Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Bioorg Chem ; 148: 107426, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733750

RESUMO

Taking advantage of key interactions between sulfoxide and heme cofactor, we used the sulfoxide as the anchor functional group to develop two series of indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors: 2-benzylsulfinylbenzoxazoles (series 1) and 2-phenylsulfinylbenzoxazoles (series 2). In vitro enzymatic screening shows that both series can inhibit the activity of IDO1 in low micromolar (series 1) or nanomolar (series 2) levels. They also show inhibitory selectivity between IDO1 and tryptophan 2, 3-dioxygenase 2. Interestingly, although series 1 is less potent IDO1 inhibitors of these two series, it exhibited stronger inhibitory activity toward kynurenine production in interferon-γ stimulated BxPC-3 cells. Enzyme kinetics and binding studies demonstrated that 2-sulfinylbenzoxazoles are non-competitive inhibitors of tryptophan, and they interact with the ferrous form of heme. These results demonstrated 2-sulfinylbenzoxazoles as type II IDO1 inhibitors. Furthermore, molecular docking studies supports the sulfoxide being of the key functional group that interacts with the heme cofactor. Compound 22 (series 1) can inhibit NO production in a concentration dependent manner in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and can relieve pulmonary edema and lung injury in LPS induced mouse acute lung injury models.


Assuntos
Inibidores Enzimáticos , Heme , Indolamina-Pirrol 2,3,-Dioxigenase , Animais , Humanos , Camundongos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Heme/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Benzoxazóis/síntese química , Benzoxazóis/química , Benzoxazóis/farmacologia
2.
Mol Divers ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38229000

RESUMO

A series of flavonol derivatives containing benzoxazole were designed and synthesized, and the structures of all the target compounds were determined by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). The structure of X2 was further confirmed by single crystal X-ray diffraction analysis. The results of the bioactivity tests showed that some of the target compounds possessed excellent antiviral activity against tobacco mosaic virus (TMV) in vivo. In particular, the median effective concentration (EC50) values for the curative and protective activities of X17 against TMV were 127.6 and 101.2 µg/mL, respectively, which were superior to those of ningnanmycin (320.0 and 234.6 µg/mL). The results of preliminary mechanism study indicated that X17 had a strong binding affinity for TMV coat protein (TMV-CP), which might hinder the self-assembly and replication of TMV particles. In addition, X17 was able to effectively inhibit tobacco leaf membrane lipid peroxidation and facilitate the removal of O2- from the body, thereby improving the disease resistance of tobacco plants. Therefore, the design and synthesis of flavonol derivatives containing benzoxazole provides value for the development of new antiviral drugs.

3.
Mol Divers ; 28(1): 61-71, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36609739

RESUMO

An efficient visible light mediated, eosin Y catalyzed direct C-H oxidative amination of benzoxazoles with secondary amines has been developed, which providing a straightforward, green, and environmentally benign access to a wide variety of substituted benzoxazole-2-amines under mild reaction conditions. The biological studies such as drug-likeness and molecular docking are also carried out on the molecule.


Assuntos
Aminas , Benzoxazóis , Aminação , Simulação de Acoplamento Molecular , Catálise , Estrutura Molecular , Metais , Luz
4.
Mol Divers ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554169

RESUMO

An important research topic is the discovery of multifunctional compounds targeting different disease-causing components. This research aimed to design and synthesize a series of 2-aryl-6-carboxamide benzoxazole derivatives that inhibit cholinesterases on both the peripheral anionic and catalytic anionic sides. Compounds (7-48) were prepared from 4-amino-3-hydroxybenzoic acid in three steps. The Ellman test, molecular docking with Maestro, and molecular dynamics simulation studies with Desmond were done (Schrodinger, 12.8.117). Compound 36, the most potent compound among the 42 new compounds synthesized, had an inhibitory concentration of IC50 12.62 nM for AChE and IC50 25.45 nM for BChE (whereas donepezil was 69.3 nM and 63.0 nM, respectively). Additionally, compound 36 had docking values ​​of - 7.29 kcal/mol for AChE and - 6.71 kcal/mol for BChE (whereas donepezil was - 6.49 kcal/mol and - 5.057 kcal/mol, respectively). Furthermore, molecular dynamics simulations revealed that compound 36 is stable in the active gorges of both AChE (average RMSD: 1.98 Å) and BChE (average RMSD: 2.2 Å) (donepezil had average RMSD: 1.65 Å and 2.7 Å, respectively). The results show that compound 36 is a potent, selective, mixed-type dual inhibitor of both acetylcholinesterase and butyrylcholinesterase. It does this by binding to both the catalytically active and peripheral anionic sites of cholinesterases at the same time. These findings show that target compounds may be useful for establishing the structural basis for new anti-Alzheimer agents.

5.
Chem Biodivers ; 21(6): e202400123, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494443

RESUMO

Benzimidazole and benzoxazole derivatives are included in the category of medical drugs in a wide range of areas such as anticancer, anticoagulant, antihypertensive, anti- inflammatory, antimicrobial, antiparasitic, antiviral, antioxidant, immunomodulators, proton pump inhibitors, hormone modulators, etc. Many researchers have focused on synthesizing more effective benzimidazole and benzoxazole derivatives for screening various biological activities. In addition, there are benzimidazole and benzoxazole rings as bioisosteres of aromatic rings found in drugs used in the treatment of Alzheimer's disease. Because of the diverse activity of the benzimidazole and benzoxazole rings and bioisosteres marketed as drugs for Alzheimer Diseases, designed compounds containing these rings are likely to be effective against Alzheimer's disease. In this study, the effectiveness of compounds containing benzimidazole and benzoxazole rings against Alzheimer's disease will be examined.


Assuntos
Doença de Alzheimer , Benzimidazóis , Benzoxazóis , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Benzoxazóis/química , Benzoxazóis/farmacologia , Benzoxazóis/síntese química , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/síntese química , Humanos , Estrutura Molecular , Animais , Relação Estrutura-Atividade
6.
Arch Pharm (Weinheim) ; : e2400086, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807029

RESUMO

A series of benzoxazole-based amides and sulfonamides were synthesized and evaluated for their human peroxisome proliferator-activated receptor (PPAR)α and PPARγ activity. All tested compounds showed a dual antagonist profile on both PPAR subtypes; based on transactivation results, seven compounds were selected to test their in vitro antiproliferative activity in a panel of eight cancer cell lines with different expression rates of PPARα and PPARγ. 3f was identified as the most cytotoxic compound, with higher potency in the colorectal cancer cell lines HT-29 and HCT116. Compound 3f induced a concentration-dependent activation of caspases and cell-cycle arrest in both colorectal cancer models. Docking experiments were also performed to shed light on the putative binding mode of this novel class of dual PPARα/γ antagonists.

7.
Angew Chem Int Ed Engl ; 63(11): e202319909, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38243685

RESUMO

Benzoxazole-linked covalent organic frameworks (BO-COFs), despite their exceptional chemical stability, are still in their infancy. This is primarily because the current prevalent methods require the use of special ortho-hydroxyl-substituted aromatic amines as monomers. Herein, we report an innovative strategy to access BO-COFs directly from imine-linked COFs (Im-COFs) without pre-embedded OH groups, using a two-step sequential oxidation/cyclization process. The two-step process included the oxidation of Im-COFs into amide-linked COFs, followed by a copper-catalyzed oxidative cyclization. Five representative BO-COFs were synthesized with retained crystallinity and high oxidization efficiency, offering the potential to convert a significant portion of Im-COFs into BO-COFs. The structural advantages of the newly designed BO-COFs were demonstrated through their application to photocatalytic organic transformations.

8.
Chembiochem ; 24(5): e202200635, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484355

RESUMO

Benzoxazoles are important structural motifs in pharmaceutical drugs. Here, we present the heterologous production of 3-hydroxyanthranilate-derived benzoxazoles in the host bacterium Myxococcus xanthus following the expression of two genes from the nataxazole biosynthetic gene cluster of Streptomyces sp. Tü 6176. The M. xanthus expression strain achieved a benzoxazole titer of 114.6±7.4 mg L-1 upon precursor supplementation, which is superior to other bacterial production systems. Crosstalk between the heterologously expressed benzoxazole pathway and the endogenous myxochelin pathway led to the combinatorial biosynthesis of benzoxazoles featuring a 2,3-dihydroxybenzoic acid (2,3-DHBA) building block. Subsequent in vitro studies confirmed that this crosstalk is not only due to the availability of 2,3-DHBA in M. xanthus, rather, it is promoted by the adenylating enzyme MxcE from the myxochelin pathway, which contributes to the activation of aryl carboxylic acids and delivers them to benzoxazole biosynthesis.


Assuntos
Myxococcus xanthus , Streptomyces , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Streptomyces/metabolismo , Benzoxazóis/química , Benzoxazóis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
9.
J Fluoresc ; 33(1): 161-175, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36323830

RESUMO

The spectral properties of MBTC (4-((4-((Benzo[d]oxazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)methyl)-7-methoxy-2H-chromen-2-one), CBTC (4-((4(((5Chlorobenzo[d]oxazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)methyl)-2H-benzo[h]chromen-2-one) and TBTC (4-((4-((Benzo[d]oxazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)methyl)6(tertbutyl)2Hchromen-2-one) were studied in series of solvents with different polarity at room temperature to explore their solvatochromic effect and dipole moment. Stokes shift revealed a bathochromic shift with varying solvent polarity for all molecules which implies π-π*transition. The ground state and excited state dipole moment of the molecules are calculated experimentally using salvatochromic methods like Lippert-Mataga, Bakhshiev, Kawaski-chamma-viallet, and Reichardt's microscopic solvent polarity functions and computationally by density functional theory (DFT) method. It is observed that the excited state dipole moment is higher than the ground state so synthesized molecules are more polar in the excited state than in the ground state. Using the DFT method HOMO and LUMO energy values were obtained and compared with values obtained by the cyclic voltammetry. Using the values of HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) we have estimated energy gap, chemical hardness (ɳ), chemical softness (s), ionization potential (IP), electron affinity (EA), electronegativity (χ), electrophilicity (ω), and chemical potential (µ) of the molecules were estimated. The energy gap of MBTC, CBTC, and TBTC were found to be low, that is 3.861 eV, 3.822 eV, and 3.801 eV respectively, this indicates molecules are more reactive and it has the easiest π-π* transition. Further electrophilic and nucleophilic sites were figured out using molecular electrostatic potential (MESP) which is useful in photochemical reactions. Hence the quantum chemical calculation and spectroscopic properties of the molecules can give a better understanding of their use in an optoelectronic device.

10.
Bioorg Chem ; 131: 106287, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36455482

RESUMO

We discovered a lead compound, N-methylbenzo[d]oxazol-2-amine (2a), which had comparable potency to albendazole, an orally administered anthelminticdrug, against Gnathostoma spinigerum, Caenorhabditis elegans and Trichinella spiralis. Compound 2a showed about 10 times lower cytotoxicity towards normal human cell line (HEK293) than albendazole. Moreover, we have developed new processes for the synthesis of N-alkylbenzo[d]oxazol-2-amine and N-alkylbenzo[d]thiazol-2-amine derivatives via metal-free conditions. This protocol could serve as a robust and scalable method, especially, to synthesize N-methylbenzo[d]oxazol-2-amine and N-methylbenzo[d]thiazol-2-amine derivatives which were difficult to prepare using other metal-free conditions. The method employed benzoxazole-2-thiol or benzothiazole-2-thiol as the substrate. The reaction was triggered by methylation of the thiol functional group to form the methyl sulfide intermediate, a crucial tactic, which facilitated in a smooth nucleophilic addition-elimination reaction with gaseous methylamine generated in situ from N-methylformamide. In addition, the proteomic analysis of compound 2a was also studied in this work.


Assuntos
Aminas , Anti-Helmínticos , Humanos , Aminas/química , Albendazol , Células HEK293 , Proteômica , Anti-Helmínticos/farmacologia
11.
Bioorg Chem ; 141: 106883, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774433

RESUMO

Cancer is a leading cause of death globally and has been associated with Mycobacterium tuberculosis (Mtb). The angiogenesis-related VEGFR-2 is a common target between cancer and Mtb. Here, we aimed to synthesize and validate potent dual human VEGFR-2 inhibitors as anticancer and anti-mycobacterial agents. Two series of 1,2,4-triazole-based compounds (6a-l and 11a-e) were designed and synthesized through a molecular hybridization approach. Activities of all synthesized compounds were evaluated against human VEGFR-2 in addition to drug-sensitive, multidrug-resistant and extensive-drug resistant Mtb. Compounds 6a, 6c, 6e, 6f, 6h, 6l, 11a, 11d and 11e showed promising inhibitory effect on VEGFR-2 (IC50 = 0.15 - 0.39 µM), anti-proliferative activities against cancerous cells and low cytotoxicity against normal cells. The most potent compounds (6e and 11a) increased apoptosis percentage. Additionally, compounds 6h, 6i, 6l and 11c showed the highest activities against all Mtb strains, and thus were evaluated against enoyl-acyl carrier protein reductase (InhA) which is essential for Mtb cell wall synthesis. Interestingly, the compounds showed excellent InhA inhibition activities with IC50 range of 1.3 - 4.7 µM. Docking study revealed high binding affinities toward targeted enzymes; human VEGFR-2 and Mtb InhA. In conclusion, 1,2,4-triazole analogues are suggested as potent anticancer and antimycobacterial agents via inhibition of human VEGFR-2 and Mtb InhA.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antituberculosos/farmacologia , Proliferação de Células , Desenho de Fármacos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Oxirredutases/antagonistas & inibidores
12.
Bioorg Chem ; 134: 106437, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842320

RESUMO

Novel series of benzoxazole-appended piperidine derivatives were planned, synthesized and screened against two breast cancer cell lines. Considerable antiproliferative activity was observed for screened compounds (IC50 = 33.32 ± 0.2 µM to 7.31 ± 0.43 µM and 1.66 ± 0.08 µM to 12.10 ± 0.57 µM) against MCF-7 and MDA-MB-231 cell lines respectively being more potent than doxorubicin (IC50 = 8.20 ± 0.39 µM and 13.34 ± 0.63 µM respectively). Active compounds were submitted for enzyme inhibition assays when 4d and 7h demonstrated potent EGFR inhibition (0.08 ± 0.002 µM and 0.09 ± 0.002 µM respectively) compared to erlotinib (0.11 ± 0.003 µM). However, no one compound displayed effective ARO inhibition activity as tested compounds were less active than letrozole. Apoptosis inducing ability results implied that apoptosis was provoked by significant stimulation of caspase-9 protein levels (4.25-7.04-fold) upon treatment of MCF-7 cells with 4a, 7h, 9, 12e and 12f. Alternatively, MDA-MB-231 cells treated with 4d, 7a, 12b and 12c considerably increased caspase-9 levels (2.32-4.06-fold). Cell cycle arrest and annexin-V/Propidium iodide assays further confirmed apoptosis when tested compounds arrested cell cycle at various phases and demonstrated high annexin V binding affinity. Docking outcomes proved valuable binding affinities for compounds 4d and 7h to EGFR enzyme while compounds 4a and 12e, upon docking into the active site of ARO, failed to interact with heme, suggesting their inabilities to act as AIs. Therefore, these benzoxazoles can act as promising candidates exhibiting EGFR inhibition and apoptosis-promoting properties.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Relação Estrutura-Atividade , Estrutura Molecular , Caspase 9 , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/química , Benzoxazóis/farmacologia , Benzoxazóis/química , Receptores ErbB , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Apoptose
13.
J Enzyme Inhib Med Chem ; 38(1): 2251712, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37664987

RESUMO

A series of pleuromutilin analogs containing substituted benzoxazole were designed, synthesised, and assessed for their antibacterial activity both in vivo and in vitro. The MIC of the synthesised derivatives was initially assessed using the broth dilution method against four strains of Staphylococcus aureus (MRSA ATCC 43300, S. aureus ATCC 29213, clinical isolation of S. aureus AD3 and S. aureus 144). Most of the synthesised derivatives displayed prominent in vitro activity (MIC ≤ 0.5 µg/mL). Compounds 50 and 57 exhibited the most effective antibacterial effect against MRSA (MIC = 0.125 µg/mL). Furthermore, the time-kill curves showed that compounds 50 and 57 had a certain inhibitory effect against MRSA in vitro. The in vivo antibacterial activity of compound 50 was evaluated further using a murine thigh model infected with MRSA (-1.24 log10CFU/mL). Compound 50 exhibited superior antibacterial efficacy to tiamulin. It was also found that compound 50 did not display significant inhibitory effect on the proliferation of RAW 264.7 cells. Molecular docking study revealed that compound 50 can effectively bind to the active site of the 50S ribosome (the binding free energy -7.50 kcal/mol).


Assuntos
Antibacterianos , Staphylococcus aureus , Animais , Camundongos , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Benzoxazóis/farmacologia , Pleuromutilinas
14.
Chem Biodivers ; 20(12): e202301491, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37916892

RESUMO

To discover more effective antifungal candidates, 33 benzoxazole derivatives, were designed, synthesized, and evaluated for their antifungal activity against seven phytopathogenic fungi by the mycelium growth rate method. Among 33 benzoxazole derivatives had thirteen derivatives no reported, and new derivatives C17 exhibited good inhibitory activity against Phomopsis sp. with EC50 values of 3.26 µM. Structure-activity relationship (SAR) of these derivatives analysis indicated that the substituent played a key role in antifungal activity in ortho-, meta- and para- substituted acetophenones. The preliminary mechanistic exploration demonstrated that C17 might exert its antifungal activity by targeting the mycelia cell membrane, which was verified by the observed changes in mycelial morphology, the formation of extracellular polysaccharides, cellular contents, cell membrane permeability and integrity, among other effects. Furthermore, C17 had potent curative effect against Phomopsis sp. in vivo, which indicated that C17 may be as a novelty potent antifungal agent.


Assuntos
Antifúngicos , Fungos , Antifúngicos/farmacologia , Relação Estrutura-Atividade , Benzoxazóis/farmacologia
15.
Chem Biodivers ; 20(6): e202201145, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37080925

RESUMO

Myeloid differentiation protein 2 (MD2), a key TLR4 adaptor protein for sensing LPS, plays an important role in inflammatory process and has been identified as a promising target for the treatment of a variety of inflammatory diseases. In our study, a series of benzoxazolone derivatives were synthesized, characterized and tested for anti-inflammatory activity in vitro. The compounds 3c, 3d and 3g demonstrated the greatest anti-inflammatory activity against IL-6 with IC50 values of 10.14±0.08, 5.43±0.51 and 5.09±0.88 µM, respectively. Furthermore, the bis-ANS displacement assay revealed that these compounds competitively inhibited the binding between the probe bis-ANS and the MD2 protein. The most active compound 3g, revealed a directly bind with MD2 protein via Arg90 binding and a dissociation constant value of 1.52×10-6  mol L-1 as determined by the biological layer interference (BLI) assay. Our finding suggested that compounds 3g could be a promising lead compound as MD2 inhibitor for further anti-inflammatory agent development.


Assuntos
Anti-Inflamatórios , Benzoxazóis , Anti-Inflamatórios/química , Naftalenossulfonato de Anilina , Benzoxazóis/farmacologia , Benzoxazóis/química , Lipopolissacarídeos/farmacologia
16.
Arch Pharm (Weinheim) ; 356(9): e2300097, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37379240

RESUMO

Eleven novel benzoxazole/benzothiazole-based thalidomide analogs were designed and synthesized to obtain new effective antitumor immunomodulatory agents. The synthesized compounds were evaluated for their cytotoxic activities against HepG-2, HCT-116, PC3, and MCF-7 cells. Generally, the open analogs with semicarbazide and thiosemicarbazide moieties (10, 13a-c, 14, and 17a,b) exhibited higher cytotoxic activities than derivatives with closed glutarimide moiety (8a-d). In particular, compound 13a (IC50 = 6.14, 5.79, 10.26, and 4.71 µM against HepG-2, HCT-116, PC3, and MCF-7, respectively) and 14 (IC50 = 7.93, 8.23, 12.37, and 5.43 µM, respectively) exhibited the highest anticancer activities against the four tested cell lines. The most active compounds 13a and 14 were further evaluated for their in vitro immunomodulatory activities on tumor necrosis factor-alpha (TNF-α), caspase-8 (CASP8), vascular endothelial growth factor (VEGF), and nuclear factor kappa-B p65 (NF-κB p65) in HCT-116 cells. Compounds 13a and 14 showed a remarkable and significant reduction in TNF-α. Furthermore, they showed significant elevation in CASP8 levels. Also, they significantly inhibited VEGF. In addition, compound 13a showed significant decreases in the level of NF-κB p65 while compound 14 demonstrated an insignificant decrease with respect to thalidomide. Moreover, our derivatives exhibited good in silico absorption, distribution, metabolism, elimination, toxicity (ADMET) profiles.


Assuntos
Antineoplásicos , Agentes de Imunomodulação , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/farmacologia , Talidomida/farmacologia , Benzoxazóis/farmacologia , NF-kappa B , Fator de Necrose Tumoral alfa , Proliferação de Células , Células MCF-7 , Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Desenho de Fármacos
17.
Arch Pharm (Weinheim) ; 356(8): e2300187, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37279375

RESUMO

The development of novel antimycobacterial agents is an urgent challenge to eradicate the increasing emergence and rapid spread of multidrug-resistant strains. Filamentous temperature-sensitive protein Z (FtsZ) is a crucial cell division protein. Alteration of FtsZ assembly leads to cell division inhibition and cell death. To find novel antimycobacterial agents, a series of N1 -(benzo[d]oxazol-2-yl)-N4 -arylidine compounds 5a-o were synthesized. The activity of the compounds was evaluated against drug-sensitive, multidrug-resistant, and extensive-drug-resistant Mycobacterium tuberculosis. Compounds 5b, 5c, 5l, 5m, and 5o showed promising antimycobacterial activity with minimum inhibitory concentrations (MIC) in the range of 0.48-1.85 µg/mL and with low cytotoxicity against human nontumorigenic lung fibroblast WI-38 cells. The activity of the compounds 5b, 5c, 5l, 5m, and 5o was evaluated against bronchitis causing-bacteria. They exhibited good activity against Streptococcus pneumoniae, Klebsiella pneumoniae, Mycoplasma pneumonia, and Bordetella pertussis. Molecular dynamics simulations of Mtb FtsZ protein-ligand complexes identified the interdomain site as the binding site and key interactions. ADME prediction indicated that the synthesized compounds have drug-likeness. The density function theory studies of 5c, 5l, and 5n were performed to investigate E/Z isomerization. Compounds 5c and 5l are present as E-isomers and 5n as an E/Z mixture. Our experimental outcomes provide an auspicious lead for the design of more selective and potent antimycobacterial drugs.


Assuntos
Mycobacterium tuberculosis , Humanos , Antituberculosos/farmacologia , Antituberculosos/química , Relação Estrutura-Atividade , Linhagem Celular , Testes de Sensibilidade Microbiana
18.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445983

RESUMO

Benzoxazole and benzothiazole have a broad spectrum of agricultural biological activities, such as antibacterial, antiviral, and herbicidal activities, which are important fused heterocyclic scaffold structures in agrochemical discovery. In recent years, great progress has been made in the research of benzoxazoles and benzothiazoles, especially in the development of herbicides and insecticides. With the widespread use of benzoxazoles and benzothiazoles, there may be more new products containing benzoxazoles and benzothiazoles in the future. We systematically reviewed the application of benzoxazoles and benzothiazoles in discovering new agrochemicals in the past two decades and summarized the antibacterial, fungicidal, antiviral, herbicidal, and insecticidal activities of the active compounds. We also discussed the structural-activity relationship and mechanism of the active compounds. This work aims to provide inspiration and ideas for the discovery of new agrochemicals based on benzoxazole and benzothiazole.


Assuntos
Agroquímicos , Benzoxazóis , Benzoxazóis/farmacologia , Benzoxazóis/química , Benzotiazóis/química , Antibacterianos , Relação Estrutura-Atividade
19.
Molecules ; 28(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677886

RESUMO

Benzoxazole alkaloids exhibit a diverse array of structures and interesting biological activities. Herein we report the identification of a benzoxazole alkaloid-encoding biosynthetic gene cluster (mich BGC) in the marine-derived actinomycete Micromonospora sp. SCSIO 07395 and the heterologous expression of this BGC in Streptomyces albus. This approach led to the discovery of five new benzoxazole alkaloids microechmycin A-E (1-5), and a previously synthesized compound 6. Their structures were elucidated by HRESIMS and 1D and 2D NMR data. Microechmycin A (1) showed moderate antibacterial activity against Micrococcus luteus SCSIO ML01 with the minimal inhibitory concentration (MIC) value of 8 µg mL-1.


Assuntos
Alcaloides , Micromonospora , Micromonospora/genética , Micromonospora/química , Antibacterianos/farmacologia , Antibacterianos/química , Alcaloides/farmacologia , Alcaloides/química , Espectroscopia de Ressonância Magnética , Genômica , Estrutura Molecular
20.
Molecules ; 28(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37110560

RESUMO

Unnatural amino acids with enhanced properties, such as increased complexing ability and luminescence, are considered to be highly attractive building blocks for bioinspired frameworks, such as probes for biomolecule dynamics, sensitive fluorescent chemosensors, and peptides for molecular imaging, among others. Therefore, a novel series of highly emissive heterocyclic alanines bearing a benzo[d]oxazolyl unit functionalized with different heterocyclic π-spacers and (aza)crown ether moieties was synthesized. The new compounds were completely characterized using the usual spectroscopic techniques and evaluated as fluorimetric chemosensors in acetonitrile and aqueous mixtures in the presence of various alkaline, alkaline-earth, and transition metal ions. The different crown ether binding moieties as well as the electronic nature of the π-bridge allowed for fine tuning of the sensory properties of these unnatural amino acids towards Pd2+ and Fe3+, as seen by spectrofluorimetric titrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA