Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Small ; 20(12): e2307537, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37939303

RESUMO

Constructing effective and robust biocatalysts with carbonic anhydrase (CA)-mimetic activities offers an alternative and promising pathway for diverse CO2-related catalytic applications. However, there is very limited success has been achieved in controllably synthesizing CA-mimetic biocatalysts. Here, inspired by the 3D coordination environments of CAs, this study reports on the design of an ultrafast ZnN3-OH2 center via tuning the 3D coordination structures and mesoporous defects in a zinc-dipyrazolate framework to serve as new, efficient, and robust CA-mimetic biocatalysts (CABs) to catalyze the hydration reactions. Owing to the structural advantages and high similarity with the active center of natural CAs, the double-walled CAB with mesoporous defects displays superior CA-like reaction kinetics in p-NPA hydrolysis (V0 = 445.16 nM s-1, Vmax = 3.83 µM s-1, turnover number: 5.97 × 10-3 s-1), which surpasses the by-far-reported metal-organic frameworks-based biocatalysts. This work offers essential guidance in tuning 3D coordination environments in artificial enzymes and proposes a new strategy to create high-performance CA-mimetic biocatalysts for broad applications, such as CO2 hydration/capture, CO2 sensing, and abundant hydrolytic reactions.

2.
Small ; 20(37): e2401673, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38721983

RESUMO

One of the biggest challenges in biotechnology and medical diagnostics is finding extremely sensitive and adaptable biosensors. Since metal-based enzyme-mimetic biocatalysts may lead to biosafety concerns on accumulative toxicity, it is essential to synthesize metal-free enzyme-mimics with optimal biocatalytic activity and superior selectivity. Here, the pyridine-bridged covalent organic frameworks (COFs) with specific oxidase-like (OXD-like) activities as intelligent artificial enzymes for light-augmented biocatalytic sensing of biomarkers are disclosed. Because of the adjustable bandgaps of pyridine structures on the photocatalytic properties of the pristine COF structures, the pyridine-bridged COF exhibit efficient, selective, and light-responsive OXD-like biocatalytic activity. Moreover, the pyridine-bridged COF structures show tunable and light-augmented biocatalytic detection capabilities, which outperform the recently reported state-of-the-art OXD-mimics regarding biosensing efficiency. Notably, the pyridine-bridged COF exhibits efficient and multifaceted diagnostic activity, including the extremely low limit of detection (LOD), which enables visual assays for abundant reducibility biomarkers. It is believed that this design will offer unique metal-free biocatalysts for high-sensitive and low-cost colorimetric detection and also provide new insights to create highly efficient enzyme-like COF materials via linkage-modulation strategies for future biocatalytic applications.


Assuntos
Biocatálise , Técnicas Biossensoriais , Luz , Estruturas Metalorgânicas , Piridinas , Piridinas/química , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos
3.
Chembiochem ; 25(17): e202400339, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38801661

RESUMO

Utilizing covalent organic frameworks (COFs) as porous supports to encapsulate enzyme represents an advanced strategy for constructing COFs biocatalysts, which has inspired numerous interests across various applications. As the structural advantages including ultrastable covalent-bonded linkage, tailorable pore structure, and metal-free biocompatibility, the resultant enzyme-COFs biocatalysts showcase functional enhancement in catalytic activity, chemical stability, long-term durability, and recyclability. This Concept describes the recent advances in the methodological strategies for engineering the COFs biocatalysts, with specific emphasis on the pore entrapment and in situ encapsulation strategies. The structural advantages of the COFs hybrid biocatalysts for organic synthesis, environment- and energy-associated applications are also canvassed. Additionally, the remaining challenges and the forward-looking directions in this field are also discussed. We believe that this Concept can offer useful methodological guidance for developing active and robust COFs biocatalysts.


Assuntos
Biocatálise , Enzimas Imobilizadas , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Porosidade , Enzimas/metabolismo , Enzimas/química
4.
Int Microbiol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489100

RESUMO

Enzymes play a crucial role in various industrial sectors. These biocatalysts not only ensure sustainability and safety but also enhance process efficiency through their unique specificity. Lipases possess versatility as biocatalysts and find utilization in diverse bioconversion reactions. Presently, microbial lipases are gaining significant focus owing to the rapid progress in enzyme technology and their widespread implementation in multiple industrial procedures. This updated review presents new knowledge about various origins of microbial lipases, such as fungi, bacteria, and yeast. It highlights both the traditional and modern purification methods, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, the aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF), moreover, delves into the diverse applications of microbial lipases across several industries, such as food, vitamin esters, textile, detergent, biodiesel, and bioremediation. Furthermore, the present research unveils the obstacles encountered in employing lipase, the patterns observed in lipase engineering, and the application of CRISPR/Cas genome editing technology for altering the genes responsible for lipase production. Additionally, the immobilization of microorganisms' lipases onto various carriers also contributes to enhancing the effectiveness and efficiencies of lipases in terms of their catalytic activities. This is achieved by boosting their resilience to heat and ionic conditions (such as inorganic solvents, high-level pH, and temperature). The process also facilitates the ease of recycling them and enables a more concentrated deposition of the enzyme onto the supporting material. Consequently, these characteristics have demonstrated their suitability for application as biocatalysts in diverse industries.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39384613

RESUMO

High-value-added compounds, such as monoterpenoids, are an important industrial targets because they are an essential group of compounds for pharmaceutical and industrial applications. Meanwhile, the depletion of natural resources and climate change demands sustainable production methods. In recent years, biocatalysis, which allows microbial bioproduction by regio- and stereo-selective reaction under mild conditions, has been attracted researchers' attention as a possible alternative to conventional methods. In this mini-review, we focus on the identification of biotransformation pathways in the non-model microorganism Acinetobacter sp. Tol 5 using geraniol, a representative monoterpenoid, and on the construction of an unconventional bioproduction method for high-value-added monoterpenoid (E)-geranic acid, which has great potential for industrial applications. This method offers a more environmentally friendly approach and insights contribute to optimizing biotransformation and bioproduction strategies for high-value-added compounds.

6.
Mar Drugs ; 22(9)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39330300

RESUMO

This study explores the reasons behind the variations in the enantioselectivity of the sulfoxidation of methyl phenyl sulfide by marine-derived vanadium-dependent haloperoxidases (VHPOs). Twelve new VHPOs of marine organisms were overexpressed, purified, and tested for their ability to oxidize sulfide. Most of these marine enzymes exhibited nonenantioselective behavior, underscoring the uniqueness of AnVBPO from the brown seaweed Ascophyllum nodosum and CpVBPO from the red seaweed Corallina pilulifera, which produce (R)- and (S)-sulfoxides, respectively. The enantioselective sulfoxidation pathway is likely due to direct oxygen transfer within the VHPO active site. This was demonstrated through molecular docking and molecular dynamics simulations, which revealed differences in the positioning of sulfide within AnVBPO and CpVBPO, thus explaining their distinct enantioselectivities. Nonenantioselective VHPOs probably follow a different oxidation pathway, initiating with sulfide oxidation to form a positively charged radical. Further insights were gained from studying the catalytic effect of VO43- on H2O2-driven sulfoxidation. This research improves the understanding of VHPO-mediated sulfoxidation and aids in developing biocatalysts for sulfoxide synthesis.


Assuntos
Organismos Aquáticos , Oxirredução , Sulfetos , Sulfóxidos , Vanádio , Sulfetos/metabolismo , Sulfetos/química , Estereoisomerismo , Vanádio/química , Vanádio/metabolismo , Sulfóxidos/química , Sulfóxidos/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Rodófitas/enzimologia , Peroxidases/metabolismo , Peroxidases/química , Peróxido de Hidrogênio/metabolismo , Phaeophyceae
7.
Chem Biodivers ; 21(2): e202301205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38155095

RESUMO

Actinobacteria are one of the most intriguing bacterial phyla in terms of chemical diversity and bioactivities of their reported biomolecules and natural products, including various types of chiral molecules. Actinobacterial genera such as Detzia, Mycobacterium, and Streptomyces are among the microbial sources targeted for selective reactions such as asymmetric biocatalysis catalyzed by whole cells or enzymes induced in their cell niche. Remarkably, stereoselective reactions catalyzed by actinobacterial whole cells or their enzymes include stereoselective oxidation, stereoselective reduction, kinetic resolution, asymmetric hydrolysis, and selective transamination, among others. Species of actinobacteria function with high chemo-, regio-, and enantio-selectivity under benign conditions, which could help current industrial processing. Numerous selective enzymes were either isolated from actinobacteria or expressed from actinobacteria in other microbes and hence exploited in the production of pure organic compounds difficult to obtain chemically. In addition, different species of actinobacteria, especially Streptomyces species, function as natural producers of chiral molecules of therapeutic importance. Herein, we discuss some of the most outstanding contributions of actinobacteria to asymmetric biocatalysis, which are important in the organic and/or pharmaceutical industries. In addition, we highlight the role of actinobacteria as microbial cell factories for chiral natural products with insights into their various biological potentialities.


Assuntos
Actinobacteria , Produtos Biológicos , Actinobacteria/metabolismo , Bactérias , Biocatálise , Compostos Orgânicos , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo
8.
Prep Biochem Biotechnol ; 54(8): 1001-1016, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38445829

RESUMO

With the industrialization and development of modern science, the application of enzymes as green and environmentally friendly biocatalysts in industry has been increased widely. Among them, lipase (EC. 3.1.1.3) is a very prominent biocatalyst, which has the ability to catalyze the hydrolysis and synthesis of ester compounds. Many lipases have been isolated from various sources, such as animals, plants and microorganisms, among which microbial lipase is the enzyme with the most diverse enzymatic properties and great industrial application potential. It therefore has promising applications in many industries, such as food and beverages, waste treatment, biofuels, leather, textiles, detergent formulations, ester synthesis, pharmaceuticals and medicine. Although many microbial lipases have been isolated and characterized, only some of them have been commercially exploited. In order to cope with the growing industrial demands and overcome these shortcomings to replace traditional chemical catalysts, the preparation of new lipases with thermal/acid-base stability, regioselectivity, organic solvent tolerance, high activity and yield, and reusability through excavation and modification has become a hot research topic.


Assuntos
Lipase , Lipase/isolamento & purificação , Lipase/química , Lipase/metabolismo , Biocatálise , Estabilidade Enzimática , Bactérias/enzimologia
9.
Angew Chem Int Ed Engl ; 63(1): e202311678, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37963813

RESUMO

Due to their sequence-directed functions and excellent biocompatibility, smart DNA microgels have attracted considerable research interest, and the combination of DNA microgels with functional nanostructures can further expand their applications in biosensing and biomedicine. Gallium-based liquid metals (LMs) exhibiting both fluidic and metallic properties hold great promise for the development of smart soft materials; in particular, LM particles upon sonication can mediate radical-initiated polymerization reactions, thus allowing the combination of LMs and polymeric matrix to construct "soft-soft" materials. Herein, by forming active surfaces under sonication, LM nanoparticles (LM NPs) initiated localized radical polymerization reactions allow the combination of functional DNA units and different polymeric backbones to yield multifunctional core/shell microgels. The localized polymerization reaction allows fine control of the microgel compositions, and smart DNA microgels with tunable catalytic activities can be constructed. Moreover, due to the excellent photothermal effect of LM NPs, the resulting temperature gradient between microgels and surrounding solution upon NIR light irradiation can drive the oriented locomotion of the microgels, and remote control of the activity of these smart microgels can be achieved. These microgels may hold promise for various applications, such as the development of in vivo and in vitro biosensing and drug delivery systems.


Assuntos
Gálio , Microgéis , Polímeros Responsivos a Estímulos , Microgéis/química , Polímeros/química , DNA/química
10.
Angew Chem Int Ed Engl ; 63(15): e202400838, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38372011

RESUMO

Developing artificial enzymes based on organic molecules or polymers for reactive oxygen species (ROS)-related catalysis has broad applicability. Herein, inspired by porphyrin-based heme mimics, we report the synthesis of polyphthalocyanine-based conjugated polymers (Fe-PPc-AE) as a new porphyrin-evolving structure to serve as efficient and versatile artificial enzymes for augmented reactive oxygen catalysis. Owing to the structural advantages, such as enhanced π-conjugation networks and π-electron delocalization, promoted electron transfer, and unique Fe-N coordination centers, Fe-PPc-AE showed more efficient ROS-production activity in terms of Vmax and turnover numbers as compared with porphyrin-based conjugated polymers (Fe-PPor-AE), which also surpassed reported state-of-the-art artificial enzymes in their activity. More interestingly, by changing the reaction medium and substrates, Fe-PPc-AE also revealed significantly improved activity and environmental adaptivity in many other ROS-related biocatalytic processes, validating the potential of Fe-PPc-AE to replace conventional (poly)porphyrin-based heme mimics for ROS-related catalysis, biosensors, or biotherapeutics. It is suggested that this study will offer essential guidance for designing artificial enzymes based on organic molecules or polymers.


Assuntos
Heme , Porfirinas , Heme/química , Oxigênio/química , Espécies Reativas de Oxigênio , Porfirinas/química , Catálise , Polímeros
11.
Angew Chem Int Ed Engl ; 63(13): e202315933, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38206594

RESUMO

Various nanomaterials as biocatalysts could be custom-designed and modified to precisely match the specific microenvironment of diseases, showing a promise in achieving effective therapy outcomes. Compared to conventional biocatalysts, single metal atom catalysts (SMACs) with maximized atom utilization through well-defined structures offer enhanced catalytic activity and selectivity. Currently, there is still a gap in a comprehensive overview of the connection between structures and biocatalytic mechanisms of SMACs. Therefore, it is crucial to deeply investigate the role of SMACs in biocatalysis from the atomic structure level and to elucidate their potential mechanisms in biocatalytic processes. In this minireview, we summarize catalysis regulation methods of SMACs at the atomic structure level, focusing on the optimization of catalytic active sites, coordination environment, and active site-support interactions, and briefly discuss biocatalytic mechanisms for biomedical applications.


Assuntos
Cultura , Nanoestruturas , Biocatálise , Catálise , Metais
12.
Trends Biochem Sci ; 44(12): 1022-1040, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31307903

RESUMO

Metalloproteins are crucial for life. The mutual relationship between metal ions and proteins makes metalloproteins able to accomplish key processes in biological systems, often very difficult to reproduce with inorganic coordination compounds under mild conditions. Taking inspiration from nature, many efforts have been devoted to developing artificial molecules as metalloprotein mimics. We have witnessed an explosion of protein design strategies leading to designed metalloproteins, ranging from stable structures to functional molecules. This review illustrates the most recent results for inserting metalloprotein functions in designed and engineered protein scaffolds. The selected examples highlight the potential of different approaches for the construction of artificial molecules capable of simulating and even overcoming the features of natural metalloproteins.


Assuntos
Metaloproteínas , Engenharia de Proteínas , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/metabolismo
13.
Small ; : e2306966, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059865

RESUMO

Developing high-efficiency artificial biocatalysts for scavenging reactive oxygen species (ROS) is critical for treating inflammation diseases and promoting tissue regeneration. By mimicking the active sites in catalase, here, a Pt-clusters-equipped antioxidase-like biocatalysts (Pt─CN) with superior catalytic abilities for stem cell protection and periodontitis treatment are reported. Owing to the excellent effects of multiple Pt clusters, Pt─CN yields exceptional catalytic ROS-scavenging activities for multiple types of ROS. In vitro studies show that Pt─CN can effectively protect stem cell survival, adhesion, and differentiation in a high ROS levels microenvironment. Additionally, Pt─CN can reduce the M1/M2 ratio of macrophages when stimulated by lipopolysaccharide. In vivo treatment of mouse periodontitis further confirms the protection against bone loss and reduction in the inflammatory response. This study provides a basis for the application of biocatalysts with Pt catalytic center in macrophage polarization, stem cell protection, and periodontitis treatment, thus offering a new strategy for the design of high-performance artificial biocatalysts.

14.
Small ; 19(26): e2301135, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36932936

RESUMO

Small-scale battery-like microbial fuel cells (MFCs) are a promising alternative power source for future low-power electronics. Controllable microbial electrocatalytic activity in a miniaturized MFC with unlimited biodegradable energy resources would enable simple power generation in various environmental settings. However, the short shelf-life of living biocatalysts, few ways to activate the stored biocatalysts, and extremely low electrocatalytic capabilities render the miniature MFCs unsuitable for practical use. Here, heat-activated Bacillus subtilis spores are revolutionarily used as a dormant biocatalyst that can survive storage and rapidly germinate when exposed to special nutrients that are preloaded in the device. A microporous, graphene hydrogel allows the adsorption of moisture from the air, moves the nutrients to the spores, and triggers their germination for power generation. In particular, forming a CuO-hydrogel anode and an Ag2 O-hydrogel cathode promotes superior electrocatalytic activities leading to an exceptionally high electrical performance in the MFC. The battery-type MFC device is readily activated by moisture harvesting, producing a maximum power density of 0.4 mW cm-2 and a maximum current density of 2.2 mA cm-2 . The MFC configuration is readily stackable in series and a three-MFC pack produces enough power for several low-power applications, demonstrating its practical feasibility as a sole power source.


Assuntos
Bacillus , Fontes de Energia Bioelétrica , Temperatura Alta , Eletricidade , Bactérias , Esporos Bacterianos , Eletrodos
15.
Biotechnol Bioeng ; 120(2): 352-398, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349456

RESUMO

Immobilization depicts a propitious route to optimize the catalytic performances, efficient recovery, minimizing autocatalysis, and also augment the stabilities of enzymes, particularly in unnatural environments. In this opinion, supramolecules and multimolecular frameworks have captivated immense attention to achieve profound controllable interactions between enzyme molecules and well-defined natural or synthetic architectures to yield protein bioconjugates with high accessibility for substrate binding and enhanced enantioselectivities. This scholastic review emphasizes the possibilities of associating multimolecular complexes with biological entities via several types of interactions, namely covalent interactions, host-guest complexation, π - π ${\rm{\pi }}-{\rm{\pi }}$ interactions, intra/inter hydrogen bondings, electrostatic interactions, and so forth offers remarkable applications for the modulations of enzymes. The potential synergies between artificial supramolecular structures and biological systems are the primary concern of this pedagogical review. The majority of the research primarily focused on the dynamic biomolecule-responsive supramolecular assemblages and multimolecular architectures as ideal platforms for the recognition and modulation of proteins and cells. Embracing sustainable green demeanors of enzyme immobilizations in a quest to reinforce site-selectivity, catalytic efficiency, and structural integrality of enzymes are the contemporary requirements of the biotechnological sectors that instigate the development of novel biocatalytic systems.


Assuntos
Enzimas Imobilizadas , Proteínas , Enzimas Imobilizadas/química
16.
Appl Microbiol Biotechnol ; 107(13): 4165-4185, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37212882

RESUMO

The biorefinery concept, in which biomass is utilized for the production of fuels and chemicals, emerges as an eco-friendly, cost-effective, and renewable alternative to petrochemical-based production. The hydroxycinnamic acid fraction of lignocellulosic biomass represents an untapped source of aromatic molecules that can be converted to numerous high-value products with industrial applications, including in the flavor and fragrance sector and pharmaceuticals. This review describes several biochemical pathways useful in the development of a biorefinery concept based on the biocatalytic conversion of the hydroxycinnamic acids ferulic, caffeic, and p-coumaric acid into high-value molecules. KEY POINTS: • The phenylpropanoids bioconversion pathways in the context of biorefineries • Description of pathways from hydroxycinnamic acids to high-value compounds • Metabolic engineering and synthetic biology advance hydroxycinnamic acid-based biorefineries.


Assuntos
Vias Biossintéticas , Ácidos Cumáricos , Ácidos Cumáricos/metabolismo , Biomassa , Biocatálise , Engenharia Metabólica
17.
Biotechnol Appl Biochem ; 70(5): 1663-1678, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36977651

RESUMO

Pectinases are a collection of multiple enzymes that have a common substrate, that is, pectin. They can act on different parts of pectin due to the structural heterogeneity of pectin. Therefore, they have been placed in different groups, such as protopectinases, polygalacturonases, polymethylesterases, pectin lyases, and pectate lyases. They are naturally present both in multicellular organisms such as higher plants and in unicellular organisms such as microbes. In past decade, it has been witnessed that chemical and mechanical methods employed in industrial processes have led to environmental hazards and serious health disorders, thus increasing the search for eco-friendly approaches with minimal health risks. Hence, microbial enzymes have been extensively used as safer alternative for these environmentally unsafe methods. Among these microbial enzymes, pectinases hold great significance and is one of the principal enzymes that have been used commercially. It is predominantly used as a green biocatalyst for fruit, fiber, oil, textile, beverage, pulp, and paper industry. Thus, this review focuses on the structure of pectin, microbial sources of pectin, and principle industrial applications of pectinases.


Assuntos
Liases , Poligalacturonase , Pectinas
18.
Proc Natl Acad Sci U S A ; 117(37): 22841-22848, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32859757

RESUMO

Quantum mechanics/molecular mechanics (QM/MM) maturation of an immunoglobulin (Ig) powered by supercomputation delivers novel functionality to this catalytic template and facilitates artificial evolution of biocatalysts. We here employ density functional theory-based (DFT-b) tight binding and funnel metadynamics to advance our earlier QM/MM maturation of A17 Ig-paraoxonase (WTIgP) as a reactibody for organophosphorus toxins. It enables regulation of biocatalytic activity for tyrosine nucleophilic attack on phosphorus. The single amino acid substitution l-Leu47Lys results in 340-fold enhanced reactivity for paraoxon. The computed ground-state complex shows substrate-induced ionization of the nucleophilic l-Tyr37, now H-bonded to l-Lys47, resulting from repositioning of l-Lys47. Multiple antibody structural homologs, selected by phenylphosphonate covalent capture, show contrasting enantioselectivities for a P-chiral phenylphosphonate toxin. That is defined by crystallographic analysis of phenylphosphonylated reaction products for antibodies A5 and WTIgP. DFT-b analysis using QM regions based on these structures identifies transition states for the favored and disfavored reactions with surprising results. This stereoselection analysis is extended by funnel metadynamics to a range of WTIgP variants whose predicted stereoselectivity is endorsed by experimental analysis. The algorithms used here offer prospects for tailored design of highly evolved, genetically encoded organophosphorus scavengers and for broader functionalities of members of the Ig superfamily, including cell surface-exposed receptors.

19.
Chem Biodivers ; 20(4): e202300061, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36824028

RESUMO

Metal complexes in cancer therapy have attracted much interest mainly because metals exhibit unique characteristics, such as redox activity, metal-ligand interaction, structure and bonding, Lewis acid properties etc. In 1965, Barnett Rosenberg serendipitously discovered the metal-based compound cisplatin, an outstanding breakthrough in the history of metal-based anticancer complexes and led to a new area of anticancer drug discovery. Many metal-based compounds have been studied for their potential anticancer properties. Some of these compounds have FDA approval for clinical use, while others are now undergoing clinical trials for cancer therapy and detection. In the present study, we have highlighted the primary mode of action of metallic complexes and all FDA-approved/under clinical trial drugs with reference to cancer treatment. This review also focuses on recent progress on metal-based complexes such as platinum, ruthenium, iron, etc. with potential anticancer activities.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Rutênio , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Cisplatino , Rutênio/química
20.
Molecules ; 28(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36677897

RESUMO

This study reports on the synthesis of novel bienzyme polymer-assisted nanoflower complexes (PANF), their morphological and structural characterization, and their effectiveness as cascade biocatalysts. First, highly porous polyamide 6 microparticles (PA6 MP) are synthesized by activated anionic polymerization in solution. Second, the PA6 MP are used as carriers for hybrid bienzyme assemblies comprising glucose oxidase (GOx) and horseradish peroxidase (HRP). Thus, four PANF complexes with different co-localization and compartmentalization of the two enzymes are prepared. In samples NF GH/PA and NF GH@PA, both enzymes are localized within the same hybrid flowerlike organic-inorganic nanostructures (NF), the difference being in the way the PA6 MP are assembled with NF. In samples NF G/PAiH and NF G@PAiH, only GOx is located in the NF, while HRP is preliminary immobilized on PA6 MP. The morphology and the structure of the four PANF complexes have been studied by microscopy, spectroscopy, and synchrotron X-ray techniques. The catalytic activity of the four PANF was assessed by a two-step cascade reaction of glucose oxidation. The PANF complexes are up to 2-3 times more active than the free GOx/HRP dyad. They also display enhanced kinetic parameters, superior thermal stability in the 40-60 °C range, optimum performance at pH 4-6, and excellent storage stability. All PANF complexes are active for up to 6 consecutive operational cycles.


Assuntos
Nanoestruturas , Biocatálise , Nanoestruturas/química , Glucose Oxidase/química , Peroxidase do Rábano Silvestre/química , Oxirredução , Enzimas Imobilizadas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA