM) and CPf (cyclophosphamide), (30 µM) as positive controls. In regard to the recommended S9 inducer, phenobarbital/5,6-benzoflavone was more effective as Aroclor 1254. Giemsa and acridine orange stains were optimal for the evaluation of MN formation. The protocol described in this study with L929 cells produced the reliable results and is suitable for performing the CBMNb experiments according to the current OECD Guideline #487.