Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
1.
Nano Lett ; 24(20): 6051-6060, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38682868

RESUMO

Photoelectrochemical (PEC) cells provide a promising solution for the synthesis of hydrogen peroxide (H2O2). Herein, an integrated photocathode of p-type BiVO4 (p-BVO) array with tetragonal zircon structure coupled with different metal oxide (MOx, M = Sn, Ti, Ni, and Zn) heterostructure and NiNC cocatalyst (p-BVO/MOx/NiNC) was synthesized for the PEC oxygen reduction reaction (ORR) in production of H2O2. The p-BVO/SnO2/NiNC array achieves the production rate 65.46 µmol L-1 h-1 of H2O2 with a Faraday efficiency (FE) of 76.12%. Combined with the H2O2 generation of water oxidation from the n-type Mo-doped BiVO4 (n-Mo:BVO) photoanode, the unbiased photoelectrochemical cell composed of a p-BVO/SnO2/NiNC photocathode and n-Mo:BVO photoanode achieves a total FE of 97.67% for H2O2 generation. The large area BiVO4-based tandem cell of 3 × 3 cm2 can reach a total H2O2 production yield of 338.84 µmol L-1. This work paves the way for the rational design and fabrication of artificial photosynthetic cells for the production of liquid solar fuel.

2.
Small ; : e2403600, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949410

RESUMO

BiVO4-based photoanode is one of the most promising photoanodes for photoelectrocatalytic water splitting. However, the serious problem of interface charge recombination limits its further development. Here, a Mo:BiVO4/NiOx/CPF-TCzB/NiCoBi photoanode is constructed with double hole transport layer and an energy level gradient to achieve an effective photo-generated holes extraction and accumulation at the surface electrocatalyst. The conjugated polycarbazole framework CPF-TCzB is used as hole transport layer to eliminate the charge recombination center between Mo:BiVO4 and NiCoBi electrocatalyst and realize the extraction and storage of photo-generated hole; NiOx nanoparticles are further inserted between Mo:BiVO4 and CPF-TCzB to form a gradient energy level, eliminating the energy level barrier and optimizing band alignment. As a result, Mo:BiVO4/NiOx/CPF-TCzB/NiCoBi achieves a much higher photocurrent densities of 3.14 mA cm-2 than that of Mo:BiVO4 (0.42 mA cm-2) at 0.6 V versus RHE. This work provides an specific way to adjust the band structure of BiVO4-based photoanodes and realize efficient hole extraction and storage for PEC water splitting.

3.
Small ; 20(3): e2304839, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702144

RESUMO

The construction of nanostructured Z-scheme heterostructure is a powerful strategy for realizing high-performance photoelectrochemical (PEC) devices such as self-powered photodetectors and water splitting. Considering the band structure and internal electric field direction, BiVO4 is a promising candidate to construct SnS2 -based heterostructure. Herein, the direct Z-scheme heterostructure of vertically oriented SnS2 nanosheet on BiVO4 nanoflower is rationally fabricated for efficient self-powered PEC photodetectors. The Z-scheme heterostructure is identified by ultraviolet photoelectron spectroscopy, photoluminescence spectroscopy, PEC measurement, and water splitting. The SnS2 /BiVO4 heterostructure shows a superior photodetection performance such as excellent photoresponsivity (10.43 mA W-1 ), fast response time (6 ms), and long-term stability. Additionally, by virtue of efficient Z-scheme charge transfer and unique light-trapping nanostructure, the SnS2 /BiVO4 heterostructure also displays a remarkable photocatalytic hydrogen production rate of 54.3 µmol cm-2 h-1 in Na2 SO3 electrolyte. Furthermore, the synergistic effect between photo-activation and bias voltage further improves the PEC hydrogen production rate of 360 µmol cm-2 h-1 at 0.8 V, which is an order of magnitude above the BiVO4 . The results provide useful inspiration for designing direct Z-scheme heterostructures with special nanostructured morphology to signally promote the performance of PEC devices.

4.
Small ; 20(7): e2306757, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803928

RESUMO

Achieving highly performant photoanodes for oxygen evolution is key to developing photoelectrochemical devices for solar water splitting. In this work, BiVO4 photoanodes are enhanced with a series of core-shell structured bimetallic nickel-cobalt phosphides (MPs), and key insights into the role of co-catalysts are provided. The best BiVO4 /Ni1.5 Co0.5 P and BiVO4 /Ni0.5 Co1.5 P photoanodes achieve a 3.5-fold increase in photocurrent compared with bare BiVO4 . It is discovered that this enhanced performance arises from a synergy between work function, catalytic activity, and capacitive ability of the MPs. Distribution of relaxation times analysis reveals that the contact between the MPs, BiVO4 , and the electrolyte gives rise to three routes for hole injection into the electrolyte, all of which are significantly improved by the presence of a second metal cation in the co-catalyst. Kinetic studies demonstrate that the significantly improved interfacial charge injection is due to a lower charge-transfer resistance, enhanced oxygen-evolution reaction kinetics, and larger surface hole concentrations, providing deeper insights into the carrier dynamics in these photoanode/co-catalyst systems for their rational design.

5.
Environ Res ; 247: 118120, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199476

RESUMO

Photo-catalysts based on BiVO4 (BV) and Eco-graphene (EG) were synthesized and obtained in a single step with high-quality properties. These nanostructures (NEs) were obtained through a green chemistry route and by adding 2, 3, and 5 wt% of a homemade EG. The BV/X EG NEs (where X = corresponds to the weight % of EG) demonstrated high photocatalytic activity, obtaining Sulfamethoxazole degradation percentages of 40, 45, 52, and 57 for BV, BV/2 EG, BV/3 EG, and BV/5 EG respectively, using a blue LED light. In addition, it was observed that the presence of EG slightly affected the surface area and porosity of BV. Moreover, it was observed that the presence of EG stabilized the scheelite monoclinic phase (m-s), and decreased the crystal size and band-gap values of BV-based samples. It was detected that EG contents increased the BV reduction, creating oxygen vacancies and V4+ states, which favored electron transfer, enhanced the photo-catalytic activity, and decreased the recombination rate. The adsorption influence of the BV/EG system was also studied. Finally, the stability tests of these materials after four cycles of reuse allowed keeping practically the full degradation capacity, demonstrating that these NEs represent a promising material driven by visible light that can be used for wastewater decontamination in the presence of drugs.


Assuntos
Grafite , Nanoestruturas , Grafite/química , Sulfametoxazol , Adsorção , Luz
6.
Nano Lett ; 23(24): 11785-11792, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38078823

RESUMO

Nanostructured bismuth vanadate (BiVO4) is at the forefront of emerging photoanodes in photoelectrochemical tandem devices for solar water splitting owing to the suitable band edge position and efficient charge separation capability. However, the (photo)chemical corrosion involving V5+ dissolution limits the long-term stability of BiVO4. Herein, guided by DFT calculations, we introduce an ALD-derived NiOx catalyst layer on BiVO4 to stabilize the surface Bi-O bonds, facilitate hole extraction, and thus suppress the V5+ dissolution. At the same time, the ALD NiOx catalyst layer could efficiently suppress the surface recombination and accelerate the surface OER kinetics, boosting the half-cell applied bias photon-to-current efficiency of BiVO4 to 2.05%, as well as a fill factor of 47.1%. By adding trace NaVO3 to the electrolyte, the NiOx/BiVO4 photoanode with an illumination area of 10.5 cm2 shows a record operational stability of more than 2100 h.

7.
J Environ Manage ; 365: 121608, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943751

RESUMO

In this work, a novel double-chamber system (PFC-Fenton), combined photocatalytic fuel cell (PFC) with Fenton, was constructed for tetracycline hydrochloride (TCH) and hexavalent chromium (Cr(VI)) removal and electricity production. Therein, Zn5(OH)6(CO3)2/Fe2O3/BiVO4/fluorine-doped SnO2 (ZIO/BiVO4/FTO) and carboxylated carbon nanotubes/polypyrrole/graphite felt (CCNTs/Ppy/GF) were served as photoanode and cathode, respectively. Under light irradiation, the removal efficiencies of TCH and Cr(VI) with the addition of H2O2 (2 mL) could reach 93.1% and 80.4%, respectively. Moreover, the first-order kinetic constants (7.37 × 10-3 min-1 of TCH and 3.94 × 10-3 min-1 of Cr(VI)) were 5.26 and 5.57 times as much as the absence of H2O2. Simultaneously, the maximum power density could be obtained 0.022 mW/cm2 at a current density of 0.353 mA/cm2. Therein, the main contribution of TCH degradation was ·OH and holes in anode chamber. The synergistic effect of photoelectrons, generated ·O2-, and H2O2 played a crucial role in the reduction of Cr(VI) in cathode chamber. The high-performance liquid chromatography-mass spectrometry indicated that TCH could be partially mineralized into CO2 and H2O. X-ray photoelectron spectroscope and X-ray absorption near-edge structure spectra showed that Cr(VI) could be reduced to Cr(III). After 5 times of cycling, the removal efficiencies of TCH and Cr(VI) were still greater than 70%, indicating the remarkable stability of the PFC-Fenton system. Overall, this system could remove TCH/Cr(VI) and generate power simultaneously without iron sludge formation, demonstrating a promising method to further develop PFC-Fenton technology.


Assuntos
Cromo , Peróxido de Hidrogênio , Tetraciclina , Cromo/química , Tetraciclina/química , Peróxido de Hidrogênio/química , Catálise , Ferro/química
8.
Molecules ; 29(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930848

RESUMO

The photoelectrochemical (PEC) conversion of organic small molecules offers a dual benefit of synthesizing value-added chemicals and concurrently producing hydrogen (H2). Ethylene glycol, with its dual hydroxyl groups, stands out as a versatile organic substrate capable of yielding various C1 and C2 chemicals. In this study, we demonstrate that pH modulation markedly enhances the photocurrent of BiVO4 photoanodes, thus facilitating the efficient oxidation of ethylene glycol while simultaneously generating H2. Our findings reveal that in a pH = 1 ethylene glycol solution, the photocurrent density at 1.23 V vs. RHE can attain an impressive 7.1 mA cm-2, significantly surpassing the outputs in neutral and highly alkaline environments. The increase in photocurrent is attributed to the augmented adsorption of ethylene glycol on BiVO4 under acidic conditions, which in turn elevates the activity of the oxidation reaction, culminating in the maximal production of formic acid. This investigation sheds light on the pivotal role of electrolyte pH in the PEC oxidation process and underscores the potential of the PEC strategy for biomass valorization into value-added products alongside H2 fuel generation.

9.
Molecules ; 29(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38338426

RESUMO

Bismuth vanadate (BVO) is regarded as an exceptional photoanode material for photoelectrochemical (PEC) water splitting, but it is restricted by the severe photocorrosion and slow water oxidation kinetics. Herein, a synergistic strategy combined with a Co3(HPO4)2(OH)2 (CoPH) cocatalyst and an Al2O3 (ALO) passivation layer was proposed for enhanced PEC performance. The CoPH/ALO/BVO photoanode exhibits an impressive photocurrent density of 4.9 mA cm-2 at 1.23 VRHE and an applied bias photon-to-current efficiency (ABPE) of 1.47% at 0.76 VRHE. This outstanding PEC performance can be ascribed to the suppressed surface charge recombination, facilitated interfacial charge transfer, and accelerated water oxidation kinetics with the introduction of the CoPH cocatalyst and ALO passivation layer. This work provides a novel and synergistic approach to design an efficient and stable photoanode for PEC applications by combining an oxygen evolution cocatalyst and a passivation layer.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38400531

RESUMO

Wastewater pollution caused by organic dyes is a growing concern due to its negative impact on human health and aquatic life. To tackle this issue, the use of advanced wastewater treatment with nano photocatalysts has emerged as a promising solution. However, experimental procedures for identifying the optimal conditions for dye degradation could be time-consuming and expensive. To overcome this, machine learning methods have been employed to predict the degradation of organic dyes in a more efficient manner by recognizing patterns in the process and addressing its feasibility. The objective of this study is to develop a machine learning model to predict the degradation of organic dyes and identify the main variables affecting the photocatalytic degradation capacity and removal of organic dyes from wastewater. Nine machine learning algorithms were tested including multiple linear regression, polynomial regression, decision trees, random forest, adaptive boosting, extreme gradient boosting, k-nearest neighbors, support vector machine, and artificial neural network. The study found that the XGBoosting algorithm outperformed the other models, making it ideal for predicting the photocatalytic degradation capacity of BiVO4. The results suggest that XGBoost is a suitable model for predicting the photocatalytic degradation of wastewater using BiVO4 with different dopants.


Assuntos
Nanopartículas , Águas Residuárias , Humanos , Algoritmos , Corantes , Aprendizado de Máquina
11.
Small ; 19(36): e2301349, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37127877

RESUMO

Increasing the yield of reactive oxygen species (ROS) to enhance oxidative stress in cells is an eternal goal in cancer therapy. In this study, BiVO4 artificial nanozyme is developed with adjustable vanadium vacancy for ultrasound (US) enhanced piezoelectric/sonodynamic therapy. Under US excitation, the vanadium vacancy-rich BiVO4 nanosheets (abbreviated Vv -r BiVO4 NSs) facilitate the generation of a large number of electrons to improve the ROS yield. Meanwhile, the mechanical strain imposed by US irradiation makes the Vv -r BiVO4 NSs display a typical piezoelectric response, which tilts the conduction band to be more negative and the valance band more positive than the redox potentials of O2 /O2 •- and H2 O/·OH, boosting the efficiency of ROS generation. Both density functional theory calculations and experiments confirm that the introduction of cationic vacancy can improve the sonodynamic effect. As expected, Vv -r BiVO4 NSs have better peroxidase enzyme catalytic and glutathione depletion activities, resulting in increased intracellular oxidative stress. This triple amplification strategy of oxidative stress induced by US substantially inhibits the growth of cancer cells. The work may open an avenue to achieve a synergetic therapy by introducing cationic vacancy, broadening the biomedical use of piezoelectric materials.


Assuntos
Corantes , Vanádio , Espécies Reativas de Oxigênio , Ultrassonografia , Catálise
12.
Small ; 19(29): e2302058, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37183305

RESUMO

Slow charge kinetics and unfavorable CO2 adsorption/activation strongly inhibit CO2 photoreduction. In this study, a strain-engineered Cs3 Bi2 Br9 /hierarchically porous BiVO4 (s-CBB/HP-BVO) heterojunction with improved charge separation and tailored CO2 adsorption/activation capability is developed. Density functional theory calculations suggest that the presence of tensile strain in Cs3 Bi2 Br9 can significantly downshift the p-band center of the active Bi atoms, which enhances the adsorption/activation of inert CO2 . Meanwhile, in situ irradiation X-ray photoelectron spectroscopy and electron spin resonance confirm that efficient charge transfer occurs in s-CBB/HP-BVO following an S-scheme with built-in electric field acceleration. Therefore, the well-designed s-CBB/HP-BVO heterojunction exhibits a boosted photocatalytic activity, with a total electron consumption rate of 70.63 µmol g-1 h-1 , and 79.66% selectivity of CO production. Additionally, in situ diffuse reflectance infrared Fourier transform spectroscopy reveals that CO2 photoreduction undergoes a formaldehyde-mediated reaction process. This work provides insight into strain engineering to improve the photocatalytic performance of halide perovskite.

13.
Chemistry ; 29(15): e202203165, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514875

RESUMO

To simultaneously improve the hole extraction ability of the BiVO4 photoanode and accelerate the surface reaction kinetics, herein, a carbon nanolayer conformally coated Fe2 O3 (C-Fe2 O3 ) as oxygen evolution catalyst (OEC) is loaded on the H2 plasma treated nanoporous BiVO4 (BVO(H2 )) surface by a hydrothermal reaction. It is found that the H2 plasma induced vacancies in BVO remarkably increases the conductivity, and the C-Fe2 O3 enables hole extraction from the bulk to the surface as well as efficient hole injection to the electrolyte. As a result, the C-Fe2 O3 /BVO(H2 ) photoanode achieves a photocurrent density of 4.4 mA/cm2 at 1.23 V vs. reversible hydrogen electrode (RHE) and an ABPE value of 1.5 % at 0.68 V vs. RHE, which are 4.8-fold and 13-fold higher than that of BVO photoanode, respectively.

14.
Chemistry ; 29(25): e202203765, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36752729

RESUMO

Photocatalytic hydrogen peroxide (H2 O2 ) production on BiVO4 photocatalysts using water and oxygen as raw materials is a green and sustainable process. However, the photocatalytic efficiency of pristine BiVO4 is limited by severe charge recombination. In this work, rare earth element Yttrium (Y) doped BiVO4 photocatalysts were fabricated by the hydrothermal method. In the photocatalytic H2 O2 production experiment, the optimized Y-doped BiVO4 photocatalyst produced 114 µmol g-1 h-1 of H2 O2 under simulated sunlight (AM1.5) irradiation, which is four times higher than production activity of pure BiVO4 (26 µmol g-1 h-1 ). Density functional theory (DFT) calculation revealed that Y doping can enhance oxygen adsorption on the BiVO4 photocatalyst surface. Mechanistic investigations suggest that the doping process induces the in situ formation of monoclinic/tetragonal BiVO4 heterojunction, which further promotes the photogenerated carriers separation efficiency.

15.
Nanotechnology ; 34(21)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36780669

RESUMO

Successful construction of heterojunction can improve the utilization efficiency of solar light by broadening the absorption range, facilitating charge-carrier separation, promoting carrier transportation and influencing surface-interface reaction. Herein, visible-light-driven AgBr was deposited on the surface of lamellar BiVO4which was prepared by a facile hydrothermal process to improve charge carrier separation, and subsequent photocatalytic effectiveness. The catalyst with an optimal AgBr/BiVO4ratio exhibited a superbly enhanced photocatalytic decolorization ability (about 6.85 times higher than that of pure BiVO4) and high stability after four cycles. The unique photocatalytic mechanism of S-scheme carrier migration was investigated on the bases of radical trapping tests and photo/electrochemical characterizations. Results showed that the enhanced migration strategy and intimately interfacial collaboration guaranteed the effective charge carriers separation/transfer, leading to magnificent photocatalytic performance as well as excellent stability.

16.
Nanotechnology ; 34(50)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37725954

RESUMO

For accelerate construction of the energy and resource-saving and environmental-friendly society, cleaner preparation of low-cost and high-performance colorful near-infrared reflective inorganic pigments with the decorative function is indispensable to reduce the hazards of urban heat island and simultaneously beautify the appearance of the buildings. Due to the non-toxicity, good chemical stability and narrow band gap, BiVO4has been becoming a promising environment-friendly yellow inorganic pigments among the conventional heavy metals-containing inorganic pigments. In this study, the low-cost and brilliant kaolinite-based BiVO4hybrid pigments were fabricated by cleaner mechanochemical method based on cheap and abundant kaolinite using crystal water of the hydrated metal salts as trace solvent, which could effectively promote the interaction of the involved components at the molecular level during grinding and then decreased the mass transfer resistance for the formation of monoclinic scheelite BiVO4in the following calcination. The obtained hybrid pigments at the optimal preparation conditions exhibited brilliant color properties (D65-10°,L*= 83.45 ± 0.08,a*= 4.17 ± 0.08,b*= 88.59 ± 0.17), high near-infrared reflectance of 86.22%, infrared solar reflectance of 88.14% and high emissivity of 0.9369 in the waveband of 8-13µm. Furthermore, the hybrid pigments could be used for coloring epoxy resin with high emissivity of 0.8782 in 8-13µm. Therefore, the brilliant and low-cost kaolinite-based bismuth yellow hybrid pigments have the enormous potential to be served as colorful functional nanofillers for cooling roofing materials.

17.
Environ Res ; 222: 115347, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702185

RESUMO

Herein, we report a novel Cu2(OH)3 F/CQDs-BiVO4 composite photo-Fenton-like system, which used BiVO4 and Cu2(OH)3F as electron donor and acceptor, respectively, and achieved efficient electron transfer between them through the electron bridging effect of Carbon quantum dots (CQDs). The material exhibited excellent ciprofloxacin (CIP) removal efficiency in the photo-Fenton-like coupled system. Cu2(OH)3 F/CQDs-BiVO4 had an incredibly fast response rate, eliminating 98.1% of CIP from the solution in just 1 h, according to the reaction kinetics. Exploratory tests proved that the catalyst kept up a sufficient level of activity across a wide pH range of 3-11 and in the presence of various anions. The activity, morphology, and crystal structure of the samples did not appreciably alter after five recycles. Finally, a possible reaction mechanism was also proposed based on the band structure, position and reaction species.


Assuntos
Carbono , Pontos Quânticos , Pontos Quânticos/química , Elétrons , Ciprofloxacina , Catálise
18.
Mikrochim Acta ; 190(2): 67, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692640

RESUMO

A sandwiched photoelectrochemical (PEC) sensor was developed for sensitive detection of human epidermal growth factor receptor 2 (HER2) based on BiVO4-Bi2S3 heterojunction as the photoelectric material accompanied with magnetic nanoparticles for enrichment of HER2 and CdS for signal amplification. The in situ generation of Bi2S3 on the surface of BiVO4 forming a BiVO4-Bi2S3 heterojunction is more conducive to the transit of electron-hole pairs. Antibody-modified MNs are utilized to capture and separate HER2 from samples. After forming a sandwich immune structure, under illumination, the photocurrent shows an increasing trend with the increment of HER2 concentration. The PEC immunosensor displays a good linear concentration range between 1.00 and 1.00 × 103 pg·mL-1 and a low limit of detection down to 0.680 pg·mL-1 (S/N = 3) for HER2 under a bias voltage of 0.1 V (vs. Ag/AgCl electrode). Furthermore, the sensor was successfully applied to detect HER2 in serum samples with recoveries that ranged between 96.1 and 114% with RSDs between 1.3 and 5.9%.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Humanos , Técnicas Eletroquímicas , Limite de Detecção , Imunoensaio
19.
J Environ Manage ; 330: 117132, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584468

RESUMO

Herein, the ternary CdS/BiVO4/g-C3N4 (CBG) hybrid semiconductor photocatalyst was prepared via a hydrothermal technique. The synthesized photocatalysts were thoroughly characterized using powder XRD, XPS, FTIR, SEM, TEM, and UV-DRS to investigate the microstructural, morphological attributes, and optical properties. The photocatalytic activity of the ternary CBG hybrid semiconductor was assessed through the photodegradation of Methylene Blue (MB) aqueous dye under visible light. The outcomes exhibited that the CBG hybrid semiconductor showed excellent photocatalytic activity (about 94.5% after 120 min) compared to the results obtained with the pristine materials or the other composite (CdS/BiVO4). The enhancement of photocatalytic activity can be due to the construction of heterojunctions among g-C3N4, CdS, and BiVO4, which improves charge transfer efficiency and hence favors the degradation of organic dyes. Moreover, the as-prepared photocatalyst showed excellent stability after five cycles, indicating good stability and reusability. Subsequently, a possible photocatalytic mechanism was proposed based on the experimental results. The current investigation provides a promising strategy to promote photocatalytic activity to eliminate waterborne contaminants.


Assuntos
Azul de Metileno , Nanocompostos , Luz , Corantes
20.
Molecules ; 28(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067523

RESUMO

One-dimensional shaving-like BiVO4 nanobelts were successfully synthesized via the oxide hydrothermal method (OHS), using V2O5 and Bi2O3 as raw materials and PEG 10000 (polyethylene glycol 10000) as a template. Multiple techniques, including XRD, SEM, TEM, HRTEM, UV-Vis, XPS, and photoelectrochemical measurements, were applied to characterize the obtained materials. The thickness of the BiVO4 nanobelt was approximately 10 nm, while the width was approximately 500 nm. EIS results showed that visible-light illumination caused the photogenerated charge of the BiVO4 nanobelts to have a faster transfer and a higher separation efficiency. Photocatalytic experiments indicated that with BiVO4 nanobelts as a catalyst, the degradation rate of MB (methylene blue) was close to 92.4%, and it disintegrated after two hours. Moreover, the pseudo-first-order kinetic model can be used to describe the photodecomposition reaction of MB catalysed by BiVO4 nanobelts. And this excellent photocatalytic activity of the shaving-like BiVO4 nanobelts may be related to their special morphology, narrow band gap (~2.19 eV), faster transfer and the separation efficiency of the photogenerated charge, leading to strong absorption in the visible region and improving the separation of the photogenerated electron-hole pairs. These novel monoclinic BiVO4 nanobelts exhibited great photocatalytic activity and are thus a promising candidate for application in visible-light-responsive photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA