Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(8): e2306363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817352

RESUMO

Owing to the Fermi pinning effect arose in the metal electrodes deposition process, metal-semiconductor contact is always independent on the work function, which challenges the next-generation optoelectronic devices. In this work, a metal-assisted transfer approach is developed to transfer Bi2 O2 Se nanosheets onto the pre-deposited metal electrodes, benefiting to the tunable metal-semiconductor contact. The success in Bi2 O2 Se nanosheets transfer is contributed to the stronger van der Waals adhesion of metal electrodes than that of growth substrates. With the pre-deposited asymmetric electrodes, the self-powered near-infrared photodetectors are realized, demonstrating low dark current of 0.04 pA, high Ilight /Idark ratio of 380, fast rise and decay times of 4 and 6 ms, respectively, under the illumination of 1310 nm laser. By pre-depositing the metal electrodes on polyimide and glass, high-performance flexible and omnidirectional self-powered near-infrared photodetectors are achieved successfully. This study opens up new opportunities for low-dimensional semiconductors in next-generation high-performance optoelectronic devices.

2.
ACS Nano ; 17(17): 16633-16643, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37458508

RESUMO

Bismuth oxyselenide (Bi2O2Se) is a two-dimensional (2D) layered semiconductor material with high electron Hall mobility and excellent environmental stability as well as strong spin-orbit interaction (SOI), which has attracted intense attention for application in spintronic and spin optoelectronic devices. However, a comprehensive study of spin photocurrent and its microscopic origin in Bi2O2Se is still missing. Here, the helicity-dependent photocurrent (HDPC) was investigated in Bi2O2Se nanosheets. By analyzing the dependence of HDPC on the angle of incidence, we find that the HDPC originates from surface states with Cs symmetry in Bi2O2Se, which can be attributed to the circular photogalvanic effect (CPGE) and circular photon drag effect (CPDE). It is revealed that the HDPC current almost changes linearly with the source-drain voltage. Furthermore, we demonstrate effective tuning of HDPC in Bi2O2Se by ionic liquid gating, indicating that the spin splitting of the surface electronic structure is effectively tuned. By analyzing the gate voltage dependence of HDPC, we can unambiguously identify the surface polarity and the surface electronic structure of Bi2O2Se. The large HDPC in Bi2O2Se nanosheets and its efficient electrical tuning demonstrate that 2D Bi2O2Se nanosheets may provide a good platform for opto-spintronics devices.

3.
ACS Nano ; 15(9): 14766-14775, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34432437

RESUMO

Aqueous zinc batteries (AZBs) are considered promising candidates for large-scale energy storage systems because of their low cost and high safety. However, currently developed AZB cathodes always suffer from the intense charge repulsion of multivalent-ion and complex multiphase electrochemistry, resulting in an insufficient cycling life and impracticable high-sloping discharge profile. Herein, we found that the synthesized ultrathin Bi2O2Se nanosheets can effectively activate stable protons storage in AZBs rather than large zinc ions. This proton-dominated cathode provides an ultraflat discharge plateau (72% capacity proportion) and exhibits long-term cyclability as 90.64% capacity retention after 2300 cycles at 1 A g-1. Further in situ synchrotron X-ray diffraction, ex situ X-ray photoelectronic spectroscopy, and density functional theory confirm the energy storage mechanism regarding the highly reversible proton insertion/extraction process. Benefiting from the proton-dominated fast dynamics, reliable energy supply (>81.5% discharge plateau capacity proportion) is demonstrated at a high rate of up to 10 A g-1 and in the frozen electrolyte below -15 °C. This work provides a potential design of high-performance electrode materials for AZBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA