Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
1.
Environ Sci Technol ; 58(21): 9446-9455, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38748977

RESUMO

Biological pretreatment is a viable method for enhancing biogas production from straw crops, with the improvement in lignocellulose degradation efficiency being a crucial factor in this process. Herein, a metagenomic approach was used to screen core microorganisms (Bacillus subtilis, Acinetobacter johnsonii, Trichoderma viride, and Aspergillus niger) possessing lignocellulose-degrading abilities among samples from three environments: pile retting wheat straw (WS), WS returned to soil, and forest soil. Subsequently, synthetic microbial communities were constructed for fermentation-enzyme production. The crude enzyme solution obtained was used to pretreat WS and was compared with two commercial enzymes. The synthetic microbial community enzyme-producing pretreatment (SMCEP) yielded the highest enzymatic digestion efficacy for WS, yielding cellulose, hemicellulose, and lignin degradation rates of 39.85, 36.99, and 19.21%, respectively. Furthermore, pretreatment of WS with an enzyme solution, followed by anaerobic digestion achieved satisfactory results. SMCEP displayed the highest cumulative biogas production at 801.16 mL/g TS, which was 38.79% higher than that observed for WS, 22.15% higher than that of solid-state commercial enzyme pretreatment and 25.41% higher than that of liquid commercial enzyme pretreatment. These results indicate that enzyme-pretreated WS can significantly enhance biogas production. This study represents a solution to the environmental burden and energy use of crop residues.


Assuntos
Biocombustíveis , Triticum , Triticum/metabolismo , Anaerobiose , Fermentação , Lignina/metabolismo
2.
J Environ Manage ; 366: 121920, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39029174

RESUMO

Slaughterhouse waste (SHW) poses significant environmental challenges due to its complex composition. In response, a novel review exploration of anaerobic digestion (AD) as a means of valorising SHW within the context of the circular economy (CE) is presented. The physicochemical properties of individual SHW, representing key parameters for the correct management of the AD process, are scrutinized. These parameters are further connected with identifying suitable pretreatment methods to enhance biogas production. Subsequently, the review examines the diverse technologies employed in the AD of SHW, considering the complexities of mono- or co-digestion. Various AD systems are evaluated for their effectiveness in harnessing the substantial biogas production potential from SHW, encompassing key parameters, reactor configurations, and operational conditions that influence the AD process. Moreover, the review interestingly extends its scope to the recovery and management of digestate, the by-product of AD. Along with the digestate composition, strategies for various utilization of this by-product are discussed. This investigation thus underscores, within the principles of the CE, the dual sustainable benefits of SHW processing via AD in biogas production and utilization of the resultant nutrient-rich digestate in various sectors.


Assuntos
Matadouros , Anaerobiose , Biocombustíveis , Reatores Biológicos , Eliminação de Resíduos/métodos , Gerenciamento de Resíduos/métodos
3.
J Environ Manage ; 366: 121874, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39025014

RESUMO

Anaerobic digestion for flexible biogas production can lead to digestion inhibition under high shock loads. While steel slag addition has shown promise in enhancing system buffering, its limitations necessitate innovation. This study synthesized the nitrogen-doped activated carbon composite from steel slag to mitigate intermediate product accumulation during flexible biogas production. Material characterization preceded experiments introducing the composite into anaerobic digestion systems, evaluating its impact on methane production efficiency under hydraulic and concentration sudden shocks. Mechanistic insights were derived from microbial community and metagenomic analyses, facilitating the construction of the modified Anaerobic Digestion Model No. 1 (ADM1) to quantitatively assess the material's effects. Results indicate superior resistance to concentration shocks with substantial increment of methane production rate up to 33.45% compared with control group, which is mediated by direct interspecies electron transfer, though diminishing with increasing shock intensity. This study contributes theoretical foundations for stable flexible biogas production and offers an effective predictive tool for conductor material reinforcement processes.


Assuntos
Biocombustíveis , Metano , Nitrogênio , Aço , Aço/química , Nitrogênio/química , Metano/química , Anaerobiose , Carvão Vegetal/química , Carbono/química
4.
J Environ Manage ; 367: 121948, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39083945

RESUMO

The hydrodynamic disintegration process depends, among others, on operational parameters like rotational speed or introduced energy. The study presents an interdisciplinary approach to the hydrodynamic disintegration parameters impact assessment on the internal processes and disintegration effects on the example of sewage sludge treatment. Three rotational speeds were considered, including fluid properties change at selected disintegration stages. Disintegration effects were measured in the bench tests. Soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) were measured before and after disintegration process. The assessment of the effects of disintegration employed the disintegration degree and the assessment of the course of methane production employed biochemical methane potential (BMP) tests. Fluid properties change during the disintegration stages does not cause a significant change in the flow structure. Due to the mathematical modelling results, at 1500 rpm no cavitation phenomenon was observed. Although, the bench tests results indicates, for the rotational speed 1500 rpm, organic compounds released to the liquid were characterised by higher susceptibility to biological decomposition than those released for 2500 and 3000 rpm (as suggested by the low SCOD/VFA values for 1500 rpm). Obtained results have confirmed, that the main phenomenon responsible for the disintegration effect is mechanical shredding not cavitation.


Assuntos
Análise da Demanda Biológica de Oxigênio , Hidrodinâmica , Modelos Teóricos , Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Ácidos Graxos Voláteis/metabolismo , Metano
5.
Environ Res ; 216(Pt 1): 114436, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183791

RESUMO

Agro-waste having lignocellulosic biomass is considered most effective (heating value 16 MJ/kg) for energy production through anaerobic digestion (AD). However, recalcitrant lignocellulosic fraction in agro-waste obstructs its biotransformation and is a rate-limiting step of the process. This study investigated the effects of hydrothermal and thermal-alkaline pretreatment on anaerobic co-digestion of wheat straw (WS). The hydrothermal pretreatment of WS revealed that 60 min was the best pretreatment time to achieve the highest substrate solubilization. It was employed for thermal-alkali pretreatment at variable temperatures and NaOH doses. Thermal-alkali pretreatment at 125°C-7% NaOH shows the highest (34%) biogas yield of 662 mL/gVS, followed by 646 mL/gVS biogas yield at 150°C-1% NaOH assay (31% higher) over control. Although the 125°C-7% NaOH assay achieved the highest biogas yield, the 150°C-1% NaOH assay was found more feasible considering the cost of a 6% higher chemical used in the earlier assay. The thermal-alkali pretreatment was observed to reduce the formation of recalcitrant compounds (HMF, Furfural) and increase the buffering capacity of the slurry over hydrothermal pretreatment. Principal component analysis (PCA) of the various pretreatment and AD operational parameters was carried out to study their in-depth correlation. Moreover, a kinetic study of the experimental data was performed to observe the biodegradation trend and compare it with the Modified Gompertz (MG) and First Order (FO) models.


Assuntos
Biocombustíveis , Triticum , Triticum/química , Anaerobiose , Álcalis , Metano , Hidróxido de Sódio , Digestão
6.
Environ Res ; 223: 115471, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36773644

RESUMO

The overuse of antibiotics has caused problems such as environmental pollution, increased antibiotic resistance of pathogenic bacteria, and inhibition of engineered microbial processes such as anaerobic digestion (AD). At present, mitigating the inhibition of antibiotics on the process of microbial recycling of organic matter by using additives has always been a research hotspot. In this study, the effects of the addition of three iron-based particles including zero-valent iron (ZVI), Fe2O3 and Fe3O4 on the biogas yield during the AD of cow manure containing florfenicol (FLO) were studied. It was found that by alleviating the acid accumulation, the addition of low-concentration ZVI, Fe2O3 and high-concentration Fe3O4 enhanced the maximum methane production rate of FLO-containing cow manure during AD to 3.5, 1.7 and 3.6 times, respectively, while high concentration of ZVI will lead to the crash of the AD system due to the rise of pH. Within the concentration range of iron-based particles dosed in this study, the Fe3O4 dosage showed a significant positive correlation with the cumulative methane production enhancement rate (p < 0.01). The sum of the relative abundances of Limnobacter and Pseudomonas was correlated with the absolute abundance of floR gene with the Pearson correlation coefficient of 0.9457 (p < 0.01), indicating the possibility of these two genera being the potential host bacteria for floR gene.


Assuntos
Ferro , Esterco , Animais , Bovinos , Anaerobiose , Antibacterianos/farmacologia , Biocombustíveis , Metano , Reatores Biológicos
7.
Environ Res ; 231(Pt 3): 116216, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37224944

RESUMO

The present investigation explores the feasibility of generating biogas from water hyacinth (WH) through a pretreatment process. The WH samples were subjected to a high concentration of H2SO4 pretreatment to enhance biogas production. The H2SO4 pretreatment aids in breaking down the lignocellulosic materials found in the WH. Additionally, it helps modify the cellulose, hemicellulose, and lignin, which assists in the anaerobic digestion process. The samples underwent pretreatment with 5% v/v H2SO4 for 60 min. Biogas production was conducted for both untreated and pretreated samples. Furthermore, sewage sludge and cow dung were used as inoculants to promote fermentation in the absence of oxygen. The results of this study demonstrate that the pretreatment of water hyacinth with 5% v/v H2SO4 for 60 min considerably enhances biogas production through the anaerobic co-digestion process. The maximum biogas production was recorded by T. Control-1, with a production rate of 155 mL on the 15th day compared to all other controls. All the pretreated samples showed the highest biogas production on the 15th day, which is comparatively five days earlier than the untreated samples. In terms of CH4 production, the maximum yield was observed between the 25th and 27th days. These findings suggest that water hyacinth is a viable source of biogas production, and the pretreatment method significantly improves biogas yield. This study presents a practical and innovative approach to biogas production from water hyacinth and highlights the potential for further research in this area.


Assuntos
Biocombustíveis , Eichhornia , Anaerobiose , Metano , Esgotos , Nutrientes , Digestão
8.
Biofouling ; 39(4): 349-358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325870

RESUMO

Anaerobic membrane reactors (AnMBRs) offer an alternative wastewater treatment system, presenting both reclamation of value through biogas production, and efficient treatment of recalcitrant contaminants such as antibiotics from wastewater. The effects of bioaugmentation with the green alga Haematococcus pluvialis on anaerobic treatment of pharmaceutical wastewaters, alleviating membrane biofouling, biogas production and impact on the indigenous microbial communities were evaluated using AnMBRs. The outputs of the bioreactor experiments revealed that bioaugmentation strategies with the green alga increased removal of chemical oxygen demand by 12% and delayed membrane fouling by 25% and increased biogas production by 40%. Furthermore, bioaugmentation with the green alga led to a significant change in relative abundance of archaea and the main methanogenesis pathway shifted from Methanothermobacter to Methanosaeta, accompanied by their respective syntrophic bacteria.


Assuntos
Clorófitas , Eliminação de Resíduos Líquidos , Anaerobiose , Biocombustíveis , Biofilmes , Águas Residuárias , Reatores Biológicos/microbiologia , Metano , Membranas Artificiais
9.
J Environ Manage ; 342: 118159, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37207460

RESUMO

Eutrophication is one of the major emerging challenges in aquatic environment. Industrial facilities, including food, textile, leather, and paper, generate a significant amount of wastewater during their manufacturing process. Discharge of nutrient-rich industrial effluent into aquatic systems causes eutrophication, eventually disturbs the aquatic system. On the other hand, algae provide a sustainable approach to treat wastewater, while the resultant biomass may be used to produce biofuel and other valuable products such as biofertilizers. This review aims to provide new insight into the application of algal bloom biomass for biogas and biofertilizer production. The literature review suggests that algae can treat all types of wastewater (high strength, low strength, and industrial). However, algal growth and remediation potential mainly depend on growth media composition and operation conditions such as light intensity, wavelength, light/dark cycle, temperature, pH, and mixing. Further, the open pond raceways are cost-effective compared to closed photobioreactors, thus commercially applied for biomass generation. Additionally, converting wastewater-grown algal biomass into methane-rich biogas through anaerobic digestion seems appealing. Environmental factors such as substrate, inoculum-to-substrate ratio, pH, temperature, organic loading rate, hydraulic retention time, and carbon/nitrogen ratio significantly impact the anaerobic digestion process and biogas production. Overall, further pilot-scale studies are required to warrant the real-world applicability of the closed-loop phycoremediation coupled biofuel production technology.


Assuntos
Microalgas , Purificação da Água , Águas Residuárias , Biocombustíveis , Anaerobiose , Fotobiorreatores , Biomassa
10.
Korean J Chem Eng ; 40(6): 1389-1400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325271

RESUMO

Performance of an anaerobic moving bed biofilm reactor (AnMBBR) was evaluated for pretreatment of real textile desizing wastewater at organic loading rate (OLR) of 1±0.05 to 6.3±0.37 kgCOD/m3/d. After OLR optimization, the performance of AnMBBR was evaluated for biodegradation of reactive dyes. AnMBBR was operated under a mesophilic temperature range of 30 to 36 °C, while the oxidation-reduction potential (ORP) and pH were in the range of 504 to 594 (-mV) and 6.98 to 7.28, respectively. By increasing the OLR from 1±0.05 to 6.3±0.37 kgCOD/m3/d, COD and BOD5 removal was decreased from 84 to 39% and 89 to 49%, respectively. While the production of biogas was increased from 0.12 to 0.83 L/L·d up to an optimum OLR of 4.9±0.43 kgCOD/m3/d. With increase in the dye concentration in the feed, COD, BOD5, color removal and biogas production reduced from 56, 63, 70% and 0.65 L/L·d to 34, 43, 41% and 0.08 L/L·d, respectively. Based on the data obtained, a cost-benefit analysis of AnMBBR was also investigated for the pretreatment of real textile desizing wastewater. Cost estimation of anaerobic pretreatment of textile desizing wastewater indicated a net profit of 21.09 million PKR/yr (114,000 €/yr) and a potential payback period of 2.54 years.

11.
Environ Chem Lett ; : 1-32, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37362014

RESUMO

The rise of global waste and the decline of fossil fuels are calling for recycling waste into energy and materials. For example, rice straw, a by-product of rice cultivation, can be converted into biogas and by-products with added value, e.g., biofertilizer, yet processing rice straw is limited by the low energy content, high ash and silica, low nitrogen, high moisture, and high-quality variability. Here, we review the recycling of rice straw with focus on the global and Chinese energy situations, conversion of rice straw into energy and gas, biogas digestate management, cogeneration, biogas upgrading, bioeconomy, and life cycle assessment. The quality of rice straw can be improved by pretreatments, such as baling, ensiling, and co-digestion of rice straw with other feedstocks. The biogas digestate can be used to fertilize soils. The average annual potential energy of collectable rice straw, with a lower heating value of 15.35 megajoule/kilogram, over the past ten years (2013-2022) could reach 2.41 × 109 megajoule.

12.
Environ Res ; 204(Pt B): 111978, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480946

RESUMO

This study is an attempt to assess CH4 and N2O emissions from all the treatment steps of a wastewater treatment plant (WWTP) in Sweden, serving 145 000 persons, and an adjacent biogas production facility. We have used novel mid-IR ground-based remote sensing with a hyperspectral camera to visualize and quantify the emissions on 21 days during a year, with resulting yearly fluxes of 90.4 ± 4.3 tonne CH4/yr and 10.9 ± 1.3 tonne N2O/yr for the entire plant. The most highly emitting CH4 source was found to be sludge storage, which is seldom included in literature as in-situ methods are not suitable for measuring emissions extended over large surfaces, still contributing 90 % to the total CH4 emission in our case. The dominating N2O source was found to be a Stable High rate Ammonia Removal Over Nitrite reactor, contributing 89 % to the total N2O emissions. We also discovered several unexpected CH4 sources. Incomplete flaring of CH4 gave fluxes of at least 30 kg CH4/min, corresponding to plume concentrations of 2.5 %. Such highly episodic fluxes could double the plant-wide yearly emissions if they occur 2 days per year. From a distance of 250 m we found a leak in the biogas production facility, corresponding to 1.1 % of the CH4 produced, and that loading of organic material onto trucks from a biofertilizer storage tank contributed with high emissions during loading events. These results indicate that WWTP emissions globally may have been grossly underestimated and that it is essential to have effective methods that can measure all types of fluxes, and discover new potential sources, in order to make adequate priorities and to take effective actions to mitigate greenhouse gas emissions from WWTPs.


Assuntos
Óxido Nitroso , Purificação da Água , Biocombustíveis , Dióxido de Carbono/análise , Metano , Tecnologia de Sensoriamento Remoto
13.
Environ Res ; 212(Pt D): 113404, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35568236

RESUMO

Bioenergy is a promising solution for greenhouse gas (GHG) emissions mitigation. However, the emissions resulting from the different production stages must be quantified and evaluated. The life cycle assessment (LCA) method was used to compare and quantify the environmental burdens of three rice straw (RS) utilization scenarios for producing biogas, briquette fuel, and syngas. To our knowledge, this is the first study that applies the LCA approach to assess these three bioenergy scenarios in a single study where the main goal was to determine the most sustainable option. A total of 10 mid-point impact categories were investigated. The results indicated that the three scenarios achieved net positive energy and net negative GHG balances. The briquette fuel scenarios had the highest net energy balance (11,115 MJ/tonne dry RS), while the syngas scenario had the highest net GHG (-2,315 kg CO2-eq./tonne dry RS). Moreover, the syngas scenario was the most beneficial to the environment, achieving negative results in 9 out of the 10 impact categories; the largest was marine ecotoxicity (-853,897 kg 1,4-DB-eq./tonne dry RS). The biogas scenario achieved emission savings in 3 out of the 10 categories. Although the briquette fuel scenario had no negative values in the 10 categories, its overall contribution to environmental burdens was relatively low. Overall, the order of the three scenarios in terms of the most sustainable option is syngas > briquette fuel > biogas.


Assuntos
Gases de Efeito Estufa , Oryza , Animais , Biocombustíveis , Efeito Estufa , Estágios do Ciclo de Vida
14.
Bull Math Biol ; 84(10): 110, 2022 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-36030441

RESUMO

The present work considers the model of two chemostats in series when a biomass mortality is considered in each vessel. We study the performance of the serial configuration for two different criteria which are the output substrate concentration and the biogas flow rate production, at steady state. A comparison is made with a single chemostat with the same total volume. Our techniques apply for a large class of growth functions and allow us to retrieve known results obtained when the mortality is not included in the model and the results obtained for specific growth functions in both the mathematical literature and the biological literature. In particular, we provide a complete characterization of operating conditions under which the serial configuration is more efficient than the single chemostat, i.e., the output substrate concentration of the serial configuration is smaller than that of the single chemostat or, equivalently, the biogas flow rate of the serial configuration is larger than that of the single chemostat. The study shows that the maximum biogas flow rate, relative to the dilution rate, of the series device is higher than that of the single chemostat provided that the volume of the first tank is large enough. This non-intuitive property does not occur for the model without mortality.


Assuntos
Biocombustíveis , Modelos Biológicos , Biomassa , Reatores Biológicos , Conceitos Matemáticos
15.
J Environ Manage ; 323: 116057, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099866

RESUMO

Co-substrates can increase gas production in a digester significantly. The characteristic properties of substrates, depending on the amounts added, influence the processes in the digester reactor. As a consequence, they can have an impact on the buffer capacity, pH value, C:N ratio, dewaterability of the digested sludge and introduce contaminants to the digester among others. In the future, a discontinuous digester feeding could contribute to the demand-driven energy supply by WRRFs. Due to the increasing instability caused by fluctuating organic load, higher demands are placed on the selection of co-substrates. This study examined to what extent flotation sludge from dairy companies is suitable for a sustainable co-digestion. In addition, it should be evaluated whether flotation sludge is applicable for demand-driven feeding strategies. It was shown that flotation sludge has positive effects on the reactor as well as a significant increase in biogas production and a high degree of degradation of at least 80%. Even at high organic loads pH remained at a high level at around 7.5 due to the high alkalinity of the substrate. Nonetheless, addition of more than 20 w-% flotation sludge lead to a significant decrease of the dewaterability of the digested sludge.


Assuntos
Biocombustíveis , Esgotos , Anaerobiose , Biocombustíveis/análise , Reatores Biológicos , Metano , Esgotos/química
16.
J Environ Manage ; 305: 114384, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34991022

RESUMO

Due to the drawbacks of using fossil fuels and the need to mitigate global warming caused by increasing greenhouse gas emissions, agricultural biomass for bioenergy production is gaining great interest around the world. This work presented a study at a biochemical plant in Lianyungang, Jiangsu Province, China to maximize methane production from cassava distiller wastewater. The plant's annual production of cassava distiller wastewater is more than 3 million tons and currently was treated using a series of 5000 m3 Internal Circulation (IC) reactors. Modification was applied at No.19 IC reactor by connecting it to two 1 m3 automatic biological incubators called Information Bio-Booster (IBB). The effluent of the IC reactor was fed into the IBBs and iron, cobalt and nickel were added directly in the IBBs. The function of the IBBs was to regulate the microbial community. Afterwards, the microorganisms in the IBBs were pumped back into the IC reactor to participate in the methane production reaction. Daily net increase of methane content and COD removal reached 8.02% and 33% respectively in No.19 IC reactor comparing to the unadjusted reactors. Preliminary lab experiments found that improvements of biogas production, enhanced COD removal and VS removal was closely related to the enhancement of anaerobic microbial communities' diversity and the promotion of enzyme activity through the addition of the metal salts. Daily economic value could be estimated to be $218 which indicated the application potential of using the proposed system to enhance anaerobic digestion at industrial plants for bioenergy production.


Assuntos
Manihot , Águas Residuárias , Anaerobiose , Reatores Biológicos , Metano , Eliminação de Resíduos Líquidos
17.
J Environ Manage ; 304: 114309, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34933268

RESUMO

In the present study, marine macroalgae waste, mainly composed by Saccorhiza polyschides, was collected from a beach in northern Portugal and evaluated as feedstock for anaerobic digestion. Batch experiments (500 mL flasks, 300 mL working volume) were conducted at the following conditions: mesophilic temperature (37 °C); 80 rpm stirring speed; 150 mL inoculum (anaerobically digested sludge) and variable total solids content (0.9, 1.7, 2.5 and 3.5% TS). Methane concentration and volume of biogas obtained were monitored during up to 57 days by optical sensors and milligascounters, respectively. The results show that an increase in total solids content up to 2.5% TS led to the highest biogas volume and methane concentration. The maximum biogas yield was 227 ± 4 mL/g VS (2.5% TS, 53 operation days), with the maximum methane content in the biogas being 64.5 ± 0.6% (51 operation days). A maximum methane yield of 146 ± 2 mL/g VS was consequently estimated. At the end of the process (57 days), an average of 43% COD reduction and 46% VS reduction were observed. These results correspond to about 27% of the theoretical maximum methane production. Using 3.5% TS the inhibition of the process was observed, by the decrease in pH, most likely due to the accumulation of volatile fatty acids. The results indicate that marine macroalgae waste may be a good candidate as substrate for anaerobic digestion processes, most probably by co-digestion.


Assuntos
Biocombustíveis , Alga Marinha , Anaerobiose , Biocombustíveis/análise , Reatores Biológicos , Metano , Esgotos
18.
J Environ Manage ; 321: 116000, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987054

RESUMO

Cassava is a staple crop that plays a significant role in the food security of many countries. However, its processing produces a liquid by-product known as cassava wastewater (CW), which can have adverse environmental consequences if discarded without treatment. Despite its cyanide content, CW has a high organic content and may be profitable when used to produce biogas. In this study, the influence of calcium particles from eggshell residues was investigated on the anaerobic digestion of CW. Moreover, the performance of the bioreactor was remotely monitored. Calcium particles from milled-calcined chicken eggshells were added to the bioreactor, and biogas production was investigated for 21 days. Adding 1 g/L and 3 g/L of calcium particles increased biogas (Bio H2 + Bio CH4) production by 195% and 338%, respectively. Finally, the requirement for digestate post-treatment before use in agriculture was observed after assessing its phytotoxicity through the germination and root growth of L. sativa seeds.


Assuntos
Biocombustíveis , Manihot , Anaerobiose , Animais , Biocombustíveis/análise , Reatores Biológicos , Cálcio , Casca de Ovo/química , Metano , Águas Residuárias
19.
J Environ Manage ; 318: 115635, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35949088

RESUMO

Single pretreatment of sewage sludge, either physical, chemical or biological, has its own drawbacks in term of poor sanitization, energy intensity and high operational and capital cost. To tackle these drawbacks, combined high pressure homogenization (HPH) and free nitrous acid (FNA) pretreatment for sludge solubilization and further biodegradation in anaerobic digestion was investigated. Synergistic effect of combined HPH (40 MPa) and FNA (2.49 mg/L) pretreatment (HPH-FNA) for improving anaerobic digestion was evaluated, and its effect on archaeal and bacterial community structure was analyzed. Compared with single HPH and FNA pretreatments, HPH-FNA pretreatment efficiently solubilized wasted activated sludge (WAS), subsequently improved anaerobic digestion. Cumulative biogas production from sewage sludge pretreated with HPH-FNA was 154%, 108% and 284% more than that with single pretreatment of FNA, HPH and raw sludge, respectively. In addition, volumetric biogas production of combined pretreatment system (815 ml) was more than the sum from single pretreatment (710 ml). Methane content in biogas for raw sludge, FNA, HPH and HPH-FNA pretreated sludge was 45%, 51%, 55% and 65%, respectively. Illumina MiSeq sequencing analysis revealed that HPH-FNA pretreatment promoted bacterial growth of phyla Bacteroidetes, Firmicutes and Synergistetes and archaeal genera Methanospirillum and Methanosaeta. Overall, combined HPH-FNA pretreatment of sewage sludge, prior to anaerobic digestion, is an environmentally-friendly and potentially economic technology.


Assuntos
Ácido Nitroso , Esgotos , Anaerobiose , Biocombustíveis/análise , Reatores Biológicos , Metano/análise , Ácido Nitroso/análise , Esgotos/química , Eliminação de Resíduos Líquidos
20.
J Environ Manage ; 318: 115626, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35777156

RESUMO

In cold and arid areas, variations of ambient temperature not only lead to a large amount of heat loss from anaerobic digestion reactors but also greater challenges in the stable production of biogas. Common temperature-controlled methods of biogas production, such as coal combustion, electric heating, biogas combustion and so on, are expensive and high energy-consuming. Openly, solar energy is economical and suitable for stable biogas production. However, no pilot studies have yet shown the feasibility of controlling the temperature of annual biogas production with solar energy in cold and arid areas. This paper first theoretically analyzed the energy balance between evacuated tube solar collectors and anaerobic reactors. Then a biogas production system was developed in Lanzhou City, China, consisting mainly of a 3 m3 insulated anaerobic reactor and a solar collector with 30 sticks Φ58 × L1800mm evacuated tubes. Annual batch experiments have been carried out to test the feasibility of stable biogas production at a temperature-controlled by solar energy in cold and arid areas. The results show that dry anaerobic digestion with 20% total solid (TS) can start and operate smoothly even under the condition of low solar irradiation for 3-4 consecutive days. The system can run stability by anaerobic digestion at 26 ± 1 °C in winter and spring, by mesophilic (37 ± 1 °C) and thermophilic (52 ± 1 °C) anaerobic digestion in summer and autumn, which implies a highly efficient operation strategy for agricultural and animal husbandry wastes treatment. These theoretical and experimental results provide a scientific basis and engineering reference for the application of biogas production temperature-controlled by solar energy and have important value for the efficient and low-cost anaerobic digestion treatment of agricultural and animal husbandry wastes in cold and arid areas.


Assuntos
Biocombustíveis , Energia Solar , Anaerobiose , Animais , Reatores Biológicos , Estudos de Viabilidade , Metano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA